
 

ANSWER KEYS Micro Prelim June 24, 2019 
QUESTION 1  ANSWER KEYS 

[The key observation is that, under majority voting, when there are only two choices voting 
sincerely (that is, according to one’s true preferences) is a weakly dominant strategy.] 

(a) “i” stands for innocent, “g” for guilty, “l” for life, “d” for death and “a” for acquittal. 
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(b) d = death, nd = no death, l = life, a = acquittal/ no life 
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(c)   
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(d) In the game of part (c), Judge A has nine information sets. Hence judge A has 2
9
 = 512 possible strategies. One 

of these 512 strategies is the following: vote “d” initially and then if the defendant is found guilty vote “i” if the 
first-stage vote is a majority for death and vote “g” otherwise. 

Note for (e)-(g): in these games (2nd stage and reduced 1st stage) there is no difference between dominant-strategy 
equilibrium and the outcome of the IDWDS procedure (deletion has to be done in one step). 
(e) In the IG procedure the first vote is between ‘guilty’ and ‘innocent’. If you are found innocent, then you are 

acquitted. If, instead, you are found guilty, then there is a second vote where each judge has to vote either for 
‘life’ (L) or ‘death’ (D). Thus the second-stage vote (if the outcome of the first stage was ‘guilty’) is: 

                        Judge B                         Judge B    

  L    D  L D 

Judge L life life L life death 

A D life death D death death 

                        Judge C chooses L          Judge C chooses D 

At this stage, for judge A voting ‘D’ is a dominant choice, for judge B voting ‘L’ is a dominant choice and for 
judge C voting ‘D’ is a dominant choice. That is, voting sincerely (i.e. according to one’s true ranking) is a 
dominant strategy for every judge. Hence everybody can predict that the outcome of the second-stage vote will 
be ‘death’. Thus the game reduces to the following (‘i’ stands for ‘innocent’ and ‘g’ for ‘guilty’), where the 
choice is effectively between acquittal and death.  
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The corresponding strategic form is:  

                        Judge B                         Judge B    
  i   g  i g 

Judge i acquitted acquitted i acquitted death 
A g acquitted death D death death 

                                     Judge C chooses i                        Judge C chooses g 

In this game for judge A voting ‘g’ is a dominant strategy, for judge B voting ‘i’ is a dominant strategy and for 

judge C voting ‘i’ is a dominant strategy. Thus the outcome of the  IG procedure is that you are acquitted . 

(f) In the SP procedure the first vote is between ‘death’ and ‘no death’. If the majority voted for ‘death’ then you 
are executed. If, instead, the outcome of the first vote was ‘no death’, then there is a second vote where each 
judge has to vote either for ‘life’ (L) or ‘acquittal’ (A). Thus the second-stage vote (if the outcome of the first 
stage was ‘no death’) is as follows: 

                        Judge B                          Judge B    
  L    A  L A 

Judge L life life L life acquitted 
A A life acquitted A acquitted acquitted 

                                    Judge C chooses L                           Judge C chooses A 

At this stage, for judge A voting ‘L’ is a dominant choice, for judge B voting ‘L’ is a dominant choice and for 
judge C voting ‘A’ is a dominant choice (once again, truthful voting is a dominant strategy). Thus everybody 
can predict that the outcome of the second-stage vote will be ‘life’. On the basis of this prediction, the first-
stage vote reduces to one where d means death and “no death” means life, that is, the game reduces to the 
following (‘D’ stands for ‘death’ and ‘N’ for ‘no death’):  



 
                        Judge B                          Judge B    

  D    N  D N 
Judge D death death D death life 

A N death life N life life 
                                  Judge C chooses D                        Judge C chooses N 

 

In this game for judge A voting ‘D’ is a dominant strategy, for judge B voting ‘L’ is a dominant strategy and for 
judge C voting ‘D’ is a dominant strategy. Thus the outcome of the  

SP procedure is that you are sentenced to death . 

(g) In the PA procedure the first vote is between ‘death’ and ‘life’. If the majority voted for ‘death’ then the next 
vote will be between ‘acquittal’ (a) and ‘guilty’ (g), where ‘guilty’ will mean ‘death sentence’. If, instead, the 
outcome of the first vote was ‘life’, then the next vote will be between ‘acquittal’ (a) and ‘guilty’ (g), where 
‘guilty’ will mean ‘life sentence’. Thus there are two different second-stage games, depending on the outcome 
of the first-stage vote. 

  CASE 1: the outcome of the first-stage vote was death. In this case the second-stage game becomes: 
                        Judge B                          Judge B    

  a   g  a g 
Judge a acquitted acquitted a acquitted death 

A g acquitted death g death death 
                                     Judge C chooses a                Judge C chooses g 

In this game, for judge A voting ‘g’ is a dominant choice while for judges B and C voting ‘a’ is a dominant 
choice. Thus everybody can predict that the outcome of this second-stage vote will be ‘acquittal’.  

CASE 2: the outcome of the first-stage vote was life. In this case the second -stage game becomes: 
                        Judge B                          Judge B    

  a   g  a g 
Judge a acquitted acquitted a acquitted life 

A g acquitted life g life life 
                                     Judge C chooses a                         Judge C chooses g 

In this game, for judges A and B voting ‘g’ is a dominant choice while for judge C voting ‘a’ is a dominant 
choice. Thus everybody can predict that the outcome of this second-stage vote will be ‘guilty’. Thus there are 
two second-stage games. If life was chosen as the applicable penalty, then in the second stage there will be a 
majority for the life sentence. If death is the predetermined penalty, then in the second stage there will be a 
majority in favor of acquittal. Thus the first-stage vote reduces to one where “life” means life and “death” 
means acquittal. The game thus reduces to one where the judges have to choose between ‘death’, D, and ‘life’, 
L: 

 
                         Judge B                         Judge B    

  D   L  D L 
Judge D acquittal acquittal D acquittal guilty/life

A L acquittal guilty/life L guilty/life guilty/life
                                   Judge C chooses D                          Judge C chooses L 
In this game for judges A and B voting ‘L’ is a dominant strategy, while for judge C voting ‘D’ is a dominant 

strategy. Thus the outcome of the PA procedure is that you are sentenced to life in prison . 

(h) Obviously, the IG procedure. 

 



Question 2

a. President Tony Dumb of the United States of Absurdistan is worried about his
reelection prospects. He believes that his reelection prospects are strongly positively
correlated with the stock market. That’s why he announced on Twitter that he
wants to subsidize returns on the stock market. When you went to heat your
lunch in the microwave of the Stevens lounge across Professor Schipper’s office, you
overheard him mumbling to himself that this was a really good idea. You express
surprise to Professor Schipper that you find him in agreement with President Dumb.
Professor Schipper answers smilingly that you should check out the effect of the
subsidy yourself.

Let w denote the initial wealth of the voter. Consider an asset that yields a return
rg in the good state and a return rb in the bad state, with rg > 0 > rb. That is,
when the voter invests x ≥ 0 into the asset, her wealth becomes (w−x) +x(1 + rg)
in the good state and (w− x) + x(1 + rb) in the bad state. She assigns probability
π ∈ (0, 1) to the good state and the remaining probability to the bad state. We
assume that rg, rb, and π are such that the expected return is strictly positive. We
also assume that her twice continuously differentiable Bernoulli utility function u(·)
is strictly increasing in wealth. Finally, assume that she is risk averse (and not risk
neutral).

aa. Show that her optimal investment x0 in the absence of subsidies is strictly
positive.

This is essentially the subsidy-analogue of the tax-version in Varian,

H. ‘‘Intermediate microeconomics: A modern approach, Appendix to

Chapter 12, Norton, 9th edition, 2014.

First write wealth in the good and bad state, respectively, as

(w − x) + x(1 + rg) = w + xrg

(w − x) + x(1 + rb) = w + xrb

The expected utility is

E[u(x)] = πu(w + xrg) + (1− π)u(w + xrb)

We maximize expected utility over x. The first-order condition is

dE[u(x0)]

dx
= πu′(w + x0rg)rg + (1− π)u′(w + x0rb)rb ≡ 0

We verify the second-order condition:

d2E[u(x)]

dx2
= πu′′(w + xrg)r

2
g + (1− π)u′′(w + xrb)r

2
b < 0

because investors are risk averse, i.e., u′′(w) < 0 for all w.



To see that the optimal investment x0 is strictly positive, assume

to the contrary that it is zero. Consider the first derivative at

zero,

dE[u(0)]

dx
= πu′(w)rg + (1− π)u′(w)rb

= u′(w)(πrg + (1− π)rb) > 0

because the Bernoulli utility function is strictly monotone increasing

in wealth and the expected return is positive. I.e., the expected

utility is increasing in the first dollar invested in the asset. Thus,

x0 > 0.

ab. Assume now that the subsidy is s > 0 per unit of return. That is, in the good
state the return after subsidy is (1 + s)rg and in the bad state the return after
subsidy is (1+s)rb. Show how her optimal investment after installation of the
subsidy differs from her optimal investment without the subsidy.

The expected utility with subsidy is

E[u(x)] = πu(w + x(1 + s)rg) + (1− π)u(w + x(1 + s)rb).

Consider the first-order condition

dE[u(x)]

dx
= πu′(w+xs(1+s)rg)(1+s)rg+(1−π)u′(w+xs(1+s)rb)(1+s)rb ≡ 0.

Simplify

πu′(w + xs(1 + s)rg)rg + (1− π)u′(w + xs(1 + s)rb)rb ≡ 0.

Recall from aa.

πu′(w + x0rg)rg + (1− π)u′(w + x0rb)rb ≡ 0.

Since u is strictly monotone, we must have

x0 = xs(1 + s)

or equivalently

xs =
x0

1 + s
.

But this implies xs < x0!

ac. Discuss/interpret your results.

At a first glance the result is counter-intuitive. Usually we believe

that a consumer buys more of what is subsidized. At a second glance,

the result is not surprising. When the subsidy is imposed, the investor

has more of a gain in the good state but also more of a loss in the

bad state. The subsidy increases the expected return but also the

risk. By scaling the investment down by 1
1+s

, the investor can reproduce

the same expected return as before the subsidy.



b. Suppose an agent faces two distributions of payoffs, F and G. Suppose that for any
payoff x, the probability of x given that some payoff not below x is drawn is lower
under F than G. Does there exist an expected utility maximizer with monotone
increasing Bernoulli utility function who strictly prefers G over F?

Hint: Assume that F and G have densities f and g, respectively. The probability of
x conditional on a payoff being drawn not below x under F is f(x)

1−F (x)
. We can now

formalize the hypothesis as f(x)
1−F (x)

≤ g(x)
1−G(x)

for all x. This is called the monotone
hazard rate condition and used a lot in asymmetric information economics.

The answer is ‘‘No.’’ We need to show that the monotone hazard rate condition

implies first-order stochastic dominance. I.e.,

f(x)

1− F (x)
≤ g(x)

1−G(x)
for all x

implies ∫
u(x)dF (x) ≥

∫
u(x)dG(x) for all increasing u.

Thus, there is no little u with which G is preferred to F by an expected

utility maximizer.

The proof of∫
u(x)dF (x) ≥

∫
u(x)dG(x) for all increasing u

if and only if

F (x) ≤ G(x) for all x

you can find in my slides.

Consider
f(x)

1− F (x)
≤ g(x)

1−G(x)
for all x.

Integrate both sides∫ x

0

f(t)

1− F (t)
dt ≤

∫ x

0

g(t)

1−G(t)
dt for all x.

This is equivalent to

ln(1− F (x)) ≥ ln(1−G(x)) for all x

and therefore

F (x) ≤ G(x) for all x.

To see the claimed equivalence, note that

d(1− F (x))

dx
= −F (x)

dx
= −f(x).



Thus,

−d ln(1− F (x))

dx
=
−d(1−F (x))

dx

1− F (x)
=

f(x)

1− F (x)
.

Taking integrals on both sides yields

− ln(1− F (x)) =

∫ x

0

f(t)

1− F (t)
dt.
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(a) A Nash-Walras equilibrium is an array (p,q,~x,~y,X, Y)where ~x = (x1, . . . , xI) and
~y = (y1, . . . ,yI) are, respectively, pro�les of consumption bundles of the �rst L
goods and of the last good, such that:

i. for each i, (xi,yi) solves the problem

max
x,y

{
ui

(
x,y+

∑
j6=iy

j,y
)
: p · x+ qy 6 p ·wi + si(qY − p · X)

}
;

ii. for the �rm, (X, Y) solves the problem

max
X̂,Ŷ

{
qŶ − p · X̂ : Ŷ = f(x̂)

}
;

iii. markets clear:
∑

i x
i + X =

∑
iw

i and
∑

i y
i = Y.

(b) For each consumer, if we de�ne the Lagrangean

Li = ui
(
x,y+

∑
j6=iy

j,y
)
+ λi[p ·wi + si(qY − p · X) − p · x− qy],

where λi > 0, we can derive the �rst-order conditions

Dxu
i(xi, Y,yi) = λip

∂Yu
i(xi, Y,yi) + ∂yiui(xi, Y,yi) = λiq,

(1)

which must hold in addition to the budget constraint with equality.

For the �rm, if we simply re-write its problem as

max
X̂

{
qf(X̂) − p · X̂

}
,

we get the �rst-order condition

qDf(X) = p, (2)

which must hold in addition to the technological constraint with equality.

(c) An allocation is a tuple (~x,~y,X, Y) such that f(X) 6 Y,
∑

i x
i + X 6

∑
iw

i and∑
i yi 6 Y. Allocation (~x,~y,X, Y) is Pareto e�cient if there does not exist an alter-

native allocation
((x̂i, ŷi)Ii=1, X̂, Ŷ)

such that ui(x̂i, Ŷ, ŷi) 6 ui(xi,X,yi) for all i, with strict inequality for some. (For
simplicity, note that if an allocation is e�cient, the conditions that de�ne its feasi-
bility must all hold with equality.)
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(d) Allocation (~x,~y,X, Y) is Pareto e�cient only if it maximizes, over

((x̂i, ŷi)Ii=1, X̂, Ŷ),

the function
u1(x̂1, Ŷ, ŷ1)

subject to the conditions that

ui(x̂i, Ŷ, ŷi) = ui(xi, Y,yi)

for all i > 2,
∑

i ŷ
i = Ŷ = f(X̂), and

∑
i x̂

i + X̂ =
∑

iw
i.

(e) Denoting by ūi = ui(xi,
∑

jy
j,yi) for all i > 2, the Lagrangean of the previous

problem is

u1(x̂1,
∑

jŷ
j, ŷ1)+

∑
i>2

[ui(x̂i,
∑

jŷ
j, ŷi)−ūi]+γ[f(X̂)−

∑
iŷ

i]+δ·[
∑

i(w
i−x̂i)−X̂],

with all µi > 0, γ > 0 and δ� 0. The �rst-order conditions for e�ciency are, thus,
that for each consumer

µiDxu
i(xi, Y,yi) = δ

µi[∂Yu
i(xi, Y,yi) + ∂yiui(xi, Y,yi)] +

∑
j6=iµ

j∂Yu
j(xj, Y,yj) = γ,

(3)

while
γDf(X) = δ. (4)

These conditions must hold in addition to the constraints of the problem.

As in class, let us now assume that some equilibrium allocation is Pareto e�cient.
Then, conditions (1) to (4) must hold simultaneously. Conditions (1) and (3) imply
that

µiλip = δ (5)

and
µiλiq+

∑
j6=iµ

j∂Yu
j(xj, Y,yj) = γ (6)

for all i, while, from (2) and (4)
1
γ
δ =

1
q
p. (7)

From (5) and (7), since p� 0 under our assumptions,

µiλi =
γ

q
,

in which case Eq. (6) becomes
γ

q
· q+

∑
j6=iµ

j∂Yu
j(xj, Y,yj) = γ.

This implies that, for all i, ∑
j6=iµ

j∂Yu
j(xj, Y,yj) = 0.

Since µj > 0 and ∂Yuj, the latter is possible only if the sum contains in fact no
summands, namely if there is no j 6= i in the population.
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(f) Suppose not: �x a Lindahl equilibrium

(p,~q, r,~x,y,~z,X, Y,Z),

and suppose that alternative allocation

((x̂i, ŷi)Ii=1, X̂, Ŷ)

is such that ui(x̂i, Ŷ, ŷi) 6 ui(xi,X,yi) for all i, with strict inequality for some.

Since each ui is strictly monotone, by condition (i) it must be that

p · x̂i + qi
∑

jŷ
j + rŷi > p ·wi + si(

∑
jq

jY + rZ− p · X)

for all i, with strict inequality for some. Adding up, this implies that

p ·
∑

ix̂
i +
∑

iq
i
∑

iŷ
i + r
∑

iŷ
i > p ·

∑
iw

i +
∑

iq
iY + rZ− p · X (8)

By (ii), on the other hand,∑
iq

i
∑

iŷ
i + r
∑

iŷ
i − p · X̂ 6

∑
iq

iY + rZ− p · X. (9)

Together, Eqs. (8) and (9) imply that

p ·
∑

ix̂
i > p · (

∑
iw

i − X̂),

which is impossible since p� 0 and
∑

i x̂
i − X̂ 6

∑
iw

i.

(g) In the Lindahl problem, the Lagrangean of each consumer is

ui (x,y, z) + λi[p ·wi + si(
∑

jq
jY + rZ− p · X) − p · x− qy− rz],

where λi > 0, we can derive the �rst-order conditions
Dxu

i(xi, Y, zi) = λip
∂Yu

i(xi, Y, zi) = λiqi

∂yiui(xi, Y, zi) = λir
(10)

which must hold in addition to the budget constraint with equality. For the �rm, if
we simply re-write its problem as

max
X̂

{
(
∑

iq
i + r)f(X̂) − p · X̂

}
,

we get the �rst-order condition

(
∑

iq
i + r)Df(X) = p, (11)

which must hold in addition to the technological constraint with equality.

If we now let µi = 1/λi, δ = p and γ =
∑

iq
i + r, then Eqs. (10) and (11) re-

store Eqs. (3) and (4). This con�rms the previous result, that Lindahl equilibrium
allocations are Pareto e�cient.

The intuition of this result is not very complicated. As in class, the use of person-
alized prices whose sum is paid to the producer implies that the external e�ect of
the mixed good is in fact internalized in the compensation to the �rm. Unlike in
class, however, the market for rights over the mixed good is necessary to allocate it
correctly to the consumers.
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QUESTION 4  ANSWER KEYS 
(a) The tree is as follows 

total number of
messages sent

prior probablity

0             1           2           3           4                k              k+1

     

   p

k=0 k=1 k=2 k=3 k=4 k k+1

1p p (1 )p   2(1 )p   3(1 )p   ( 1)(1 ) kp   (1 )kp  

NS

S

NR1p NR NR NR NR NR

RA RA RA RA

Legend: S = initial message sent,   NS = initial message non sent, NR = last message not received
              RA = last message received and automatically acknowledged 

k  is the number of edges preceding the node and thus also the total number of messages sent at the 
             terminal node following the node in question

 

(b) If the total number of messages sent is 0 (because Player 1 ascertained that the enemy position is 
H) , then Player 1 knows; thus one cell of Player 1’s partition is {0}. Suppose that Player 1 has 
sent the initial message but did not receive an acknowledgment; then Player 1 will consider it 
possible that her initial message was lost or that it was received and acknowledged (thus increasing 
the total number of messages sent to 2) but the acknowledgment was lost; thus another cell of her 
information partition is {1,2}, etc. Thus the information partition of Player 1 is as follows:  

total number of
messages sent

prior probablity

0             1           2           3           4                k              k+1

     

   p

1p p (1 )p   2(1 )p   3(1 )p   ( 1)(1 ) kp   (1 )kp  

NS

S

NR1p NR NR NR NR NR

RA RA RA RA

The information partition of Player 1
 

(c) If by 6:01am Player 2 has not received any communication then he will consider it possible that 
Player 1 did not send any messages or that Player 1 sent a message but it got lost; thus one cell of 
Player 2’s information partition is {0,1}. If Player 2 receives the initial e-mail of Player 1 but does 
not receive Player 1’s acknowledgment of his automatically generated acknowledgment, then 
Player 2 considers it possible that his own acknowledgment was lost or that it was received but 
Player 1’s  acknowledgment of the acknowledgment was lost; thus another call of Player 2’s 
information partition is {2,3}, etc. Thus the information partition of Player 2 is as follows:  



total number of
messages sent

prior probablity

0             1           2           3           4    5       k1    k              k+1    k+2

     

   p

1p p (1 )p   2(1 )p   3(1 )p   ( 1)(1 ) kp   (1 )kp  

NS

S

NR1p NR NR NR NR NR

RA RA RA RA

The information partition of Player 2  

(d) The set of states is the set of natural numbers    = {0,1,2,3,…}. The proposition  that the enemy 
position is H is represented by the event {0} and the proposition  that the enemy position is L is 
represented by the event {1,2,3,…} =  \ {0}. The common knowledge partition consists of only 
one set, namely the entire set  . Thus no matter how many messages are successfully exchanged 
it is never common knowledge that the enemy position is L. 

(e) Suppose that k is odd. Then Player 1 knows that at least k messages were sent at each cell of the 
form { , 1}k j k j   , for every {0,2,4,...}j . Let us focus on the case where j = 0, that is, on the 

cell { , 1}k k  . The prior probability of state k   is ( 1)(1 ) kp    and the prior probability of state 

1k   is (1 )kp   . Thus the posterior probability of state k  is 
1

1

(1 ) 1

(1 ) (1 ) 2

k

k k

p

p p

 
    








   
 and the 

posterior probability of   state 1k   is 
1

2





 . If the state is 1k  , then cell of the partition of Player 

2 is { 1, 2}k k   so that Player 2 knows that at least k messages were sent and, given the agreed-
upon strategy, he will attack; if  the state is k , then cell of the partition of Player 2 is { 1, }k k  so 
that Player 2 does not know that at least k messages were sent and, given the agreed-upon strategy, 
he will not attack.  

11
2 2

state 1

probability

Player 2's decision

k k

N A


 


 


  

Hence if Player 1 attacks her expected payoff is 1 11
2 2 20 (1 ) 3c  

  
 

      and if she does not attack 

her payoff is c = 2. Thus she will be willing to attack if and only if 1
23 2



   which is equivalent to 

1   which cannot be true. Hence there is at least one situation (namely state k) where Player 1 
knows that at least k messages were sent and yet she is not willing to implement strategy ˆks  even if 

she trusts that Player 2 will follow strategy ˆks . 

Suppose that k > 0 is even and focus on state k. Player 2’s information set is { , 1}k k   and thus he 
knows that at least k messages were sent. The conditional probabilities are the same as above. If 
the state is k + 1 then Player 1’s information set is { 1, 2}k k   and, given the agreed-upon 
strategy, she will attack; if  the state is k , then cell of the partition of Player 1 is { 1, }k k  so that 
Player 1 does not know that at least k messages were sent and, given the agreed-upon strategy, she 
will not attack.   

11
2 2

state 1

probability

Player 1's decision

k k

N A


 


 


 

The calculations are now the same as above: if Player 2 attacks his expected payoff is 
1 11

2 2 20 (1 ) 3c  
  

 
      and if he does not attack her payoff is c = 2; thus he will be willing to 



attack if and only if 1
23 2



   which is equivalent to 1   which cannot be true. Hence there is at 

least one situation (namely state k) where Player 2 knows that at least k messages were sent and yet 
he is not willing to implement strategy ˆks  even if she trusts that Player 1 will follow strategy ˆks . 

Thus, no matter whether k is odd or even, one of the two players would deviate from strategy ˆks  

(in at least one situation where he/she knows that at least k messages were sent) even if the player 
trusts that the other player will follow strategy ˆks . 

(f) From the above calculations it is clear that the necessary and sufficient condition is 1
2(1 )c c



  , 

that is, 1c   .  

(g) First of all, note that when 0.3 and 0.2c    the inequality of part (f) is indeed satisfied. Any  
k  1 will work (that is, both players will rationally follow strategy ˆks ). Given k, the probability 

that at least one of them will not attack is 
1

0

( ; ) 1 (1 )
k

j

j

P N k p p  




    . This is minimized when 

k = 1. Player 1 will attack after sending the first e-mail to Player 2, but Player 2 will only attack if 
he gets Player 1’s e-mail. Thus the probability that one of them will not attack is the probability of 
H (which is 1p) plus the probability of L (which is p) multiplied by the probability that the first e-
mail will be lost (which is ): (1 ) 1 0.8p p p     , so that the probability that they both will 
attack is 0.8p. (If they agreed on k = 2, both would attack if at least three messages were 
successfully sent, hence a lower probability and even more so for larger values of k). 
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