
 
Micro Prelim June 21, 2022 

QUESTION 1  ANSWER KEYS 
(a.1) The extensive game is as follows: 
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(a.2) For each player a strategy is a choice of action for each number the player gets to see. The 
strategic-form is as follows: 

E always If 1 E, if 2 P if 1 P, if 2 E P always

E always 10 , 10 10 , 5 10 , 5 10 , 0

Player If 1 E, if 2 P 5 , 10 5 , 5 30 , 5 30 , 0 

1 if 1 P, if 2 E 5 , 10 5 , 30 5 , 5 5 , 25

P always 0 , 10 0 , 30 25 , 5 25 , 25

Player 2

 
(a.3)  For each player “P always” is strictly dominated by “if 1 E, if 2 P” and  
“if 1 P, if 2 E” 1 is strictly dominated by “E always”.   
(a.4) Deleting the strictly dominated strategies we are left with: 

E always If 1 E, if 2 P

Player E always 10 , 10 10 , 5

1 If 1 E, if 2 P 5 , 10 5 , 5

Player 2

 
Now the strategy “if 1 E, if 2 P” is strictly dominated by “E always”. Thus there is a unique Nash 
equilibrium: (E always, E always).  
(b) (E always, E always) is a Nash equilibrium also in this case. “E always” is the unique best 
reply to the strategy “E always” by the other player. Indeed, if, say, Player 1 chooses “E always” 
then for Player 2 “E always” guarantees a payoff of 10, while any other strategy would involve 
playing P at some information sets, implying an expected payoff less than 10 (0 at those 
information sets and 10 at those information sets, if any, where the strategy involves playing E).   



(c) Assume that Player 1’s strategy is “If 1 Exit, if 2 Play”. Then at her left information set (where 
she knows that she has a 1) Player 2 must assign probability ½ to each of the two middle nodes, so 
that the expected payoff from Play is 2

C  and the expected payoff from Exit is 10. The two are equal 
if and only if C = 20. Thus it is rational for Player 2 to mix at that information set if and only if C = 
20. The same is true at Player 2’s information set on the right (where she knows that she has a 2). 
Thus the answer is: C = 20. 
(d) Let C = 20. Let 1 (0,1)q   be the probability with which Player 2 plays Exit when she has a 1 
and 2 (0,1)q   be the probability with which Player 2 plays Exit when she has a 2. Then for Player 
1 at his top information set (where he has a 2) Play is at least as good as Exit if and only if  

1 1
1 1 22 2

expected expected payoff from Play payoff 
from Exit

[20 100(1 )] 20 10q q q        equivalent to   1 22 2 0.5q q   (true for all 1 2, (0,1)q q  ). 

For Player 1 at his bottom information set (where he has a 1) Exit is at least as good as Play iff  

 1 1
1 22 2

expected expected payoff from Playpayoff 
from Exit

10 [20 ] 20q q      which is equivalent to   1 21 q q    

Thus, for all 1 2(0,1) and (0,1)q q   such that 1 2 1q q   the following strategy profile (together 
with the beliefs specified above) is a weak sequential equilibrium: Player 1’s strategy is “If 1 Exit, 
if 2 Play”, Player 2’s strategy is “if 1 Exit with probability 1q ,  if 2 Exit with probability 2q ”. 
(e.1) The partitions are as follows:  

(1,1)       (1,2)       (1,3)       (1,4)

(2,1)       (2,2)       (2,3)       (2,4)

(3,1)       (3,2)       (3,3)       (3,4)

(4,1)       (4,2)       (4,3)       (4,4)

Player 1:

(1,1)       (1,2)       (1,3)       (1,4)

(2,1)       (2,2)       (2,3)       (2,4)

(3,1)       (3,2)       (3,3)       (3,4)

(4,1)       (4,2)       (4,3)       (4,4)

Player 2:

 
(e.2)  The common knowledge partition is the trivial one containing the set of all states. 
(e.3)  E = the union of the third row and the second column: {(3,1), (3,2), (3,3), (3,4), (1,2), (2,2), 
(4,2)}.  
 



I always wondered why some people buy ugly but expensive handbags. It is as if
the price, as a special characteristic of the commodity, contributes to the utility of the
commodity.

Consider a utility function of the form

u(x,p) =
L∏

`=1

x
√
p`

` . (1)

where x = (x1, ..., xL) ∈ RL
+ is the consumption vector and p = (p1, ..., pL) >> 0 is the

price vector. This utility function resembles the Cobb-Douglas utility function except
that its parameters are the prices.

Denote the consumer’s wealth by w and assume w > 0. Let’s consider the problem
of maximizing this utility function subject to the budget constraint, i.e.,

max
x∈RL

u(x,p) =
L∏

`=1

x
√
p`

` (2)

subject to

p · x ≤ w (3)

x ≥ 0 (4)

a. Use the Lagrangian or the Kuhn-Tucker-Lagrangian approach to solve the con-
strained maximization problem. Derive step-by-step the Walrasian demand func-
tions.

The utility function is monotone in x. Thus, we ignore the nonnegativity constraints.

It is useful to consider the log-monotone transformation of the utility function. The Lagrangian
is

L(x1, . . . , xL, λ) =

L∑
`=1

√
p` log x` − λ

(
L∑
`=1

p`x` − w

)

The first-order necessary conditions for any ` ∈ {1, ..., L}:

∂L(x, λ)

∂x`
=

√
p`

x`
− λp`

!
= 0 (5)

The MRS of any two goods (`, k):

√
p`
x`√
pk
xk

=
p`
pk
⇒ xk = x`

√
p`√
pk

(6)

Plug into the budget constraint:



p`x` +

L∑
k 6=`

pkxk = p`x` +

L∑
k 6=`

pkx`

√
p`√
pk

= w (7)

⇒ √p`x`

√p` +

L∑
k 6=`

√
pk

 =
√
p`x`

(
L∑
k=1

√
pk

)
= w (8)

⇒ x∗` =
w

√
p`

(∑L
k=1

√
pk

) =
w

p`

√
p`(∑L

k=1

√
pk

) (9)

b. Show that Walrasian demand functions are homogeneous of degree zero.

For any ` ∈ 1, ..., L, α > 0

x`(αp, αw) =
αw

αp`

√
αp`(∑L

k=1

√
αpk

) =
w

p`

√
α
√
p`

√
α
(∑L

k=1

√
pk

) =
w

p`

√
p`(∑L

k=1

√
pk

) = x`(p, w)

c. State the indirect utility function and simplify as much as you can.

v(p, w) =

L∏
`=1

w

p`

√
p`(∑L

k=1

√
pk

)

√
p`

(10)

=
w

∑L
`=1

√
p`∏L

`=1

√
p`
√
p`
(∑L

k=1

√
pk

)∑L
`=1

√
p`

(11)

d. Check whether the indirect utility function is homogeneous of degree zero.

v(αp, αw) =
(αw)

∑L
i=1

√
αpi∏L

`=1

√
αpi
√
αp`
(∑L

`=1

√
αp`

)∑L
`=1

√
αp`

(12)

=
α
∑L
`=1

√
αp`(w)

∑L
`=1

√
αp`

√
α
∑L
`=1

√
αp`
(∏L

`=1

√
p`
√
αp`
)√

α
∑L
`=1

√
αp`
(∑L

`=1

√
p`

)∑L
`=1

√
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(13)

=
w

∑L
`=1

√
αp`∏L

`=1

√
p`
√
αp`
(∑L

`=1

√
p`

)∑L
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√
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(14)

=

 w
∑L
`=1

√
p`∏L

`=1

√
p`
√
p`
(∑L

`=1

√
p`

)∑L
`=1

√
p`


√
α

(15)



So, it is not homogeneous of degree zero, which is different from “standard” indirect utility

functions.

e. We all noticed that inflation is back. For the sake of concreteness, consider inflation
as a proportional rise of all prices and wealth. Would consumers with such kind of
utility functions be happy about inflation?

What a timely utility function! The indirect utility increases with inflation.

f. Now consider the expenditure minimization problem

min
x∈RL

p · x (16)

subject to

u(x,p) =
L∏

`=1

x
√
p`

` ≥ ū (17)

x ≥ 0 (18)

for ū > 0. Solve step-by-step for the Hicksian demand functions.

The Lagrangian to solve the expenditure minimization problem is

L(x1, . . . , xL, λ) =

L∑
`=1

p`x` − λ

(
L∏
`=1

x
√
p`

` − ū

)

The first-order necessary conditions for any i ∈ {1, ..., L}:

∂L(x, λ)

∂x`
= p` − λ

√
p`

x`

L∏
k=1

x
√
pk

k
!
= 0 (19)

Combining with the constraint on ū, we can get the solution:

h`(p, ū) = x∗` = ū
1∑L

k=1
√
pk

∏
k 6=`

(√
pk√
p`

) √
pk∑L

m=1
√
pm

g. Is the Hicksian demand function homogeneous of degree zero in prices? Explain.



The Hicksian demand is not homogeneous of degree zero with respect to prices.

h`(αp, ū) = ū
1∑L

k=1
√
αpk

∏
k 6=`

(√
αpk√
αp`

) √
αpk∑L

m=1
√
αpm

(20)

= ū
1√

α
∑L
k=1

√
pk

∏
k 6=`

(√
pk√
p`

) √
pk∑L

m=1
√
pm

(21)

h. Write down the expenditure function.

e(p, ū) =

L∑
`=1

p`x` (22)

=

L∑
`=1

p`ū
1∑L

k=1
√
pk

∏
k 6=`

(√
pk√
p`

) √
pk∑L

m=1
√
pm

(23)

i. Is it homogeneous of degree one in prices? Explain.

The expenditure function is not homogeneous of degree 1 w.r.t. prices because Hicksian demand
is not homogeneous of degree zero w.r.t. prices.



Answer:

Before proceeding, let us verify the properties that were taken for granted:

1. Note that the domain of the maximization program (1) can be written as

fz 2RL j wi + z � 0 and p y z � 0g � fz 2RL j 8`;xn � zl � ng:

The �rst of these two sets is non-empty, convex and closed while the sec-

ond is non-empty, convex and compact. Since both sets contain the origin,

their intersection is non-empty. The intersection is also compact, so by

Weierstrass the program has at least one solution, since ui is continuous. Fi-

nally, the solution is unique since the intersection is convex and ui is strictly

quasi-concave.

Continuity is straightforward from Berge's theorem, since the domain of

program (1) is a continuous correspondence and its objective function is

continuous.

That Zn is well de�ned and continuous follows immediately.

2. By de�nition, for all i and `, jzi;n(p)j � n, so j
P
i z

i;n(p)j �
P
i jz

i;n(p)j � n y I by

construction.

3. The argument is standard, as in class: the domain of the problem is non-

empty, convex and compact, and the objective function is continuous and

concave, so it follows that the set of solutions is non-empty, compact and

convex. As z varies, the domain of the problem is a constant correspondence,

so it is continuous. Since the objective function is continuous, by Berge the

set of solutions is an upper hemicontinuous correspondence.

4. The �rst claim is straightforward, from properties 2 and 3: the product

of two non-empty, compact and convex sets retains the three properties.

Similarly, upper hemicontinuity is preserved when a correspondence is de-

�ned by Cartesian products of the images of �nitely many correspondences

that exhibit the property. Finally, P n(z) � � and, by (3), fZn(p)g � Cn, so

�n(p;z) ��zCn.
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Now, the proof is as follows:

Answer: (a) Since, by property 4, � is a non-empty-, compact- and convex-valued

upper hemicontinuous correspondence mapping a non-empty, compact and

convex set into itself, the result follows from Kakutani's �xed point theorem.

(b) By construction p yZn(p) = 0. By (a), then, �pn y �zn = �pn yZn( �pn) = 0.

For the second claim, suppose by way of contradiction that �zn
1
> 0. Then,

consider

p = 1

2
[ �pn + (1;0; : : : ;0)]

Then, p 2� and

p y �zn = 1

2
�pn y �zn + 1

2
�zn
1
= 1

2
�zn
1
> 0 = �pn y �zn;

contradicting the fact that �pn 2 P n( �zn), according to (a).

(c) By de�nition of the truncated functions, Eq. (1), wi + �zi;n � 0, so

�zi;n � xwi; ({)

which immediately implies that �zn � x
P
iw

i. By (b), also, �zi;n+
P
jäi �zj;n � 0, so,

by ({)

�zi;n � x
P
jäi �z

j;n �
P
jäiw

j :

(d) Since each �pn 2 �, sequence ( �pn)1n=1 is bounded. By (b) and (c), so are all the

other components of the sequence. Existence of a convergent subsequence

follows by Bolzano-Weierstrass.

(e) That �p 2 � follows from closedness of �. The other two claims follow from

the fact that limits preserve weak inequalities.

(f) This follows simply from the fact that the sequence is bounded.

(g) Suppose not. Then, there is some z{ such that wi + z{ � 0, �pn y z{ = 0 and

ui(wi + z{) > ui(wi + �zi;n). Construct z = � �zi;n + (1 x �)z{, for 0 < � < 1. By

construction, wi + z � 0 and �pn y z = 0, while, by strict quasi-concavity of ui,
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ui(wi + z) > ui(wi + �zi;n). By (f), j �zi;n
` j < n for all `, so if � is close enough to 1,

jz`j � n for all `. But this contradicts the fact that �zi;n = zi;n( �pn) is the solution

to Program (1).

(h) It follows from (g) that �zn =
P
i �zi;n =

P
i z

i( �pn) = Z( �pn), and hence, by conver-

gence and continuity, that7

�z = lim
n!1

�zn = Z(lim
n!1

�pn) = Z( �p):

By (g), since limits preserve weak inequalities, �z � 0.

(i) Suppose not: �z < 0. Then, de�ne z = �z1 x �z > �z1. By strict monotonicity,

u1(w1 + z) > u1(w1 + �z1). By (e), �p y z = �p y �z1 x �p y �z = 0. But this is impossible,

since, by (g) and continuity,

�z1 = lim
n!1

z1;n = lim
n!1

z1( �pn) = z1( �p)

so

�z1 = argmax
z2RL

n
u1(w1 + z) : w1 + z � 0 and �p y z = 0

o
:

7 Before the following, we need to argue that �p 2 ��. This follows from boundary behavior: if

�p 2�@ , then Z`( �pn) is unbounded above for some `, so �zn could not be convergent.
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