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1 Introduction

Many zero-sum games do not have a solution without allowing for mixed strategies.

What is the class of zero-sum games possessing pure equilibria? Some answers to these

questions have been given by Shapley (1964) and Radzik (1991). For instance, Shapley

(1964) showed that a finite two-player zero-sum game has a pure equilibrium if every 2x2

submatrix of the game has a pure equilibrium. Radzik (1991) showed that a two-player

zero-sum game whose columns are quasiconcave (i.e. single-peaked) and whose rows are

quasiconvex has a pure equilibrium if and only if every submatrix “along the diagonal”

has a pure equilibrium. Although both results apply to symmetric two-player zero-sum

games, none of these results exploits the symmetry property.

In this paper we are interested in pure equilibria of symmetric two-player zero-sum

games. It is well known that for instance the rock-paper-scissors game has no pure equilib-

rium. More generally, we say that a symmetric two-player zero-sum game is a generalized

rock-paper-scissors matrix (gRPS) if for each column there exists a row with a strictly

positive payoff. We observe that a symmetric two-player zero-sum game possesses a pure

equilibrium if and only if it is not a gRPS. Moreover, we show that every finite sym-

metric quasiconcave two-player zero-sum game has a pure equilibrium. We also provide

sufficient conditions for existence in terms of increasing and decreasing differences, po-

tentials, and additive separability of payoffs. It turns out that in the class of symmetric

two-player zero-sum games, increasing and decreasing differences, the existence of an

exact potential, and additively separable payoffs are all equivalent.

Brown and von Neumann (1950) and Gale, Kuhn, and Tucker (1950) showed that

any general (not necessarily symmetric) two-player zero-sum game can be transformed

into a symmetric zero-sum game whose equilibrium induces equilibrium in the underlying

game.1 Using the von Neumann symmetrization, our findings for symmetric two-player

zero-sum games can be applied to general two-player zero-sum games. However, our

findings are not applicable to the symmetrization by Gale, Kuhn, and Tucker (1950) since

it has a special structure that allows only for mixed equilibrium in the symmetrization

although such mixed equilibrium may correspond to a pure equilibrium in the underlying

game.

Symmetric two-person zero-sum games are often thought to be less relevant to eco-

nomics. However, in Section 4 we shall argue that they arise naturally when relative

1We thank the editor, Bernhard von Stengel, for drawing our attention to those symmetrizations of
two-player zero sum games.
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payoffs of arbitrary symmetric two-player games are considered.2 The reason is sim-

ply that relative payoff functions give rise to zero-sum games by construction. Schaffer

(1988, 1989) introduced the notion of finite population evolutionary stable strategies

(fESS) and observed that a fESS of the original (arbitrary) symmetric game coincides

with the Nash equilibrium of the (zero–sum) relative payoff game.3 Thus, when we apply

our equilibrium existence results to the relative payoff game, we also obtain existence

results for fESS of the underlying original game. This way, our results can be applied

for example to Cournot duopoly, Bertrand duopoly, public goods games, common pool

resource games, minimum effort coordination games, synergistic relationships, arms race,

Diamond’s search, Nash demand game, or rent seeking. We also show that a symmetric

two-player game is an exact potential game if and only if its relative payoff game is an

exact potential game. This is useful because the existence of an exact potential of a

symmetric zero-sum game is easy to verify.

The fESS of a game is of relevance when evolution operates in a finite (playing–the–

field) population. It is also important because frequently it coincides with the stochas-

tically stable states of imitate-the-best dynamics.4 Thus, when players imitate in such

games, we should expect the outcome to be a fESS. The results developed here are also

used in our companion paper, Duersch, Oechssler, and Schipper (2011). There we char-

acterize the class of games in which “imitate-if-better” can not be exploited by any other

decision rule.

In the next section, we study the existence of pure equilibria in symmetric two-player

zero-sum games. Section 3 discusses two-player zero-sum games that are not necessarily

symmetric. In Section 4 we apply our results to relative payoff games and the existence

of finite population evolutionary stable strategies.

2There is some experimental evidence that players consider not only their absolute payoffs but also
relative payoffs. Early experiments include Nydegger and Owen (1974) and Roth and Malouf (1979).
More recently, relative payoff concerns have been studied in behavioral economics and experimental
economics under the label of “inequity aversion”.

3This relationship between Nash equilibrium and fESS has been analyzed for competitive games by
Ania (2008) and for “weakly competitive” games by Hehenkamp et al. (2010).

4See e.g. Alós-Ferrer and Ania (2005), Hehenkamp, Leininger, and Possajennikov (2004), Leininger
(2006), Matros, Temzelides, and Duffy (2009), Possajennikov (2003), Schipper (2003), Tanaka (2000),
and Vega-Redondo (1997)
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2 Symmetric Zero-Sum Games

We consider a two–player game (X, Y, π1, π2) consisting of the set of pure actions X

for player 1, the set of pure actions Y for player 2, and for each player i ∈ {1, 2} a

payoff function πi : X × Y −→ R. The two–player game (X, Y, π1, π2) is zero–sum if

π2(x, y) = −π1(x, y) for all x ∈ X and y ∈ Y . The two–player game (X, Y, π1, π2)

is symmetric if X = Y and π1(x, y) = π2(y, x) for all x, y ∈ X. Thus, if we denote

π = π1, then a two–player zero–sum game is symmetric if and only if X = Y and

π(x, y) = −π(y, x) for all x, y ∈ X.5 Note that in a symmetric zero-sum game, the payoffs

on the main “ diagonal” must be zero. We denote by (X, π) a two–player symmetric zero-

sum game.

Definition 1 In a symmetric two-player zero-sum game (X, π), a pair of strategies (x, y)

is a pure equilibrium if π(x, y) = maxx′∈X π(x′, y) = miny′∈X π(x, y′). A pure equilibrium

(x, y) is symmetric if x = y.

For obvious reasons, an equilibrium in two-player zero-sum games is often called a

“saddle point”. In a symmetric game, if (x, y) is a pure equilibrium, so is (y, x). By the

rectangularity of equilibria in two-player zero-sum games, we also have that (x, x) and

(y, y) are pure equilibria. This yields the following known fact (see e.g. Nash, 1951).

Remark 2 A symmetric two-player zero-sum game (X, π) has a pure equilibrium if and

only if it has a symmetric pure equilibrium.

A well known example for a symmetric zero-sum game without a pure equilibrium is

the game “Rock-Paper-Scissors”.6

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


This example can be generalized to the following class of games.

Definition 3 (Generalized Rock-Paper-Scissors Matrix (gRPS)) A symmetric zero-

sum game (X, π) is a generalized rock-paper-scissors matrix if in each column there exists

5The payoff matrix of symmetric zero-sum game is skew-symmetric.
6The game was already described by von Neumann (1928, p. 303).
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a row with a strictly positive payoff to the row player i.e. if for all y ∈ X there exists a

x ∈ X such that π(x, y) > 0.7

Observation 4 A symmetric two-player zero-sum game (X, π) possesses a pure equilib-

rium if and only if it is not a generalized rock-paper-scissors matrix.

Proof. If (X, π) has no pure equilibrium (and in particular no pure symmetric equi-

librium), then for all y ∈ X there is x ∈ X such that π(x, y) > π(y, y) = 0. Thus, (X, π)

is gRPS. Conversely, if (X, π) has a pure equilibrium, by Remark 2 it has a symmetric

equilibrium. Thus, there is y ∈ X such that π(x, y) ≤ π(y, y) for all x ∈ X, which implies

that (X, π) is not gRPS.8 �

A symmetric 2 × 2 zero-sum game cannot be a gRPS. If one of the row player’s off-

diagonal relative payoffs is a > 0, then the other must be −a violating the definition of

gRPS. “Matching pennies” is not a counter-example because it is not symmetric. Thus

we have the following corollary.

Corollary 5 Every symmetric 2× 2 zero-sum game possesses a pure equilibrium.9

In the following we shall study how several properties that are sometimes assumed to

hold for games relate to the gRPS property.

Definition 6 (Quasiconcave) A symmetric two-player game (X, π) is quasiconcave

(or single-peaked) if there exists a total order < on X such that for each x, x′, x′′, y ∈ X
and x′ < x < x′′, we have that π(x, y) ≥ min {π(x′, y), π(x′′, y)}.

That is, a symmetric game is quasiconcave if each column has a single peak. Note

that the existence of the order on X for which the defining inequalities hold does not

imply that this is true for any order.

7In the finite strategy case, an alternative way of characterizing a gRPS game would be to say that
the game has a strictly positive minimax with respect to pure strategies, i.e. miny maxx π(x, y) > 0.

8We thank the Associate Editor for suggesting this simple proof.
9This corollary is also implied by Kaplansky (1945, p. 479) who showed more generally that any

symmetric two-player zero-sum game with an even number of actions has always an equilibrium that is
not fully mixed. We thank Bernhard von Stengel for drawing our attention to the work of Kaplansky
(1945).
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Theorem 7 Every finite quasiconcave symmetric two-player zero-sum game has a pure

equilibrium.

The proof follows as a corollary from Observation 4 and the following lemma.

Lemma 8 A finite quasiconcave symmetric two-player zero-sum game is not a gRPS.

Proof. Note first that if π(·, y) is quasiconcave in the first argument then by

symmetry π(x, ·) is quasiconvex in the second argument, i.e. x′ < x < x′′ implies

π(y, x) ≤ max {π(y, x′), π(y, x′′)}.

Order actions in X such that (X, π) is quasiconcave. Let ` be the smallest column

such that there is a strictly positive payoff above the main diagonale. I.e., there exists

k < ` with π(xk, x`) > 0. If there is no such column, then the last column is non-positive

and (X, π) is not a gRPS. If there is such a column, then clearly ` > 1.

We claim that column `−1 is nonpositive and thus (X, π) is not a gRPS. By the choice

of `, we have π(xj, x`−1) ≤ 0 for all j ≤ `−1. Since (X, π) is a symmetric zero-sum game,

π(x`, xk) < 0. Quasiconcavity in column k and π(xk, xk) = 0 implies π(x, xk) ≤ π(x`, xk)

for all x ≥ x`. If k = `− 1, then we are done. Otherwise, for each x ≥ x`, quasiconvexity

in row x, π(x, x) = 0 and the previous arguments imply that π(x, x`−1) ≤ 0 as claimed.

�

Note that if the finite zero-sum game is not symmetric but quasiconcave, then it does

not need to have a pure equilibrium. A counter example is presented in Radzik (1991, p.

26). Hence, symmetry is crucial for the result.

The converse to Theorem 7 is not true as the following example shows.

Example 9 Consider the following “Rock-Paper-Scissors” game augmented by an addi-

tional strategy “B”.
R P S B

R
P
S
B


0 −1 1 −1
1 0 −1 −1
−1 1 0 −1
1 1 1 0


Clearly, it is not a gRPS since for column “B” there fails to exist a row yielding a strictly

positive payoff. Thus, the game possesses a pure equilibrium, (B,B). Yet, no matter how

strategies are ordered, the game fails to be quasiconcave. Hence, there are symmetric
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two-player zero-sum games that are neither generalized rock-paper-scissors games nor

quasiconcave.

Other “second-order” conditions are commonly explored in the literature when ana-

lyzing the existence of pure equilibria. We will consider increasing and decreasing dif-

ferences, additive separability, and potentials. Surprising to us, it turns out that for

symmetric two-player zero-sum games these conditions are all equivalent.

Definition 10 (Increasing and decreasing differences) Let X be a totally ordered

set. A payoff function π has decreasing (resp. increasing) differences on X ×X if for all

x′′, x′, y′′, y′ ∈ X with x′′ > x′ and y′′ > y′,

π(x′′, y′′)− π(x′, y′′) ≤ (≥)π(x′′, y′)− π(x′, y′).

π is a valuation if it has both decreasing and increasing differences.10

Definition 11 (Additively Separable) We say that a payoff function π is additively

separable if π(x, y) = f(x) + g(y) for some functions f, g : X −→ R.

Potential functions are often useful for obtaining results on convergence of learning

algorithms to equilibrium, existence of pure equilibrium, and equilibrium selection. The

following notion of potential games was introduced by Monderer and Shapley (1996).

Definition 12 (Exact potential games) The symmetric two-player game (X, π) is an

exact potential game if there exists a function P : X×X −→ R, called an exact potential,

such that for all y ∈ X and all x, x′ ∈ X,11

π(x, y)− π(x′, y) = P (x, y)− P (x′, y),

π(x, y)− π(x′, y) = P (y, x)− P (y, x′).

Proposition 13 Let (X, π) be an arbitrary symmetric two-player zero-sum game and X

be a totally ordered set. Then the following statements are equivalent:

(i) π has decreasing differences on X ×X,

10For the two-dimensional case, increasing differences are equivalent to supermodularity, so the two
terms can be used interchangeably (see Topkis, 1998, Chapter 2.6).

11The second equation is stated using the symmetry of the game.
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(ii) π has increasing differences on X ×X,

(iii) π is a valuation,

(iv) π is additively separable,

(v) (X, π) has an exact potential.

Proof. Let X be a totally ordered set such that π has decreasing differences on X×X,

that is, for all x′′′, x′′, x′, x ∈ X with x′′′ > x′ and x′′ > x,

π(x′′′, x′′)− π(x′, x′′) ≤ π(x′′′, x)− π(x′, x).

Since (X, π) is a symmetric two-player zero-sum game, π(x′, x) = −π(x, x′) for all x, x′ ∈
X. Hence, we can rewrite this inequality as

−π(x′′, x′′′) + π(x′′, x′) ≤ −π(x, x′′′) + π(x, x′). (1)

Rearranging inequality (1) yields the definition of increasing differences,

π(x′′, x′)− π(x, x′) ≤ π(x′′, x′′′)− π(x, x′′′).

Hence (i) if and only if (ii). (iii) follows from the equivalence of (i) and (ii).

By Topkis (1998, Theorem 2.6.4.), a function π(x, y) is additively separable on X×X
if and only if π(x, y) it is a valuation. Thus, (iii) if and only if (iv).

Brânzei, Mallozzi and Tijs (2003, Theorem 1) show that a zero-sum game is an exact

potential game if and only if it is additively separable. Hence, (iv) if and only if (v). �

Corollary 14 Let (X, π) be a symmetric two-player zero-sum game for which X is a

nonempty compact subset of a topological space and π is upper semicontinuous. If (X, π)

satisfies any of the properties (i) to (v) of Proposition 13, then a pure equilibrium exists.

Proof. Since X is compact and π is upper semicontinuous, any player’s best response

correspondence of (X, π) is nonempty by Weierstrass’ Theorem. Since π is additively

separable under any property (i) to (v) by Proposition 13, the best response correspon-

dence is constant. Thus, a pure equilibrium of (X, π) exists. �

Corollary 14 is implied by Theorem 7 if finite games are considered.
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Remark 15 Let X be a totally ordered set. If the symmetric zero-sum game (X, π)

satisfies any of the properties (i) to (v) of Proposition 13, then (X, π) is quasiconcave.

Proof. If property (iv) holds then there are some functions f, g : X −→ R such

that π(x, y) = f(x) + g(y) for all x, y ∈ X. Then (X, π) is quasiconcave if and only

if f(x) ≥ min[f(x′), f(x′′)]. Since X is a totally ordered set, we can order it such that

x′ ≥ x if and only if f(x′) ≥ f(x). Thus, (X, π) is quasiconcave. �

The converse is not true as the following example shows.

Example 16 Consider a symmetric two-player 3× 3 zero-sum game.12

A B C
A
B
C

 0 −1 −3
1 0 −1
3 1 0


This game is quasiconcave but its payoff function is not a valuation, i.e., payoff differences

in own strategies are not constant in the opponent’s strategies.

Theorem 7 and Corollary 14 overlap in the important case of 2 × 2 games. It is

straight-forward to check that every symmetric 2× 2 zero-sum game is quasiconcave and

satisfies all of the properties (i) to (v) of Proposition 13.

3 Application to General Zero-Sum Games

Consider now an arbitrary (not necessarily symmetric) two-player zero-sum game (X, Y, π1, π2)

and define a function u : (X × Y ) × (X × Y ) −→ R by u((x, y), (x′, y′)) = π1(x, y
′) +

π2(x
′, y). The two-player game ((X × Y ), u) is a two-player symmetric zero-sum game.

We call ((X×Y ), u) the von Neumann symmetrization of the two-player zero-sum game.

The von Neumann symmetrization of (X, Y, π1, π2) has a very intuitive interpretation.

Suppose that instead of playing the game (X, Y, π1, π2), both players play the game twice.

First, player 1 plays in the player position 1 and player 2 in the player position 2. Then,

in a second stage, player 1 plays in the player position 2 and player 2 plays in the player

12We thank an anonymous referee for suggesting this example.
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position 1. In each stage, players can not observe each other’s actions. The payoff of a

player is the sum of his payoffs in both stages.13

Brown and von Neumann (1950, §4) showed that for any finite two-player zero-sum

game an optimal mixed strategy in its von Neumann symmetrization induces an optimal

mixed strategy profile in the two-player zero-sum game (see also Gale, Kuhn and Tucker,

1950, §1). In the context of pure strategies, it is easy to see that the converse is true as

well. In particular, when (x, y) is a pure Nash equilibrium strategy of (X × Y, u),

u((x, y), (x′, y′)) ≥ 0 for all (x′, y′) ∈ X × Y, if and only if

π1(x, y
′) ≥ π1(x

′, y) for all (x′, y′) ∈ X × Y.

The last inequality is equivalent to both π1(x, y) ≥ π1(x
′, y) for all x′ ∈ X, and π1(x, y

′) ≥
π1(x, y) for all y′ ∈ Y .

Observation 4 implies that a two-player zero-sum game has a pure equilibrium if and

only if its von Neumann symmetrization is not a generalized rock-paper-scissors matrix.

Gale, Kuhn, and Tucker (1950, §2) introduced another symmetrization of two-player

zero-sum games that generally leads to smaller payoff matrices than the von Neumann

symmetrization. Yet, Observation 4 does not apply to their symmetrization because it

has a special structure that by Observation 4 must have equilibria that are mixed. As

an example, consider the trivial one-action two-player zero-sum game with payoff ma-

trix (1,−1). The Gale-Kuhn-Tucker symmetrization would yield the rock-paper-scissors

game, which does not have a pure equilibrium. Yet, Gale, Kuhn, and Tucker (1950, §2)

show that generally the mixed equilibrium of their symmetrization induces an (pure or

mixed) equilibrium of the underlying game.

4 Application to Relative Payoff Games

Consider now more generally a symmetric two-player (not necessarily zero-sum) game

(X, π). When instead of the payoff function π the relative payoffs are considered, then

symmetric two-player games give naturally rise to the class of symmetric zero-sum games.

13Note that in the von Neumann symmetrization, each player chooses strategies in the set (X × Y ).
However, while for player 1 the strategy (x, y) means that he chooses x in the first stage and y in the
second stage, for player 2 the strategy (x, y) means that he chooses y in the first stage and x in the
second stage.
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Definition 17 (Relative payoff game) Given a symmetric two-player game (X, π),

the associated relative payoff game is (X,∆), where the relative payoff function ∆ :

X ×X −→ R is defined by

∆(x, y) = π(x, y)− π(y, x).

The relative payoff of a player is the difference between his payoff and the payoff of

his opponent.

Remark 18 Every relative payoff game is a symmetric zero-sum game. Conversely, for

every symmetric zero-sum game, there is a symmetric two-player game for which the

relative payoff game is the symmetric zero-sum game.

Proof. Note that by definition, ∆(x, y) = π(x, y) − π(y, x) = −[π(y, x) − π(x, y)] =

−∆(y, x) and hence (X,∆) is a symmetric zero-sum game. For the converse, if (X,∆) is a

symmetric zero-sum game, then (X, π) with π(x, y) = 1
2
∆(x, y) is a symmetric two-player

game for which (X,∆) is the relative payoff game. To see this, note that since (X,∆) is

a symmetric zero-sum game, we must have that (X, 1
2
∆) is a symmetric zero-sum game.

Note further that ∆(x, y) = π(x, y)−π(y, x) = 1
2
∆(x, y)− 1

2
∆(y, x) = 1

2
∆(x, y)+ 1

2
∆(x, y),

where the last equality follows from the fact that (X, 1
2
∆) is a symmetric zero-sum game.

�

The remark shows that every relative payoff game is a symmetric zero-sum game,

and that relative payoff games do not impose any restriction on the class of symmetric

zero-sum games. Every symmetric zero-sum game is a relative payoff game of some

symmetric two-player game. Note also that different symmetric two-player games may

have the same relative payoff game.

Given Remark 18, we can now use our observations for symmetric two-player zero-

sum games to study which outcomes in a symmetric two-player game correspond to pure

equilibria in its associated relative payoff game. To this extent we introduce the notion

of finite population evolutionary stable strategy (Schaffer, 1988, 1989). This concept is

appropriate when “playing the field”, i.e. when players are matched against all other

players except themselves.

Definition 19 (fESS) A strategy x∗ ∈ X is a finite population evolutionary stable

strategy (fESS) of the game (X, π) if

π(x∗, x) ≥ π(x, x∗) for all x ∈ X. (2)
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In terms of the associated relative payoff game, inequality (2) is equivalent to

∆(x∗, x) ≥ 0 for all x ∈ X.

Schaffer (1988, 1989) observed that x∗ is a fESS of the symmetric game (X, π) if and

only if (x∗, x∗) is a pure Nash equilibrium of the relative payoff game (X,∆).14

Our results in Section 2 provide existence results for fESS of (X, π) when conditions

are imposed on the associated relative payoff game (X,∆). That is, a symmetric game

(X, π) has a fESS if and only if its associated relative payoff game (X,∆) is not a

gRPS. In particular, every symmetric 2×2 game has a fESS. Furthermore, if the relative

payoff function ∆ associated to a finite game (X, π) is quasiconcave, then a fESS exists.

Finally, if the relative payoff game (X,∆) associated to (X, π) satisfies the properties of

Corollary 14, then a fESS exists.

There is an interesting connection between symmetric two-player games and their

relative payoff games with regard to the existence of an exact potential function.

Theorem 20 Let (X, π) be a symmetric two-player game with the associated relative

payoff game (X,∆). (X, π) is an exact potential game if and only if (X,∆) is an exact

potential game.

Proof. If P is an exact potential function of a symmetric two-player game (X, π),

then P is symmetric, i.e. P (x, y) = P (y, x) for all x, y ∈ X. To see this note that P

being an exact potential (X, π) implies for all x, y ∈ X

π(x, y)− π(y, y) = P (x, y)− P (y, y) and

π(x, y)− π(y, y) = P (y, x)− P (y, y)

Hence P (y, x) = P (x, y).

By symmetry of P we obtain for all x, x′, y, y′ ∈ X

(P (x′, y)− P (x, y))− (P (y, x′)− P (y′, x′)) = (P (x′, y′)− P (x, y′))− (P (y, x)− P (y′, x)).

Since P is an exact potential function of (X, π) we can rewrite this equation

(π(x′, y)− π(x, y))− (π(y, x′)− π(y′, x′)) = (π(x′, y′)− π(x, y′))− (π(y, x)− π(y′, x)).

14See Ania (2008) and Hehenkamp, et al. (2010) for further discussion.
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Rearranging terms yields

(π(x′, y)− π(y, x′))− (π(x, y)− π(y, x)) = (π(x′, y′)− π(y′, x′))− (π(x, y′)− π(y′, x)).

Using the relative payoff function ∆, we obtain

∆(x′, y)−∆(x, y) = ∆(x′, y′)−∆(x, y′).

Thus ∆ is a valuation which by Proposition 13 is equivalent to (X,∆) being an exact

potential game. �

Often it is rather difficult to verify the existence of an exact potential function. The-

orem 20 and Proposition 13 show that it is straightforward for symmetric two-player

games. It is easy to verify whether the relative payoff function associated with the sym-

metric two-player game is a valuation.

Finally, the following two corollaries provide sufficient conditions imposed on the

payoff function π of the underlying game (X, π) for the existence of a fESS.

Corollary 21 Consider a symmetric two-player game (X, π) with a compact strategy set

X and a continuous payoff function. If (X, π) is an exact potential game, then a fESS

exists.

The corollary follows since by Theorem 20 the relative payoff game is also an exact

potential game. Hence, Corollary 14 implies the existence of a pure equilibrium of (X,∆),

which is a fESS of (X, π).

Corollary 22 Consider a symmetric two-player game (X, π) with a compact strategy set

X and a payoff function that can be written as π(x, y) = f(x) + g(y) + a(x, y) for some

continuous functions f, g : X −→ R and a symmetric function a : X × X −→ R (i.e.,

a(x, y) = a(y, x) for all x, y ∈ X). Then (X, π) has a fESS.

The corollary follows since π(x, y) = f(x) + g(y) + a(x, y) implies that in the relative

payoff game the term a(x, y) drops out, ∆(x, y) = f(x) − g(y) − f(y) + g(x). Again,

Corollary 14 implies the existence of a fESS of (X, π).

While at first glance the condition on payoffs in the last corollary looks restrictive, it

is satisfied in many well-known textbook examples of two-player games including linear

Cournot duopoly, versions of Bertrand competition, public goods games, common pool
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resource games, minimum effort coordination games, synergistic relationships, Diamond’s

search, Nash demand game, and Tullock rent seeking games (for details see Duersch,

Oechssler, and Schipper, 2011). In applications, the function a is often symmetric because

it represents just the sum or the product of players’ strategies.
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