Ph. D. Preliminary examination in Industrial Organization, June 2005
fAnswers to questions 1 andﬁ

1. (i) LetF be the c.d.f, thatis, F(x) = [f(t)dt. Then
1]

0 if p,>r
N if py<rand p,>r
N .

D,(piP2) =172 it pi =P 57

I i
F(pz_pl)N+E[l‘“F(p2—p1)]N if py<p,=r

1 :
;[I_F(pl—pz)]N if p,<p,=r
0 if p,>r
N if p,<r and p,>r
E if — <
D,(p,.p,) = 2 Py =Py =7

| o
F(pl—pz)N+5[l—F(p.—pg)]N if p,<p, <r

1 ; .
5[1—P{p3—p]}]N if p<p,<r

(i) Fix a firm i. If the other firm charges r. p, = r yields a profit of % For this to be a Nash

equilibrium it is necessary and sufficient that firm i cannot increase its profits by choosing a price
p, < r.If the firm charges p <r then its profits will be:
~ 1 l ~
p, F(r —p) N+75 [1 =F(r—p)INp
Thus we need

1 i
r:_l 2 p Fr-p)N+5 [l —F(r—p,)INp, Jorallp <r

r 2 p,[1+F(r-p)l forallp <r. (1.1)
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Let us drop the subscript 7 and define the RHS of (1.1) as g(p). Thus g(p)=p+ pF(r—p). The g(0) =
0 and g(r) = r. Furthermore. g'(p)=1+F(r—p)- pf(r—p). Thus g'(0)=1+ F(r)>0 and

2'(r) =1—rf(0). We shall consider only the following cases. CASE l: g"(p)=0 forall pe[0,7]:
CASE 2: g"(p)<0 forall pe[0.r]. CASE 2 implies g'(r) >0 so that g(p) looks like

g(p)

0 r

and therefore (1.1) is satisfied and (r.r) is a Nash equilibrium.
A soow 1 :
In CASE 1.if g'(r)20 ie f(0)<— then g(p) looks like
"

2(p)

0 r

and therefore (1.1) is satisfied. hence (r,7) is a Nash equilibrium.

If. on the other hand. g'(r) <0 ic. f(0)> L then g(p) looks like
"

Page 2 of 6



0 r
In this case there is a p = (0.r) such that g(p) > r and therefore (1.1) is violated and (.7) is not a Nash
equilibrium.
Thus. under the assumption that g(p) is cither concave or convex, a necessary and sufficient condition

for (r,r) to be a Nash equilibrium 1s

220 ie. £(0)<t
T

. N : '
(iii) Letp,= 120. Then 7 (p,.120) = p, D (p)). Thus 7( 120,120) = 120—2— = 60N, while 7,(100,120)

[ I
= IUU| FQO)N + :U ~FQ0))N ‘: 100(0.7N) = 70N . Thus (120,120) is not a Nash equilibrium.

1

(iv)  If ['is constant. then it must be f(x) = i for all x. Then ['(x) —'} so that the function g(p) of

A -
P ‘ .Thus g"(p)=-=. i.c.g(p) is concave. Hence, by the results
¥

7

part (ii) becomes g(p)=p |' L
4
of part (ii). (r.r) is a Nash equilibrium it and only if f(0)<— which is of course true. So (r, r)isa
=
Nash equilibrium in this case.

(v) By continuity, F(x) < | for sufficiently small x. Then if firm 2 charges 0, firm 1 gets zero
profits if it also charges 0. but positive profits if it charges a little bit more than zero (its demand is

positive since F(x) < 1 for x small).

(vi)  Intuitively, the Bertrand paradox corr esponds to the case where all the mass is concentrated at
0. One might be able to show the Bertrand paradox as a limit result: consider a family f of density
functions such that. as t — =. the smallest x at which Pt(,\) = | tends to zero. Then the Ndsh

equilibrium might tend to zero.
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2. PART L. (a) Let P(Q) be the inverse demand function with P’(Q) < 0. Fix an arbitrary value
of q,. say q - Let G , be the output level of firm 2 that maximizes the profit of firm 2, given ¢ ,. Then

it must be that at (4 .. -) the first and second-order conditions are satisfied:
f1:4 2

.
FOC: (4,4, )=PF +d5)+ G, PG +d,)~c=0
Cq., - - - -

} " Vi S PO S .
SOC.: —2(d 245 =2P(§ 745+ 45 P(§ G, <0
oq; - - - =

Applying the implicit function theorem in a neighborhood of (g |.§ 5.¢) we getqr asa function

of ¢ with

” .1 _I . . .

{—ﬁf' == — _ ———— <0 (because of the S.0.C.). Thus a decrease in the
de 2P' (g, G,) + 4, P"(g, 1 §,)

optimal g- for firm 2 . given ¢ ,. requires an increase in c. Hence the marginal cost of firm 2
2 = 1 &

has gone up.

(b)

reaction curve of firm I

& old equilibrium

Claim: 7, () < 7, (/).
Proof.: 7 ()< 7(») because ¢, is the same (hence firm 17s costs are the same) while g, is lower at ¥

(hence P is higher and thus firm 1°s revenue is higher).

wH= r:l(b’) because it is a movement towards reaction curve (q, is the same: fJis on the
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reaction curve of both firms).

Hence 7,(a) < 7, (/9. that is. firm 1 's profits are higher at the new equilibrium.

Similarly. let 7. denote the new profit function of firm 2 (the one that gives rise to reaction
curve B) and 7, be the old profit function (the one that gives rise to reaction curve A). Then:

7 (y) < 7' () because from & to yit is a movement away from 2°s old reaction curve (curve A).
7 (f) < 7y (y) because, from yto /3. q, is the same, ¢, has increased hence P has decreased.
Thus 79(f) < 7\ («) . Since costs have gone up. 75 (f3) > 75 (/) (true for every point, hence. in
particular. it is true at point /3.

Thus 75 () < 75 (@) . that is. firm 2's profits are lower at the new equilibriun.

PART 1L
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Suggested Answer to Problem 5

5) See Train, Optimal Regulation, scction 2.3 for the graphical answers. The problem for the

firm is
max T=R—C=PQ—wl —r(K+W)—Fst. n<kPQand W >0 (1)

where W is waste. You can solve the problemn without waste, but it is easicst to see what

happens when MR = 0 with 17" in the Lagrangian. The Lagranian is

L = 7—\r—kPQ) (2)

= {[1—X)7+ MEPQ (3)

Note the constraint can be writfen as P < %

First order conditions:

Ll ,
7 = (L= ) (MRP; —w)+ Mk - MRP, =0 (4)
l‘: ¥l
aL _.
o = (L= X) (MRPx — 1) + M- MRPy =0 (5)
A
_ dC dL _
W =0ad — -« W : —_— = §
{ ) and G & O} or { > (0 and Wi O} (6)
dl . _
— = —(l=Ar={W=0¢
G (1 = AN { 0 and A < 1}

or {(1—=A)r=0and W > 0}

= {W>0and A =1} (7)

In the former case, A < 1 and (1) implics that MR > 0. To see this, solve (4) for MRPy:

MRP, = l”_gi:‘;” = MR > 0. It the latter case, A = 1 and (4) implies that M R = 0.
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first begins to bind, as & falls @ rises. To make the argument global as k& — 0, assume
that profit is concave in @. and so MR'(Q) < MC'(Q). Then the denominator stays
negative (and actually gets larger in magnitude) as & falls and @ rises.

The firm will always produce in the elastic region, but does not expand output into the
inelastic region of demand. We have shown above that M R > 0. never negative. The
firm stops expanding output at the point of unit elasticity (because that is where the
top of the revenue hill is) and cither wastes or uses input inefficiently to bring actual
profit down to the allowed level. See fignre 2.10 and related discussion in Optimal
Regulation.

Above we showed that %f < (): output increases as k decreases.

If £ = 0. then the constraint implies that m = 0 and we could be anywhere on the zero
profit locus, on the expansion path or off.

No, because the firm doesn’t expand into the inelastic region of demand (shown in (c)
above). If the 2nd best is in the clastic region, we can get arbitrarily close to it by
setting k very small. As long as A Is positive, we have input efficiency. See figure 2.9 in

Optimal Regulation for ROO regulation; the argument is similar for ROS regulation.
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