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Abstract

Unawareness refers to the lack of conception rather than the lack of information. This
chapter discusses various epistemic approaches to modeling (un)awareness from computer
science and economics that have been developed over the last 25 years. While the focus is
on axiomatizations of structures capable of modeling knowledge and propositionally deter-
mined awareness, we also discuss structures for modeling probabilistic beliefs and awareness
as well as structures for awareness of unawareness. Further topics, such as dynamic aware-
ness, games with unawareness, decision theory under unawareness, and applications are just
briefly reviewed.
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1 Introduction

Formalized notions of awareness have been studied both in computer science and economics.1

In computer science the original motivation was mainly the modeling of agents who suffer from
different forms of logical non-omniscience. The aim was to introduce logics that are more
suitable than traditional logics for modeling beliefs of humans or machines with limited rea-
soning capabilities. In economics the motivation is similar but perhaps less ambitious. The
goal is to model agents who may not only lack information but also conception. Intuitively,
there is a fundamental difference between not knowing that an event obtained and not be-
ing able to conceive of that event. Despite such a lack of conception, agents in economics
are still assumed to be fully rational in the sense of not making any errors in information
processing such as violating introspection of beliefs for events they can conceive. By letting
unawareness stand for lack of conception, economists seem to have aimed for a narrow notion of
awareness, while computer scientists are more agnostic about the appropriate notion of aware-
ness. Economists and computer scientists seem to have slightly different tastes over formalisms
too. While computer scientists are clearly inspired by Kripke structures but formalize aware-

1For a bibliography, see http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm.
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ness syntactically, economists seem to prefer purely event-based approaches similar to Aumann
structures or Kripke frames as well as Harsanyi type-spaces. This may be due to different
uses of those models. Central to economists are applications to game theory in which players
in principle may use the model to reason about other players, to reason about other players’
reasoning, reasoning about that etc. Consequently, states can be interpreted as “subjective”
descriptions by players. In contrast, states in awareness structures by computer scientists are
best understood as an outside analyst’s description of agents’ reasoning. They are typically not
“accessible” to the agent themselves. Because of the different emphasis it is perhaps somewhat
surprising that some approaches to awareness in computer science turn out to be equivalent
in terms of expressivity to the approach taken in economics, especially with the focus on the
notion of awareness that has been called “awareness generated by primitive propositions”. At
a first glance, the name of this notion suggests that it is essentially syntactic because it refers
to primitive propositions or atomic formulae, thus presupposing a syntactic formalism. Yet, it
also makes clear that syntactic constructions (such as the order of formulae in a conjunction
of formulae) do not play a role in determining this notion of awareness. Hence, this notion
should be well-suited to be captured with event-based approaches that economists have focused
on. Consequently, the literature on awareness can be viewed from at least two angles. On one
hand, the structures proposed by economists are equivalent to a subclass of structures proposed
by computer scientists (in particular, the ones proposed in the seminal paper by Fagin and
Halpern [1988]). On the other hand, the different modeling approaches pursued by economists
make some of their structures directly more amenable to applications in game theory and allow
us to isolate without further assumptions the effect of unawareness from other forms of logical
non-omniscience. Throughout the chapter, I comment on the slightly different perspectives.

We find it useful to repeatedly refer as a backdrop to the following simple example that has
been considered previously by Heifetz, Meier, and Schipper [2006]:

Speculative Trade Example. There are two agents, an owner o of a firm, and a potential
buyer b of the firm. The status quo value of the firm is $100 per share. The owner of the
firm is aware of a potential lawsuit that reduces the value of the firm by $20 per share. The
owner does not know whether the lawsuit will occur. The buyer is unaware of the lawsuit and
the owner knows that the buyer is unaware of the lawsuit. The buyer, however, is aware of a
potential innovation that increases the value of the firm by $20 per share. The buyer does not
know whether the innovation will occur. The owner is unaware of the innovation and the buyer
knows that the owner is unaware of the innovation.

A question of interest to economists is whether speculative trade between the owner and
buyer based on their differences in awareness is possible. Speculative trade is trade purely due
to differences in information/awareness. In this example, we may phrase the question as follows:
Suppose that the buyer offers to purchase the firm from the owner for $100 per share. Is the
owner going to sell to her?

The purpose of the verbal description of the example is threefold: First, the “real-life”
application should serve as a motivation to studying unawareness in multi-agent settings. We
will provide an answer to what extent speculative trade is possible under unawareness in Sec-
tion 4.3. Second, we will formalize the example using different approaches to awareness. This
will allow us to illustrate the main features of those approaches and make them easily accessible
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with the help of simple graphs. Third, an answer to this question is relevant for contrasting
results under unawareness with results in standard structures without unawareness (e.g., the
“No-agreeing-to-disagree” theorem of Aumann [1976] or the “No-speculative-trade” theorem of
Milgrom and Stokey [1982].

2 Preliminary Discussion

2.1 Some Properties of Awareness in Natural Languages

The words “aware” and “unaware” are used in many contexts with many different connotations.
Sometimes “aware” is used in place of “knowing” like in the sentence “I was aware of the red
traffic light.” On the other hand we interpret “aware” to mean “generally taking into account”,
“being present in mind” (Modica and Rustichini [1999], p. 274), “thinking about” (Dekel,
Lipman, and Rustichini [1998b]) or “paying attention to” like in the sentence “Be aware of
sexually transmitted diseases!” In fact, the last sentence resonates closely with the etymology
of “aware” since it has its roots in the old English “gewær” (which itself has roots in the
German “gewahr”) emphasizing to be “wary”.2 In psychiatry (see for instance, Green et al.,
1993), lack of self-awareness means that a patient is oblivious to aspects of an illness that is
obvious to social contacts. This is arguably closer to “not knowing”. But it also implies that
the patient lacks introspection of her/his lack of knowledge of the illness. It turns out that lack
of negative introspection will play a crucial role in modeling unawareness (see Section 2.2). In
neuroscience, being aware is taken as making/having/enjoying some experience and being able
to specify the content of consciousness (Zeman [2002], pp. 16). While the precise connotations
of all those uses of awareness are different, they have in common that the agent is able to
conceive something. Being unaware means then that he lacks conception of something.

Describing properties of awareness and unawareness informally with words like “knowing”,
“not knowing”, “lack of conception”, “not thinking about it” etc. does not make awareness
amenable to formal analysis. We turn now to formal approaches.

2.2 Some Properties of Awareness in a Formal Language

One attempt to avoid ambiguities of natural languages is to use a formal language. Given a
nonempty set of agents Ag = {1, ..., n} indexed by a and a nonempty set of atomic formulae
At (also called primitive propositions) as well as the special formula >, the formulae ϕ of the
language LK,An (At) are defined by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ | Aaϕ,

where p ∈ At and a ∈ Ag. As usual, the propositional connectives ¬ and ∧ denote negation
and conjunction, respectively. The epistemic modal operators Ka and Aa are named knowledge
and awareness, respectively. For instance, Aaϕ is read as “agent a is aware of ϕ”. Atomic
formulae represent propositions such as “penicillium rubens has antibiotic properties” that are

2http://www.etymonline.com/index.php?term=aware
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not themselves formed of other propositions. As usual, disjunction ∨, implication →, and bi-
implication ↔ are abbreviations, defined by ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) := (¬ϕ ∨ ψ), and
(ϕ↔ ψ) := (ϕ→ ψ) ∧ (ψ → ϕ), respectively.

One immediate property of awareness is implicitly assumed with the introduction of just one
modal operator Aa: there are no “degrees” of awareness. That is, one does not have statements
like “agent a is more aware of ϕ than she is of ψ but less aware of ϕ than she is of χ”. I believe
this is justified. The notion of awareness is essentially dichotomous. An agent is either aware
of ϕ or unaware of ϕ.

With some abuse of notation, let At(ϕ) denote the set of primitive propositions that appear
in ϕ defined inductively as follows:

• At(>) := ∅,
• At(p) := p, for p ∈ At,
• At(¬ϕ) := At(ϕ),
• At(ϕ ∧ ψ) := At(ϕ) ∪ At(ψ),
• At(Kaϕ) := At(ϕ) =: At(Aaϕ).

With this notation on hand, we can formalize the property of “awareness generated by
primitive propositions”:

AGPP. Aaϕ↔
∧
p∈At(ϕ)Aap

An agent a is aware of ϕ if and only if she is aware of every primitive proposition that appears
in ϕ. This property is not completely innocent. If an agent can think about every primitive
proposition p ∈ At(ϕ), can she also think about all those primitive propositions joint together
in some potentially very complicated formula ϕ? Isn’t one feature of unawareness that an agent
is sometimes unable to “connect various thoughts”? This property differentiates unawareness
generated by primitive propositions from other forms of logical non-omniscience.

Using this syntactic approach, we can state easily further properties of awareness that have
been considered in the literature:

KA. Kaϕ→ Aaϕ (Knowledge implies Awareness)
AS. Aa¬ϕ↔ Aaϕ (Symmetry)

AKR. Aaϕ↔ AaKaϕ (Awareness Knowledge Reflection)
AR. Aaϕ↔ AaAaϕ (Awareness Reflection)
AI. Aaϕ→ KaAaϕ (Awareness Introspection)

KA relates awareness to knowledge. Quite naturally, knowing ϕ implies being aware of ϕ.
Symmetry is natural if we take the idea of awareness of ϕ to mean “being able to think about
ϕ”. For example, if an agent can think about that penicillium rubens could have antibiotic
properties then she can also think about that penicillium rubens does not have antibiotic
properties. Symmetry makes clear that awareness is different from notions of knowledge as
knowledge does not satisfy symmetry. Awareness Knowledge Reflection is also natural: if an
agent can think about some particular proposition, then she can also think about her knowledge
of that proposition and vice versa. Similarly, if an agent is aware of a proposition, then she
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knows that she is aware of this proposition (Awareness Introspection). Awareness Reflection
states that an agent can reflect on her awareness.3

Modica and Rustichini [1994] defined awareness in terms of knowledge by

Aaϕ := Kaϕ ∨ (¬Kaϕ ∧Ka¬Kaϕ),

which in propositional logic is equivalent to

Aaϕ = Kaϕ ∨Ka¬Kaϕ,

a definition of awareness used frequently in the literature especially in economics. The Modica-
Rustichini definition of awareness and some of the properties discussed above make use of
the knowledge modality. This just begs the question about the properties of knowledge. One
property often assumed is

5. ¬Kaϕ→ Ka¬Kaϕ (Negative Introspection)

This property is implicitly used (together with others) in most economic applications to model
agents who are free from “mistakes in information processing.” It is immediate that the Modica-
Rustichini definition of awareness is equivalent to Negative Introspection. Thus, if Negative
Introspection is a valid formula, then awareness as defined by Modica-Rustichini must be trivial
in the sense that the agent is aware of every formula. The discussion then begs the questions
about which formulae are valid. Answers to this question are given with various structures
discussed in sequel.

3 Awareness and Knowledge

3.1 Awareness Structures by Fagin and Halpern [1988]

Fagin and Halpern [1988] were the first to present a formal approach of modeling awareness.
They augment Kripke structures with a syntactic awareness correspondence in order to provide
a flexible approach for modeling logical non-omniscience. Their starting point was Levesque’s
Logic of Implicit and Explicit Belief (Levesque [1984]). Perhaps that’s why they considered
also another epistemic modal operator La interpreted as “implicit knowledge”. We denote the
resulting language LL,K,An (At).

An awareness structure is a tuple M = (S, (Ra)a∈Ag, (Aa)a∈Ag, V ) where (S, (Ra)a∈Ag, V )

is a Kripke structure and Aa : Ω −→ 2L
L,K,A
n (At) is agent a’s awareness correspondence4 that

associates with each state s ∈ S the set of formulae Aa(s) ⊆ LL,K,An (At) of which agent a is
aware at state s. A Kripke structure (S, (Ra)a∈Ag, V ) consists of a nonempty set of states S,
and for each agent a ∈ Ag a binary relation Ra ⊆ S × S, the accessibility relation.5 Intuitively,

3We use the term “introspection” when the agent reasons about knowledge of knowledge or awareness. We
use the term “reflection” when the agent reasons about awareness of knowledge or awareness.

4The name “correspondence” refers to a set-valued function.

5See Fagin, Halpern, Moses, and Vardi [1995] or Chellas [1980].
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(s, t) ∈ Ra is interpreted as ‘at state s agent a considers the state t possible’. Of particular
interest is the case when Ra is an equivalence relation, i.e., when Ra is a relation that is
reflexive (i.e., (s, s) ∈ Ra, for all s ∈ S), transitive (i.e., for all s1, s2, s3 ∈ S, if (s1, s2) ∈ Ra,
and (s2, s3) ∈ Ra, then (s1, s3) ∈ Ra) and Euclidean (i.e., for all s1, s2, s3 ∈ S, if (s1, s2) ∈ Ra
and (s1, s3) ∈ Ra, then (s2, s3) ∈ Ra). In this case (and only in this case), Ra forms a partition
of the state space S, i.e., a collection of disjoint subsets such that the union covers S. We
call an awareness structure in which each agent’s accessibility relation forms a partition a
partitional awareness structure. Our exposition focuses on partitional awareness structures.6

The valuation function V : S × At −→ {true, false} assigns to each state and atomic formula
a truth value.

The awareness correspondence offers a very flexible approach to modeling various notions of
awareness, some of which have yet to be explored. The authors stress that restrictions depend
on which interpretation of awareness is desired in applications. For instance, economists became
interested in framing affects including presentation order effects. Presentation order effects may
be relevant when information is acquired with the help of online search engines, which typically
present lists of search results. Rather than going through all of them, we usually stop when we
found a satisfactory result. There may be search results further down the list of which we remain
unaware but which we would find much more relevant if we were aware of them. Our awareness
of search results depends crucially on the order in which they are presented and on our search
aim. If we consider lists as conjunctions of propositions in which the order matters (i.e., for
which we do not assume commutativity), then we may be able to model presentation order
effects with awareness correspondences because at some state s ∈ S we may have ϕ∧ψ ∈ Aa(s)
but ψ ∧ ϕ /∈ Aa(s) while in another state s′ 6= s, ψ ∧ ϕ ∈ Aa(s′). Such “realistic” approaches
have not been explored in the awareness literature. But especially for such kind of applications,
the syntactic awareness correspondence may have an advantage over event-based approaches
that we will introduce later.

Note that by definition, the awareness correspondence imposes a dichotomous notion of
awareness because at a state s a formula can be either in Aa(s) or not in Aa(s). Thus, at state
s, agent a is either aware or unaware of that formula.

Given how the literature has developed so far, two restrictions on the awareness correspon-
dence that are jointly called propositionally determined awareness are of particular interest:

• Awareness is generated by primitive propositions if for all a ∈ Ag and s ∈ S, ϕ ∈ Aa(s) if
and only if At(ϕ) ⊆ Aa(s).
• Agents know what they are aware of if for all a ∈ Ag and s, s′ ∈ S, (s, s′) ∈ Ra implies
Aa(s′) = Aa(s).

A satisfaction relation specifies for each awareness structure and state which formulae are
true. We denote by M, s |= ϕ that ϕ is true (or satisfied) at state s in the awareness structure
M , and define inductively on the structure of formulae in LL,K,An (At),

6The aim of our exposition is not necessarily to present the most general setting. Nor do we believe that
partitional information structures describe best how humans reason in real life. Rather, partitional information
structures serve as a “rational” benchmark. It allows us to demonstrate that one can model both, a “strong”
notion of knowledge and unawareness. Thus, we can isolate unawareness from errors of information processing
associated with lack of introspection. Moreover, as it turns out, the interpretation of propositionally generated
unawareness as “lack of conception” is most transparent in partitional awareness structures.
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M, s |= >, for all s ∈ S,
M, s |= p, for p ∈ At if and only if V (s, p) = true,
M, s |= ϕ ∧ ψ if and only if both M, s |= ϕ and M, s |= ψ,
M, s |= ¬ϕ if and only if M, s 6|= ϕ,
M, s |= Laϕ if and only if M, t |= ϕ for all t ∈ S such that (s, t) ∈ Ra,
M, s |= Aaϕ if and only if ϕ ∈ Aa(s),
M, s |= Kaϕ if and only if M, s |= Aaϕ and M, s |= Laϕ.

The satisfaction relation is standard except for awareness (Aaϕ), which is new, and and for
knowledge (Kaϕ), which is defined by Laϕ ∧ Aaϕ. In the presence of an implicit knowledge
modality La, the knowledge modality Ka is called explicit knowledge. Agent a explicitly knows
ϕ if she is aware of ϕ and implicitly knows ϕ.

At this point, it may be helpful to illustrate awareness structures with our example.

Speculative Trade Example (continued). Denote by ` the atomic formula “the lawsuit
is brought against the firm” and by n “the novel use of the firm’s product is discovered”.
Figure 1 depicts an awareness structure that models the speculative trade example from the
Introduction.7 There are four states. For simplicity, we name each state by the atomic formulae
that are true or false at that state. For instance the upper right state (n,¬`), n is true and `
is false. The awareness correspondences are indicated by clouds, one for each player. For each
state, the blue solid cloud represents the awareness set of the owner while the red intermitted
cloud represents the awareness set of the potential buyer.

Figure 1: An Awareness Structure for the Speculative Trade Example

For graphical simplicity, we represent the accessibility relations of agents by possibility sets
rather than arrows, a practice common in game theory. The blue solid-lined possibility set
belongs to the owner while the one with the red intermitted line is the buyer’s. Each agent’s
information is trivial as neither can distinguish between any states.

7Neither Fagin and Halpern [1988], Halpern [2001] nor Halpern and Rêgo [2008] provide a graphical rendering
of an example of an awareness structure. We choose “clouds” to depict the awareness sets so as to suggest the
interpretation of “thinking about”.
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This simple figure models the story that we outlined in the Introduction. In any state, the
owner is unaware of the potential innovation but aware of the lawsuit because his awareness set
never contains formulae involving n but only formulae involving `. Similarly, at any state the
buyer is unaware of the potential lawsuit but aware of the innovation because his awareness set
never contains formulae involving ` but only formulae involving n. The accessibility relations
show us that the owner does not know whether the lawsuit obtains because he cannot distinguish
between states in which the lawsuit obtains and states where it doesn’t. Analogously, the buyer
does not know whether the innovation obtains because she cannot distinguish between states
in which the innovation obtains from states where it doesn’t obtain. But the owner knows
implicitly that the buyer is unaware of the lawsuit because at every state of his possibility set,
the buyer’s awareness set does not contain formulae involving `. Moreover, he also explicitly
knows that the buyer is unaware of the lawsuit because he implicitly knows it and his own
awareness set contains formulae involving `. (An analogous statement holds for the buyer n.)

This example is very special because each agent’s accessibility relation is trivial and each
agent’s awareness correspondence is constant across states. Nevertheless, the example illustrates
some particular features and properties of awareness structures. One thing to note is that the
accessibility relation models implicit knowledge and not necessarily explicit knowledge. For in-
stance, at every state the owner implicitly knows that he is unaware of the innovation although
he does not explicitly know it because his awareness set never contains formulae that involve
n. This is actually a general property (see axiom UIL below), which we find hard to interpret. �

The discussion of the example just begs the question about what are the general properties
of awareness and knowledge in awareness structures? What are all properties of awareness and
knowledge in awareness structures? To answer these questions, we characterize the properties
of awareness and knowledge in terms of formulae that are valid in awareness structures. To set
the stage for such an axiomatization, we need to introduce the following standard notions (see
Fagin, Halpern, Moses, and Vardi [1995] or Chellas [1980]): An axiom is a formula assumed.
An inference rule infers a formula (i.e., a conclusion) from a collection of formulae (i.e., the
hypothesis). An axiom system consists of a collection of axioms and inferences rules. A proof
in an axiom system consists of a sequence of formulae, where each formula is either an axiom
in the axiom system or follows by an application of an inference rule. A proof is a proof of a
formula ϕ if the last formula in the proof is ϕ. A formula ϕ is provable in an axiom system
if there is a proof of ϕ in the axiom system. The set of theorems of an axiom system is the
smallest set of formulae that contain all axioms and that is closed under inference rules of the
axiom system.

Given a class MFH of awareness structures, a formula ϕ is valid in MFH if M, s |= ϕ for
every awareness structure M ∈ MFH and state s in M . An axiom system is said to be sound
for a language L with respect to a classMFH of awareness structures if every formula in L that
is provable in the axiom system is valid with respect to every awareness structure in MFH .
An axiom system is complete for a language L with respect to a class of awareness structures
MFH if every formula in L that is valid in MFH is provable in the axiom system. A sound
and complete axiomatization for a class of awareness structures characterizes these awareness
structures in terms of properties of knowledge and awareness as codified in the axiom system.
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Consider the following axiom system:8

Prop. All substitutions instances of tautologies of propositional logic, including the formula >.
KL. Kaϕ↔ Laϕ ∧Aaϕ (Explicit Knowledge is Implicit Knowledge and Awareness)
AS. Aa¬ϕ↔ Aaϕ (Symmetry)
AC. Aa(ϕ ∧ ψ)↔ Aaϕ ∧Aaψ (Awareness Conjunction)

AKR. Aaϕ↔ AaKaϕ (Awareness Explicit Knowledge Reflection)
ALR. Aaϕ↔ AaLaϕ (Awareness Implicit Knowledge Reflection)

AR. Aaϕ↔ AaAaϕ (Awareness Reflection)
AIL. Aaϕ→ LaAaϕ (Awareness Introspection)
UIL. ¬Aaϕ→ La¬Aaϕ ()

K. (Laϕ ∧ La(ϕ→ ψ))→ Laψ (Distribution Axiom)
T. Laϕ→ ϕ (Implicit Knowledge Truth Axiom)
4. Laϕ→ LaLaϕ (Implicit Positive Introspection Axiom)
5. ¬Laϕ→ La¬Laϕ (Implicit Negative Introspection Axiom)

MP. From ϕ and ϕ→ ψ infer ψ (modus ponens)
Gen. From ϕ infer Laϕ (Implicit Knowledge Generalization)

Note that each of the axioms and inference rules is an instance of a scheme; it defines an infinite
collection of axioms (inference rules, respectively), one for each choice of formulae.

Axioms AS, AKR, and AR were motivated in Section 2.2. Awareness Conjunction (AC)
has a similar flavor as the property “awareness generated by primitive propositions” (AGPP)
introduced in Section 2.2. Axioms ALR and AIL are similar to axioms AKR and AI, respectively,
but with explicit knowledge replaced by implicit knowledge. Axioms and inferences rules Prop.,
K, T, 4, 5, MP, and Gen. together make up the well-known axiom system S5 (see Fagin,
Halpern, Moses, and Vardi [1995] or Chellas [1980]) but are stated here with implicit knowledge
modalities. Axiom KL links explicit knowledge and implicit knowledge via awareness. Explicit
knowledge is implicit knowledge and awareness. This resonates well with the interpretation of
awareness as “being present in mind”. Explicit knowledge, i.e., knowledge that one is aware of,
is knowledge that is “present in mind”. The notion of knowledge usually considered in economics
corresponds to explicit knowledge despite the fact that standard properties on knowledge are
now imposed in implicit knowledge! The axiom Unawareness Introspection (UIL) is hard to
interpret since it has no analog in which implicit knowledge is replaced by explicit knowledge.
We denote the above axiom system by S5L,K,An because it is analogous to S5.

Theorem 1 (Halpern [2001]) For the language LL,K,An (At), the axiom system S5L,K,An is a
sound and complete axiomatization with respect to partitional awareness structures in which
awareness is determined by propositions.

The theorem is proved by modifying the proof for the well-known result that S5 is a sound
and complete axiomatization with respect to partitional Kripke structures for the language
LL(At).

While we focus our exposition on the strong notion of knowledge as encapsulated in ax-
iom systems analogous to S5, the literature considers weaker notions of knowledge as well.

8Some of the axioms involving awareness have been introduced in the literature under various different names.
Here we attempt to assign them intuitive acronyms. “R” stands for “reflection” and “I” for introspection.
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Halpern [2001] proves also axiomatizations for non-partitional awareness structures. Huang
and Kwast [1991] study variants of awareness structures and discuss various notions of nega-
tion and implications in the context of logical non-omniscience. Sillari [2008a,b] uses a version
of awareness structures in which he replaces the Kripke relations by a neighborhood correspon-
dences Na : S −→ 22S in the spirit of neighborhood semantics originally introduced by Scott
[1970] and Montague [1970] (see Section 5.3). Intuitively, Na(s) is the list of events that agent
a knows at state s. The satisfaction relation for the case of implicit knowledge of a formula is
then modified accordingly to M, s |= Laϕ if and only if {t ∈ S : M, t |= ϕ} ∈ Na(s). Model-
ers interested in studying various forms of logical non-omniscience will welcome the additional
flexibility that awareness neighborhood structures provide over awareness (Kripke) structures.
But this additional generality is less helpful when being interested in isolating the effect of
unawareness per se in the presence of a strong notion of knowledge as the one encapsulated in
S5.9

The axiomatization of Theorem 1 is somewhat dissatisfactory as most of the properties
are stated in terms of implicit knowledge, a notion that we find very hard to interpret in the
context of propositionally determined awareness. (In fact, since explicit knowledge is defined
in terms of implicit knowledge and awareness, the expressivity of language LL,An (At) is equal
to LL,K,An (At).) Implicit knowledge that is not explicit knowledge is as if Isaac Newton would
say “I know the theory of relativity but unfortunately I am not aware of it”. In economics, we
are only interested in knowledge that the agent is aware of, that can guide her decisions, and
that in principle could be tested with choice experiments (see Morris [1996, 1997], Schipper
[2014]). While an outsider may be able to reason about the implicit knowledge of an agent, it is
hard to see how the agent herself could reason about her implicit knowledge that is not explicit
knowledge as well. Some authors in the awareness literature interpret implicit knowledge as
“knowledge that the agent would have if she were aware of it”. But this interpretation is
flawed because if she really becomes aware of it, then maybe her explicit knowledge would not
correspond anymore to her earlier implicit knowledge because her state of mind would have
changed from the one she was in when she had this implicit knowledge and was unaware.

Fortunately, it is possible to axiomatize awareness structures without an implicit knowledge
modality using the language LK,An (At). The following axiom system that we may denote by
S5K,An has been in part already motivated in Section 2.2:

Prop. All substitutions instances of tautologies of propositional logic, including the formula >.
KA. Kaϕ→ Aaϕ (Knowledge implies Awareness)
AS. Aa¬ϕ↔ Aaϕ (Symmetry)
AC. Aa(ϕ ∧ ψ)↔ Aaϕ ∧Aaψ (Awareness Conjunction)

AKR. Aaϕ↔ AaKaϕ (Awareness Knowledge Reflection)
AR. Aaϕ↔ AaAaϕ (Awareness Reflection)
AI. Aaϕ→ KaAaϕ (Awareness Introspection)
K. (Kaϕ ∧Ka(ϕ→ ψ))→ Kaψ (Distribution Axiom)
T. Kaϕ→ ϕ (Axiom of Truth)

9It should be feasible to model awareness using a hybrid of a Kripke structure and a neighborhood structure
where, in place of a syntactic awareness correspondence of awareness structures, the neighborhood correspondence
lists for each state the set of events that the agent is aware of at that state while knowledge continues to be
modeled by the accessibility relation as in Kripke structures. To our knowledge, nobody has explored such a
syntax-free approach.
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4. Kaϕ→ KaKaϕ (Positive Introspection Axiom)
5A. ¬Kaϕ ∧Aaϕ→ Ka¬Kaϕ (Weak Negative Introspection Axiom)

MP. From ϕ and ϕ→ ψ infer ψ (modus ponens)
GenA. From ϕ and Aaϕ infer Kaϕ (Modified Knowledge Generalization)

Note that we now require awareness for the formalization of the negative introspection axiom
5A and knowledge generalization GenA. This is quite intuitive. If an agent does not know ϕ
and is also not aware of ϕ, how could she know that she doesn’t know ϕ? Moreover, how could
she infer knowledge of ϕ from ϕ if she isn’t aware of ϕ?

The definition of the satisfaction relation must be modified with respect to knowledge as
follows:

M, s |= Kaϕ if and only if M, s |= Aaϕ and M, t |= ϕ for all t ∈ S such that (s, t) ∈ Ra.

Theorem 2 (Halpern [2001], Halpern and Rêgo [2008]) For the language LK,An (At), the
axiom system S5K,An is a sound and complete axiomatization with respect to partitional aware-
ness structures in which awareness is determined by propositions.

Halpern [2001] proves the theorem with an additional inference rule that Halpern and Rêgo
[2008] show indirectly to be unnecessary. We like to mention that Halpern [2001] and Dit-
marsch, French, Velázquez-Quesada, and Wáng [2013] prove also axiomatizations for awareness
structures that are not necessarily partitional. The latter paper also introduces another notion
of knowledge that they dub “speculative knowledge”. This notion is similar to explicit knowl-
edge except that an agent always speculatively knows tautologies even though these tautologies
may involve primitive propositions that she is unaware of.

Axiomatizing awareness structures for the language LK,An (At) does not completely avoid the
issue of implicit knowledge because implicit knowledge and not explicit knowledge is represented
by the relation Ra. This is quite in contrast to the interpretation of information partitions in for
instance Aumann [1976] despite the fact that Ra is here assumed to be partitional. Note further
that the issue with implicit knowledge is potentially much less severe if we are not interested
in propositionally determined awareness. With other forms of logical non-omniscience, implicit
knowledge may be to a certain extent present in the mind and the objections raised here
against the notion of implicit knowledge may be misguided when different notions of awareness
are considered.

Recall from Section 2.2 that Modica and Rustichini [1994, 1999] defined awareness in terms
of knowledge by Aaϕ = Kaϕ ∨Ka¬Kaϕ.

Lemma 1 (Halpern [2001]) For any partitional awareness structure in which awareness is
generated by primitive propositions, the formula Aaϕ↔ Kaϕ ∨Ka¬Kaϕ is valid.

The proof relies mainly on weak negative introspection and awareness generated by primitive
propositions.

That is, in the class of partitional awareness structures we can define awareness in terms of
knowledge as in Modica and Rustichini [1994, 1999] and the expressive power of the language
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LK,An (At) is equivalent to LKn (At). Note that the lemma does not hold in general for awareness
structures which are not necessarily partitional.

In conclusion, we like to emphasize that the strength of awareness structures is their flexi-
bility. Potentially they can be used to model many interesting notions of awareness and logical
non-omniscience. But this flexibility comes also at a cost. Because of the syntactic awareness
correspondence, the semantics of awareness structures is not completely syntax free. All appli-
cations that appeared so far in the literature avoided specifying any syntax and just work with
states instead. Generally, modeling approaches in economics using syntax are extremely rare.
Another issue is that awareness structures model reasoning about awareness and knowledge of
agents from an outside analyst’s point of view. While an outsider can easily use an awareness
structure to analyze agents’ interactive reasoning, it is hard to imagine that agents’ themselves
could also use the awareness structure to analyze their reasoning. For instance, if the buyer in
the speculative trade example is presented with the awareness structure in Figure 1, then pre-
sumably she must become aware of the lawsuit. Writing down an awareness structure from the
buyer’s point of view, would require us to erase everything involving ` (and analogously for the
owner). The states in an awareness structure are “objective” descriptions of situations in the
eyes of an analyst but not necessarily the agents themselves. This may be problematic in game
theoretic models where we are interested in modeling strategic situations from each player’s
perspective. In the following sections we will introduce structures for modeling awareness that
feature “subjective” states, have a syntax-free semantics, and in some cases avoid the notion of
implicit knowledge altogether.

3.2 An Impossibility Result on Unawareness in Kripke Frames

We have seen that awareness structures are not syntax-free since they involve a syntactic aware-
ness correspondence. This has been criticized early on by Konolige [1986]. Others conjectured
the impossibility of a purely semantic approach to awareness. For instance, Thijsse [1991] writes
“... a purely semantic and fully recursive approach would be preferable, but I believe it is intrin-
sically impossible, due to the psychological nature of awareness.” Why would it be difficult to
devise a syntax-free semantics for modeling awareness? Suppose we would “erase” all syntactic
components of awareness structures; could we still model non-trivial awareness? When erasing
each agent’s awareness correspondence and the valuation from awareness structures, we are left
with what is known as an Aumann structure (Aumann [1976]) or Kripke frame.

Let S be a nonempty space of states and consider a set of events which we may take for
simplicity to be the set of all subsets 2S . A natural occurrence like “penicillium rubens has
antibiotic properties” is represented by an event, which is simply a subset of states E ∈ 2S .
That is, E is the set of states in which “penicillium rubens has antibiotic properties”. Instead
modal operators on propositions, we model epistemic notions of knowledge and unawareness
by operators on events. The knowledge operator of agent a is denoted by Ka : 2S −→ 2S . For
the event E ∈ 2S , the set Ka(E) represents the event that agent a knows the event E. Yet, to
interpret the operator Ka as knowledge, we should should impose properties that reasonable
notions knowledge should satisfy. Here we just require the knowledge operator to satisfy one
extremely basic property: Agent a always knows the state space, i.e.,

Ka(S) = S (Necessitation).

12



Note that all notions of knowledge or belief in the literature satisfy this property, including
the knowledge operator defined from an accessibility relation10 or possibility correspondence,
the probability p-belief operator11 (Monderer and Samet [1989]) as well as belief operators for
ambiguous beliefs12 (Morris [1997]). Yet, this property is not as innocent as it may appear at
the first glance. The state space is the universal event; it always obtains. We may interpret
S as a tautology. Thus, necessitation can be interpreted as knowing tautologies. Such a basic
property may be violated by agents who lack logical omniscience and face potentially very
complicated tautologies. For instance, mathematicians work hard to “discover new” theorems.
They obviously don’t know all theorems beforehand. There may be at least two reason for why
it is hard to know all tautologies. It may be due to logical non-omniscience in the sense that
the agent does not realize all implications of her knowledge. Alternatively, it may be because
the agent is unaware of some concepts referred to in the tautology.

To see how Necessitation may conflict with lack of awareness, we need a formal notion of
unawareness in this purely event-based setting. Denote the unawareness operator of agent a
by Ua : 2S −→ 2S . For the event E ∈ 2S , the set Ua(E) represents the event that agent a is
unaware of the event E. In our verbal discussion of the use of the term awareness in psychiatry
in Section 2.1, we noted already that lack of awareness may imply lack of negative introspection.
Formally we can state

Ua(E) ⊆ ¬Ka(E) ∩ ¬Ka¬Ka(E) (Plausibility)

This property is implied by the Modica-Rustichini definition of awareness discussed earlier.
Being unaware of an event implies not knowing the event and not knowing that you don’t know
the event. The negation of an event is here defined by the relative complement of that event
with respect to S, i.e., ¬E := S \E is the event that the event E does not occur. Conjunction
of events is given by the intersection of events. Thus, E ∩ F denotes the event that the event
E and the event F occurs. Implication of events is given by the subset relation; E ⊆ F denotes
that the event E implies the event F .

The next property states that an agent lacks positive knowledge of her unawareness. That
is, she never knows that she is unaware of an event.

KaUa(E) ⊆ ∅ (KU Introspection)

While we may know that, in principle, there could exist some events that we are unaware of

10I.e., Ka(E) := {s ∈ S : (s, s′) ∈ Ra implies s′ ∈ E}.
11Let ta : S −→ ∆(S) be a type mapping that assigns to each state in s a probability measure on S, where

∆(S) denotes the set of all probability measures on S. For p ∈ [0, 1], the probability-of-at-least-p-belief operator
is defined on events by Bp

a(E) := {s ∈ S : ta(ω)(E) ≥ p}.
12Let C(S) denote the set of capacities on S, i.e., the set of set functions ν : 2S −→ [0, 1] satisfying monotonicity

(for all E,F ⊆ S, if E ⊆ F then ν(E) ≤ ν(F )) and normalization (ν(∅) = 0, ν(S) = 1). Capacities are like
probability “measures” except that they not necessarily satisfy additivity. Capacities have been used extensively
in decision theory to model Knightian uncertainty, ambiguous beliefs, or lack of confidence in one’s probabilistic
beliefs (see for instance the seminal paper by Schmeidler [1989]). Typically, Knightian uncertainty is distinguished
from risk in economics. Risk refers to situations in which the agent reasons probabilistically while Knightian
uncertainty refer to a situation in which the agent is unable to form probability judgements. Let ta : S −→ C(S)
be a type mapping that assigns to each state a capacity on S. The capacity-of-at-least-p-belief operator is now
defined analogously to the probability-of-at-least-p-belief operator.
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(an issue we will turn to in Section 5), we cannot know that we are unaware of a specific event
E. In the same vein we may also require that if an agent is aware that she is unaware of an
event, then she should be aware of the event. Stated in the contrapositive,

Ua(E) ⊆ UaUa(E) (AU Reflection).

In order to interpret Ka as knowledge we should certainly impose further properties but we
can already show a very simple but conceptually important impossibility result according to
which the above notion of unawareness is inconsistent with any notion of knowledge satisfying
Necessitation. Since we did not even assume that the knowledge operator is derived from
an accessibility relation (or a possibility correspondence), Theorem 3 below will apply more
generally to any state-space model with knowledge satisfying necessitation, and not just to
Kripke frames or Aumann structures.

Theorem 3 (Dekel, Lipman, and Rustichini [1998a]) If a state-space model satisfies Plau-
sibility, KU-introspection, AU-reflection, and Necessitation, then Ua(E) = ∅, for any event
E ∈ 2S.

Proof. Ua(E)
AU−Refl.
⊆ Ua(Ua(E))

Plaus.
⊆ ¬Ka(¬Ka(Ua(E)))

KU−Intro.
= ¬Ka(S)

Nec.
= ∅. �

This shows that the (“standard”) state-space approach is incapable of modeling unaware-
ness. Thus, we need more structure for modeling non-trivial unawareness than what Kripke
structures have to offer.13

Our brief discussion of Necessitation already suggests that more careful descriptions of states
(i.e., syntactic approaches) are useful for modeling awareness. Tautologies are descriptions that
are true in every state. Knowing tautologies seems to imply that at every state the agent is able
to reason with a language that is as expressive as the most complicated tautology. But if she can
use this rich language at every state, then she should be able to describe and reason about any
event expressible in this language and thus it may not come as a surprise that she must be aware
of all events. The syntactic approach is nicely fine-grained as the “internal structure” of states
can be made explicit. This allows us to write formally properties like “awareness generated by
primitive propositions” (AGPP), Aaϕ↔

∧
p∈At(ϕ)Aap, a property that we discussed already in

Section 2.2.

It may be worthwhile to ask how awareness structures circumvent impossibility results
like the one discussed in this section. Dekel, Lipman, and Rustichini [1998a] identify two
assumptions that are implicitly satisfied in every event-based approach like Aumann structures
or Kripke frames. One of them is event-sufficiency. It says that if two formulae are true in
exactly the same subset of states, then (1) the subset of states in which the agent knows one
formula must coincide with the subset of states in which the agent knows the other formula
and (2) the subset of states in which the agent is unaware of one formula must coincide with
the subset of states in which the agent is unaware of the other formula. Clearly, awareness

13Dekel, Lipman, and Rustichini [1998a] present also impossibility results in which necessitation is weakened
or replaced by monotonicity. Chen, Ely, and Luo [2012] and Montiel Olea [2012] provide further elaborations of
those impossibility results.
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structures do not satisfy event-sufficiency since two formulae may be true exactly at the same
subset of states but the awareness correspondence may be such that the agent is aware of one
but not the other in some states. It is the awareness correspondence that allow awareness
structures to overcome the impossibility result.

3.3 Unawareness Frames

Inspired by Aumann structures, Heifetz, Meier, and Schipper [2006] introduced an event-based
approach to unawareness, that is, a syntax-free semantics for multi-agent unawareness. To
circumvent the impossibility results by Modica and Rustichini [1994] and Dekel, Lipman, and
Rustichini [1998a], they work with a lattice of state spaces rather than a single state-space.

Let S = ({Sα}α∈A ,�) be a complete lattice of disjoint state-spaces, with the partial order
� on S.14 A complete lattice is a partially ordered set in which each subset has a least upper
bound (i.e., supremum) and a greatest lower bound (i.e., infimum). If Sα and Sβ are such
that Sα � Sβ we say that “Sα is more expressive than Sβ.” Intuitively, states of Sα “describe
situations with a richer vocabulary” than states of Sβ”. Denote by Ω =

⋃
α∈A Sα the union of

these spaces. This is by definition of {Sα}α∈A a disjoint union.

For every S and S′ such that S′ � S, there is a surjective projection rS
′

S : S′ −→ S, where rSS
is the identity.15(“rS

′
S (ω) is the restriction of the description ω to the more limited vocabulary

of S.”) Note that the cardinality of S is smaller than or equal to the cardinality of S′. We
require the projections to commute: If S′′ � S′ � S then rS

′′
S = rS

′
S ◦ rS

′′
S′ . If ω ∈ S′, denote

ωS = rS
′

S (ω). If D ⊆ S′, denote DS = {ωS : ω ∈ D}. Intuitively, projections “translate” states
from “more expressive” spaces to states in “less expressive” spaces by “erasing” facts that can
not be expressed in a lower space.

For D ⊆ S, denote D↑ =
⋃
S′∈{S′:S′�S}

(
rS
′

S

)−1
(D). (“All the extensions of descriptions in

D to at least as expressive vocabularies.”) This is the union of inverse images of D in weakly
higher spaces.

An event is a pair (E,S), where E = D↑ with D ⊆ S, where S ∈ S. D is called the base
and S the base-space of (E,S), denoted by S(E). If E 6= ∅, then S is uniquely determined by E
and, abusing notation, we write E for (E,S). Otherwise, we write ∅S for (∅, S). Note that not
every subset of Ω is an event. Intuitively, some fact may obtain in a subset of a space. Then
this fact should be also “expressible” in “more expressive” spaces. Therefore the event contains
not only the particular subset but also its inverse images in “more expressive” spaces.

Let Σ be the set of events of Ω, i.e., sets D↑ such that D ⊆ S, for some state space
S ∈ S. Note that unless S is a singleton, Σ is not an algebra because it contains distinct ∅S
for all S ∈ S. The event ∅S should be interpreted as a “logical contradiction phrased with
the expressive power available in S”. It is quite natural to have distinct vacuous events since
“contradictions can be phrased with differing expressive powers”.

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

14Recall that a binary relation is a partial order if it is reflexive, antisymmetric, and transitive.

15Recall that a function f : X −→ Y is surjective (or called onto) if for every y ∈ Y there is some x ∈ X such
that f(x) = y.
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¬(D↑, S) := ((S \D)↑, S). Note that, by this definition, the negation of an event is an event.
Abusing notation, we write ¬D↑ := ¬(D↑, S). By our notational convention, we have ¬S↑ = ∅S
and ¬∅S = S↑, for each space S ∈ S. ¬D↑ is typically a proper subset of the complement
Ω \ D↑ , that is, (S \D)↑ $ Ω \ D↑ . Intuitively, there may be states in which the description
of an event D↑ is both expressible and valid – these are the states in D↑; there may be states
in which its description is expressible but invalid – these are the states in ¬D↑; and there may
be states in which neither its description nor its negation are expressible – these are the states

in Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑

. Thus unawareness structures are not standard state-space
models in the sense of Dekel, Lipman, and Rustichini [1998a] because the definition of negation
prevents them from satisfying what they call real states.

If
{(
D↑λ, Sλ

)}
λ∈L

is a collection of events (with Dλ ⊆ Sλ, for λ ∈ L), their conjunction∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
. Note, that since

S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then we have
(⋂

λ∈LD
↑
λ

)
=(⋂

λ∈L

((
rSSλ

)−1
(Dλ)

))↑
. Again, abusing notation, we write

∧
λ∈LD

↑
λ :=

⋂
λ∈LD

↑
λ (we will

therefore use the conjunction symbol ∧ and the intersection symbol ∩ interchangeably).

Intuitively, to take the intersection of events (D↑λ, Sλ)λ∈L, we express them “most econom-
ically in the smallest language” in which they are all expressible S = supλ∈L Sλ, take the

intersection, and then the union of inverse images obtaining the event
(⋂

λ∈L((rSSλ)−1(Dλ))
)↑

that is based in S.

We define the relation ⊆ between events (E,S) and (F, S′) , by (E,S) ⊆ (F, S′) if and only
if E ⊆ F as sets and S′ � S. If E 6= ∅, we have that (E,S) ⊆ (F, S′) if and only if E ⊆ F
as sets. Note however that for E = ∅S we have (E,S) ⊆ (F, S′) if and only if S′ � S. Hence
we can write E ⊆ F instead of (E,S) ⊆ (F, S′) as long as we keep in mind that in the case
of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows from these definitions that for
events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only when E and F have the same base, i.e.,
S(E) = S(F ).

Intuitively, in order to say “E implies F” we must be able to express F in the “language”
used to express E. Hence, it must be that S(F ) � S(E). The inclusion is then just E∩S(E) ⊆
F ∩ S(E).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =

⋃
λ∈LD

↑
λ

holds if and only if all the D↑λ have the same base-space.

So far, we have just described an event structure. To formalize the state of mind of an
agent, a possibility correspondence is introduced analogous to the one in standard game theory
(see for instance, Osborne and Rubinstein [1994], Chapter 5). For each agent a ∈ Ag there is a
possibility correspondence Πa : Ω→ 2Ω with the following properties:

Confinement: If ω ∈ S then Πa(ω) ⊆ S′ for some S′ � S.

Generalized Reflexivity: ω ∈ Π↑a(ω) for every ω ∈ Ω.
Stationarity: ω′ ∈ Πa(ω) implies Πa(ω

′) = Πa(ω).
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Projections Preserve Ignorance: If ω ∈ S′ and S � S′ then Π↑a(ω) ⊆ Π↑a(ωS).
Projections Preserve Knowledge: If S � S′ � S

′′
, ω ∈ S

′′
and Πa(ω) ⊆ S′ then

(Πa(ω))S = Πa(ωS).

Note that Generalized Reflexivity implies that if S′ � S, ω ∈ S and Πa(ω) ⊆ S′, then rSS′(ω) ∈
Πa(ω). Additionally, we have the possibility correspondence is serial, i.e., Πa(ω) 6= ∅, for all
ω ∈ Ω.

The possibility correspondence is the analogue to the accessibility relations in Kripke struc-
tures. Generalized Reflexivity and Stationarity are the analogues of the partitional properties
of the possibility correspondence in partitional Aumann structures or Kripke structures. In
particular, Generalized Reflexivity yields the truth property; Stationarity will guarantee the
introspection properties (see Proposition 1). It captures both transitivity and Euclideanness.

The properties Projections Preserve Ignorance and Projections Preserve Knowledge guar-
antee the coherence of knowledge and awareness of individuals down the lattice structure. They
compare the possibility sets of an individual in a state ω and its projection ωS . The properties
guarantee that, first, at the projected state ωS the individual knows nothing she does not know
at ω, and second, at the projected state ωS the individual is not aware of anything she is un-
aware of at ω (Projections Preserve Ignorance). Third, at the projected state ωS the individual
knows every event she knows at ω, provided that this event is based in a space lower than or
equal to S (Projections Preserve Knowledge). These properties also imply that at the projected
state ωS the individual is aware of every event she is aware of at ω, provided that this event is
based in a space lower than or equal to S.16

The knowledge operator of agent a on events E is defined, as usual in Aumann structures,
by

Ka(E) := {ω ∈ Ω : Πa(ω) ⊆ E} ,
if there is a state ω such that Πa(ω) ⊆ E, and by Ka(E) := ∅S(E) otherwise.

The awareness operator of agent a on events E can be defined by

Aa(E) :=
{
ω ∈ Ω : Πa(ω) ⊆ S(E)↑

}
,

if there is a state ω such that Πa(ω) ⊆ S(E)↑, and by Aa(E) := ∅S(E) otherwise. Thus, an
agent is aware of an event if she considers possible states in which this event is “expressible”.

Both, the knowledge and awareness operators are well-defined and easy to work with:

Lemma 2 If E is an event, then Ka(E) and Aa(E) are S(E)-based events.

The proof of the lemma makes use of the properties imposed on the possibility correspon-
dence as does the proof of the following proposition.

The unawareness operator on events is defined as the negation of awareness, Ua(E) :=
¬Aa(E).

Proposition 1 (Heifetz, Meier, and Schipper [2006, 2008]) The Knowledge and Aware-
ness operators satisfy following properties:

16Heifetz, Meier, and Schipper [2006] also state another property, called Projections Preserve Awareness, and
remark that it follows from other properties.
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Necessitation: Ka(Ω) = Ω,
Distribution: Ka

(⋂
λ∈LEλ

)
=
⋂
λ∈LKa (Eλ),

Monotonicity: E ⊆ F implies Ka(E) ⊆ Ka(F ),
Truth: Ka(E) ⊆ E,
Positive Introspection: Ka(E) ⊆ KaKa(E),
Negative Non-Introspection: ¬Ka(E) ∩ ¬Ka¬Ka(E) ⊆ ¬Ka¬Ka¬Ka(E),
Weak Negative Introspection: ¬Ka(E) ∩Aa¬Ka(E) = Ka¬Ka(E),
MR Awareness: Aa(E) = Ka(E) ∪Ka¬Ka(E),
Strong Plausibility: Ua(E) =

⋂∞
n=1 (¬Ka)

n (E),
KU Introspection: KaUa(E) = ∅S(E),
AU Reflection: Ua(E) = UaUa(E),
Symmetry: Aa(E) = Aa(¬E),
A-Conjunction:

⋂
λ∈LAa (Eλ) = Aa

(⋂
λ∈LEλ

)
,

AK-Reflection: Aa(E) = AaKa(E),
Awareness Reflection: Aa(E) = AaAa(E),
Awareness Introspection: Aa(E) = KaAa(E).

The event-based approach lends itself well to study interactive reasoning about knowledge
and awareness. Common knowledge can be defined in the usual way (see Aumann [1999]). The
mutual knowledge operator on events is defined by

K(E) :=
⋂
a∈Ag

Ka(E).

The common knowledge operator on events is defined by

CK(E) :=
∞⋂
n=1

Kn(E).

Analogously we can define mutual and common awareness. The mutual awareness operator on
events is defined by

A(E) =
⋂
a∈Ag

Aa(E),

and the common awareness operator by

CA(E) =
∞⋂
n=1

(A)n (E).

Proposition 2 (Heifetz, Meier, and Schipper [2006, 2008]) The following multi-agent prop-
erties obtain: For all events E and agents a, b ∈ Ag,

1. Aa(E) = AaAb(E), 5. A(E) = CA(E),
2. Aa(E) = AaKb(E), 6. K(E) ⊆ A(E),
3. Ka(E) ⊆ AaKb(E), 7. CK(E) ⊆ CA(E),
4. A(E) = K(S(E)↑), 8. CK(S(E)↑) ⊆ CA(E).
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At this point, it may be useful to illustrate unawareness frames with our speculative trade
example:

Speculative Trade Example (continued). Consider the unawareness structure depicted
in Figure 2. There are four spaces. Space S{n,`} is the richest space in which both the lawsuit
and the innovation are expressible. Both spaces, S{n} and S{`}, are less expressive than S{n,`}.
S{n} is the space in which only the innovation is expressible while S{`} is the space in which
only the lawsuit is expressible. Finally, neither the innovation nor the lawsuit are expressible
in the lowest space, S∅. We let � be defined by S{n,`} � S{n} � S∅ and S{n,`} � S{`} � S∅.
Projections from higher to lower spaces are indicated by the grey dotted lines. For instance,
state (¬n,¬`) ∈ S{n,`} projects to (¬n) ∈ S{n}. It also projects to (¬`) ∈ S{`}. Both (¬n) ∈ S{n}
and (¬`) ∈ S{`} project to (>) ∈ S∅. The possibility correspondence is given by the blue solid
and red intermitted arrows and soft-edged rectangles for the owner and the potential buyer,
respectively. At any state in S{n,`} the owner’s possibility set is at S{`}. Thus, he is unaware of
the innovation but aware of the lawsuit. Further, the owner’s possibility set includes all states
in S{`}, which means that he does not know whether the lawsuit obtains or not. Since at every
state in S{`} the buyer’s possibility set is on S, in any state in S{`} the buyer is unaware of
the lawsuit and the owner knows that. At any state in S{n,`} the buyers’s possibility set is at
S{n}. Thus, he is unaware of the lawsuit but aware of the innovation. Further, the buyers’s
possibility includes all states in S{n}, which means that she does not know whether the lawsuit
obtains or not. Since at every state in S{n} the owner’s possibility set is on S, in any state in
S{n} the owner is unaware of the innovation and the buyer knows that. Thus, the unawareness
frame of Figure 2 models the speculative trade example.

Figure 2: An Unawareness Frame for the Speculative Trade Example

In comparison to awareness structures, we observe that the possibility correspondences
model explicit knowledge.17 In fact, together with the lattice structure, they also model aware-

17This is not to say that one couldn’t define implicit knowledge in unawareness frames. An “implicit” possibility
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ness determined by the space in which the possibility set lies. Although we used suggestive
labels such as (n, `) etc., unawareness frames are syntax-free. Finally, while the entire unaware-
ness frame is the analysts model of the situation, it contains directly the “submodels” of agents.
For instance, the sublattice consisting of the two spaces, S{`} and S∅, corresponds to the model
of the owner while the sublattice consisting of the two spaces, S{n} and S∅, is the buyer’s model.
Moreover, the sublattice S∅ is the model that both agents attribute to each other. The states
in all those spaces can be interpreted as subjective descriptions of situations in the respective
agent’s mind. �

Board, Chung, and Schipper [2011] study properties of unawareness frames in which the
possibility correspondence does not necessarily satisfy generalized reflexivity and stationarity.
In such a case of course, Truth, Positive Introspection, Negative Non-Introspection, and Weak
Negative Introspection may fail. More interestingly, KU-Introspection fails as well. This sug-
gests that unawareness may not only persist despite a strong notion of knowledge like embodied
in the properties of S5 but that it may even be enhanced by it.

Galanis [2013a] studies a variant of unawareness frames in which he drops the property
Projections Preserve Knowledge of the possibility correspondence. His motivation is to study
to what extent unawareness can constrain an agent’s knowledge and can impair her reasoning
about what other agents know.

Schipper [2014] complements unawareness frames with decision theoretic primitives like
preference relation over acts , i.e., functions from states to real numbers. This allows him
to characterize properties of the possibility correspondence by corresponding properties of a
decision maker’s preference relation. This extends the approach by Morris [1996, 1997] for
standard states-spaces to unawareness frames.

3.4 Unawareness Structures

While the event-based approach of unawareness frames is a tractable approach to modeling
nontrivial reasoning about knowledge and awareness among multiple agents, it leaves many
questions open. For instance, when introducing the event-based approach we often alluded to
intuitive explanations typeset in quotation marks that referred to “expressibility” etc. What
justifies such an interpretation? Is it possible to link formally the “expressibility” of state spaces
to the expressivity of languages? What does the expressivity of languages has to do with the
notion of awareness used in unawareness frames? We also saw that an event may obtain in
some states, its negation may obtain in others, and yet in others this event or its negation may
not even be defined. This suggests that implicitly a three-valued logic is lurking behind the
approach. Again, can we make this explicit? Moreover, Proposition 1 presents properties that
awareness and knowledge satisfy in the event-based approach. But are these all the properties?
That is, can we axiomatize the event-based approach in terms of all the properties of awareness
and knowledge? Moreover, can we guarantee that the event-based approach is comprehensive
enough so that we can model with it all situations with such properties. These questions can
be addressed by introducing a logical apparatus and constructing the canonical unawareness

correspondence could be defined from the possibility correspondence by taking the inverse images of possibility
sets in the upmost space.
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structure as done in Halpern and Rêgo [2008] and Heifetz, Meier, and Schipper [2008].

Consider the language LK,An (At) and define, as in Modica and Rustichini [1994, 1999], aware-
ness in terms of knowledge by

Aaϕ := Kaϕ ∨Ka¬Kaϕ.

With this definition, we consider the following axiom system that we call S̃5
K,A

n :

Prop. All substitutions instances of tautologies of propositional logic, including the formula >.
AS. Aa¬ϕ↔ Aaϕ (Symmetry)
AC. Aa(ϕ ∧ ψ)↔ Aaϕ ∧Aaψ (Awareness Conjunction)

AaKbR. Aaϕ↔ AaKbϕ, for all b ∈ Ag (Awareness Knowledge Reflection)
T. Kaϕ→ ϕ (Axiom of Truth)
4. Kaϕ→ KaKaϕ (Positive Introspection Axiom)

MP. From ϕ and ϕ→ ψ infer ψ (modus ponens)
RK. For all natural numbers n ≥ 1, if ϕ1, ϕ2, ..., ϕn and ϕ are such that At(ϕ) ⊆

⋃n
i=1 At(ϕi),

then ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn → ϕ implies Kaϕ1 ∧Kaϕ2 ∧ · · · ∧Kaϕn → Kaϕ. (RK-Inference)

We also define the modality Ua by Uaϕ := ¬Aaϕ read as “agent a is unaware of ϕ”.

Remark 3 (Heifetz, Meier, and Schipper [2008]) The Modica and Rustichini definition

of awareness and axiom system S̃5
K,A

n implies:

K. Kaϕ ∧Ka(ϕ→ ψ)→ Kaϕ
Kaϕ ∧Kaψ → Ka(ϕ ∧ ψ)

NNI. Uaϕ→ ¬Ka¬Ka¬Kaϕ
AI. Aaϕ→ KaAaϕ

AGPP. Aaϕ↔
∧
p∈At(ϕ)Aap

GenA. If ϕ is a theorem, then Aaϕ→ Kaϕ is a theorem.

For every At′ ⊆ At, let SAt′ be the set of maximally consistent sets ωAt′ of formulae in the
sublanguage LK,An (At′). Given a language LK,An (At′), a set of formulae Γ is consistent with respect
to an axiom system if and only if there is no formula ϕ such that both ϕ and ¬ϕ are provable
from Γ. ωAt is maximally consistent if it is consistent and for any formula ϕ ∈ LK,An (At′) \ ωAt′ ,
the set ωAt′ ∪ {ϕ} is not consistent. By standard arguments (see Chellas [1980]) one can show
that every consistent subset of LK,An (At′) can be extended to a maximally consistent subset ωAt′

of LK,An (At′). Moreover, Γ ⊆ LK,An (At′) is a maximally consistent subset of LK,An (At′) if and only
if Γ is consistent and for every ϕ ∈ LK,An (At′), ϕ ∈ Γ or ¬ϕ ∈ Γ.

Clearly, {SAt′}At′⊆At is a complete lattice of disjoint spaces by set inclusion defined on the
set of atomic formulae. Define the partial order on {SAt′}At′⊆At by SAt1 � SAt2 if and only if

At1 ⊇ At2. Let Ω :=
⋃

At′⊆At SAt′ . For any SAt1 � SAt2 , surjective projections rAt1At2
: SAt1 −→

SAt2 are defined by rAt1At2
(ω) := ω ∩ LK,An (At2).

Theorem 4 (Heifetz, Meier, and Schipper [2008]) For every ω and a ∈ Ag, the possibil-
ity correspondence defined by

Πa(ω) :=

{
ω′ ∈ Ω : For every formula ϕ,

(i) Kaϕ implies ϕ ∈ ω′, and
(ii) Aaϕ ∈ ω if and only if ϕ ∈ ω or ¬ϕ ∈ ω

}
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satisfies Confinement, Generalized Reflexivity, Projections Preserve Ignorance, and Projections
Preserve Knowledge. Moreover, for every formula ϕ, the set of states [ϕ] := {ω ∈ Ω : ϕ ∈ ω}
is a SAt(ϕ)-based event, and [¬ϕ] = ¬[ϕ], [ϕ ∧ ψ] = [ϕ] ∩ [ψ], [Kaϕ] = Ka[ϕ], [Aaϕ] = Aa[ϕ],
and [Uaϕ] = Ua[ϕ].

The canonical unawareness structure is constructed such that states are consistent and com-
prehensive descriptions, and the “internal” descriptions of the states is reflected by operations
on the events.

We can extend unawareness frames to unawareness structures by adding a valuation. An

unawareness structure M =
(
S, (rS′S )S′�S;S,S′∈S , (Πa)a∈Ag, V

)
is an unawareness frame(

S, (rS′S )S′�S;S,S′∈S , (Πa)a∈Ag

)
and a valuation V : At −→ Σ that assigns to each atomic formula

in At an event in Σ. The set V (p) is the event in which p obtains.

The satisfaction relation is defined inductively on the structure of formulae in LK,An (At)

M,ω |= >, for all ω ∈ Ω,
M,ω |= p if and only if ω ∈ V (p),
M,ω |= ϕ ∧ ψ if and only if [ϕ] ∩ [ψ],
M,ω |= ¬ϕ if and only if ω ∈ [¬ϕ],
M,ω |= Kaϕ if and only if ω ∈ Ka[ϕ],

where [ϕ] := {ω′ ∈ Ω : M,ω′ |= ϕ}, for every formula ϕ. Note that [ϕ] is an event in the
unawareness structure. Recall that Aaϕ := Kaϕ ∨ Ka¬Kaϕ. Thus, indeed the satisfaction
relation is defined for formulae in LK,An (At).

Our aim is to state a characterization of unawareness structures in terms of properties.
More precisely, we seek a complete and sound axiomatization of unawareness structures. To
this extent we need to define first the notion of validity. Recall that a formula is said to be valid
in a Kripke structure if it is true in every state. Yet, in unawareness structures, a nontrivial
formula is not even defined in all states. Thus, the definition of validity for Kripke structures
is not directly applicable to unawareness structures. But the remedy is straightforward. We
say that ϕ is defined in state ω in M if ω ∈

⋂
p∈At(ϕ) (V (p) ∪ ¬V (p)). Now, we say ϕ is valid

in M if M,ω |= ϕ for all ω in which ϕ is defined. ϕ is valid if it is valid in all M . Note that
this generalized definition of validity is identical to the notion of validity for Kripke structures
if S = {S}, i.e., if the lattice of spaces of the unawareness structure is a singleton and thus the
unawareness structure is a Kripke structure. The notions of soundness and completeness are
now defined analogous to Kripke structures but using the generalized definition of validity.

Theorem 5 (Heifetz, Meier, and Schipper [2008]) For the language LK,An (At), the axiom

system S̃5
K,A

n is a sound and complete axiomatization with respect to unawareness structures.

Halpern and Rêgo [2008] present an alternative axiomatization of unawareness structures
in which they extend the language by adding a non-standard implication operator. Recall
that in an unawareness structure a formula may not be defined at every state. Implicitly,
the non-standard implication operator combines standard implication with an “at least as
defined” relation on formulae. That is, formula ϕ implies (non-standardly) ψ is valid only if
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ψ is true whenever ϕ is true and ψ is “at least as defined as” ϕ. Then they are able to define
a satisfaction relation such that every formula in the extended language is defined in every
state across all spaces. In such a setting, one can apply directly the definition of validity as for
Kripke structures. The authors axiomatize propositional logic with respect to the non-standard
implication operator. Then they axiomatize unawareness structures by an axiom system that
is similar to S5 but makes use of the non-standard implication operator. Halpern and Rêgo
[2008] prove also analogous axiomatizations of unawareness structures in which the possibility
correspondence does not necessarily satisfy generalized reflexivity and stationarity.

How are unawareness structures related to awareness structures introduced earlier? It turns
out that despite the differences in motivation, their semantics are equivalent in terms of ex-
pressibility. That is, everything that can be described about awareness and knowledge in one
structure can be described in the other structure and vice versa. More formally, letMHMS(At)
be the class of unawareness structures over At.

Theorem 6 (Halpern and Rêgo [2008]) For any partitional awareness structure
M = (Ω, (Ra)a∈Ag, (Aa)a∈Ag, V ) ∈MFH(At) in which awareness is propositionally determined,

there exists an unawareness structure M ′ = (Ω′, (Πa)a∈Ag, (r
At1
At2

)At1,At2⊆At, V
′) ∈ MHMS(At)

such that Ω′ := Ω × 2At, SAt1 = Ω × {At1} for all At1 ⊆ At, and for all ϕ ∈ LKn (At), if
At(ϕ) ⊆ At1, then M,ω |= ϕ if and only if M ′, (ω,At1) |= ϕ.

Conversely, for every unawareness structure M = (Ω, (Πa)a∈Ag, (r
At1
At2

)At1,At2⊆At, V ) ∈MHMS(At),

there exists a partitional awareness structure M ′ = (Ω, (Ra)a∈Ag, (Aa)a∈Ag, V ′) ∈ MFH(At) in
which awareness is propositionally determined such that for all ϕ ∈ LKn (At), if ω ∈ SAt1 and
At(ϕ) ⊆ At1, then (M,ω) |= ϕ if and only if (M ′, ω) |= ϕ.

The proof is by induction on the structure of ϕ. Halpern and Rêgo [2008] also prove versions
of the result for unawareness structures with possibility correspondences (and awareness struc-
tures with accessibility relations, respectively) that not necessarily satisfy generalized reflexivity
and stationary (reflexivity, transitivity, and Euclideanness, respectively).

The previous result implies alternative axiomatizations:

Corollary 1 For the language LK,An (At), the axiom system S5K,An is a sound and complete
axiomatization with respect to unawareness structures. For the language LK,An (At), the axiom

system S̃5
K,A

n is a sound and complete axiomatization with respect to partitional awareness
structures in which awareness is propositionally determined.

As mentioned previously, Galanis [2013a] studies a variant of unawareness frames in which he
drops the property Projections Preserve Knowledge of the possibility correspondence. Galanis
[2011] axiomatizes his variant of unawareness structures with multiple knowledge modalities,
one for each sub-language.

3.5 Generalized Standard Models by Modica and Rustichini [1999]

Modica and Rustichini [1999] were the first economists to present a semantics for propositionally
determined awareness and partitional knowledge in the case of a single agent. In retrospect

23



we can understand unawareness structures introduced in the previous section as a multi-agent
generalization of Modica and Rustichini [1999]. The exposition here follows mostly Halpern
[2001].

A generalized standard model M = (S,Ω, ρ,Π, V ) over At consists of a space of objective
states S and a collection of nonempty disjoint subjective state spaces {S̃At′}At′⊆At with Ω :=⋃

At′⊆At S̃At′ . Ω and S are disjoint. Further, there is a surjective projection ρ : S −→ Ω.

Moreover, the agent has a generalized Π : S −→ 2Ω that satisfies:

Generalized Reflexivity: if s ∈ S, then Π(s) ⊆ S̃At′ for some At′ ⊆ At,
Stationarity: ρ(s) = ρ(t), then Π(s) = Π(t).

Finally, there is a valuation V : At −→ 2S such that if ρ(s) = ρ(t) ∈ S̃At′ then for all p ∈ At′

either s, t ∈ V (p) or s, t /∈ V (p).

Intuitively, the states in the subjective state-space S̃At′ describe situations conceivable by
an agent who is aware of atomic formulae in At′ only. Generalized reflexivity confines in each
objective situation the perception of the agent to subjective situations that are all described
with same “vocabulary”. Stationarity means that the agents’ perception depends only on her
subjective states and summarizes transitivity and Euclideanness of the possibility correspon-
dence.

Two caveats are to note: First, it is a single-agent structure. It is not immediate how to
extent generalized standard models to a multi-agent setting. If we add additional possibility
correspondences, one for each agent, then agents could reason about each other’s knowledge
but presumably only at the same awareness level. At state s ∈ S, agent a may know that agent
b does not know the event E ⊆ S̃At′ . But since at every state in S̃At′ , agent b’s possibility set
must be a subset of S̃At′ as well, agent a is forced to know that b is aware of E. This is avoided
in unawareness frames of Section 3.3 where at s̃ ∈ S̃At′ , agent b’s possibility set may be a subset
of states in yet a lower space S̃At′′ with At′′ $ At′. Generalized standard models are limited to
the single-agent case. Yet, unawareness is especially interesting in interactive settings, where
different agents may have different awareness and knowledge, and reason about each others
awareness and knowledge.

Second, the condition on the valuation, if ρ(s) = ρ(t) ∈ S̃At′ then for all p ∈ At′ either
s, t ∈ V (p) or s, t /∈ V (p), is also a condition on the projection ρ. Deleting the valuation does
not yield straightforwardly an event-based approach or frame similar to Aumann structures,
but one would need to add instead conditions on the projections.

We extend Π to a correspondence defined on the domain S ∪ Ω by if s̃ ∈ Ω and s̃ = ρ(s),
then define Π(s̃) = Π(s). This extension is well-defined by stationarity. A generalized standard
model is said to be partitional if Π restricted to Ω is partitional. We also extend V to a valuation

having the range S ∪ Ω by defining Ṽ (p) = V (p) ∪
⋃

At′⊆At

{
s̃ ∈ S̃At′ : p ∈ At′, ρ−1(s̃) ⊆ V (p)

}
.

For ω ∈ S∪Ω, we define inductively on the structure of formulae in LK,A1 (At) the satisfaction
relation

M,ω |= >, for all ω ∈ Ω,
M,ω |= p if and only if ω ∈ Ṽ (p),
M,ω |= ϕ ∧ ψ if and only if both M,ω |= ϕ and M,ω |= ψ,
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M,ω |= ¬ϕ if and only if M,ω 6|= ϕ and either ω ∈ S or ω ∈ S̃At′ and ϕ ∈ LK,A1 (At′),
M,ω |= Kϕ if and only if M,ω′ |= ϕ for all ω′ ∈ Π(ω).

Recall that Modica and Rustichini [1994, 1999] define Aϕ := Kϕ ∨K¬Kϕ. Thus, indeed the
satisfaction relation is defined for formulae in LK,A1 (At).

At this point, it may be useful to illustrate generalized standard models with our speculative
trade example. Yet, since generalized standard models are defined for a single agent only, we
cannot model the speculative trade example. While we could construct a separate generalized
standard model for each of the agents, these models could not model the agent’s reasoning
about the other agent’s awareness and knowledge. For instance, the sublattice consisting of the
two spaces S{n,`} and S{`} in Figure 2 can be viewed as a generalized standard model of the
owner.

To prove a characterization of generalized standard models in terms of properties of knowl-
edge and awareness, we need to define validity. Recall that a formula is said to be valid in a
Kripke structure if it is true in every state. Modica and Rustichini [1999] restrict the notion
of validity to objective states in S only. We say ϕ is objectively valid in M if M,ω |= ϕ for
all ω ∈ S. The notions of soundness and completeness are now defined analogous to Kripke
structures but using the notion of objective validity.

Modica and Rustichini [1999] consider the following axiom system that they call U.

Prop. All substitutions instances of tautologies of propositional logic, including the formula >.
AS. A¬ϕ↔ Aϕ (Symmetry)
AC. A(ϕ ∧ ψ)→ Aϕ ∧Aψ

T. Kϕ→ ϕ (Axiom of Truth)
4. Kϕ→ KKϕ (Positive Introspection Axiom)

MP. From ϕ and ϕ→ ψ infer ψ (modus ponens)
M, C. K(ϕ ∧ ψ)↔ Kϕ ∧Kψ (Distribution)

N. K>
RKsa. From ϕ↔ ψ infer Kϕ↔ Kψ, where ϕ and ψ are such that At(ϕ) = At(ψ).

Theorem 7 (Modica and Rustichini [1999]) The axiom system U is a complete and sound
axiomatization of objective validity for the language LK,A1 (At) with respect to partitional gener-
alized standard models.

When we restrict partitional awareness structures that are propositionally determined to a
single-agent, then those awareness structures and generalized standard structures are equally
expressive. Everything that can be described about awareness and knowledge in a generalized
standard model can be described in partitional awareness structures in which awareness is
propositionally determined. LetMMR(At) be the class of generalized standard models over At.

Theorem 8 (Halpern [2001]) For any partitional awareness structure M = (S,R,A, V ) ∈
MFH(At) in which awareness is propositionally determined, there exists a generalized standard
model M ′ = (S,Ω,Π, ρ, V ′) ∈ MMR(At) such that for all formulae ϕ ∈ LK1 (At), M, s |= ϕ if
and only if M ′, s |= ϕ.
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Conversely, for every generalized standard model M = (S,Ω,Π, ρ, V ) ∈ MMR(At), there
exists a partitional awareness structure M ′ = (S,R,A, V ′) ∈ MFH(At) in which awareness is
propositionally determined such that for all ϕ ∈ LK1 (At), M, s |= ϕ if and only if M ′, s |= ϕ.

Halpern [2001] proves also analogous results for generalized standard models (awareness
structures, respectively) for which generalized reflexivity and stationarity (reflexivity, transitiv-
ity, and Euclideaness) may fail.

3.6 Product Models by Li [2009]

Li [2009] introduces what she calls product models by starting with a subset of questions about
the relevant aspects of the world that can be answered either in the affirmative or negative.
Awareness then differs by the subset of questions the agent has in mind. Such an approach to
awareness is quite natural since lacking conception of some aspects of the world implies that
one is not even able to ask questions about these aspects. In what follows, we slightly depart
from her original exposition for better comparison.

Her original model was stated for a single agent only. The extension to the multi-agent
setting is non-trivial (see Li [2008a]). We focus on the single-agent case but will consider
the multi-agent case in the speculative trade example below. The primitives of the product
model M = (Q∗,Ω∗,A, P ) are a set of questions Q∗ and a space of objective states Ω∗ :=∏
q∈Q∗{1q, 0q}. Each state is a profile of zeros and ones; each component corresponding to a

question in Q∗. The question is answered in the affirmative if the component corresponding to
it is one. Further, an awareness correspondence A : Ω∗ −→ 2Q

∗
assigns to each state a subset

of questions that the agent is aware of at that state. Finally, a possibility correspondence
P : Ω∗ −→ 2Ω∗ \ {∅} assigns to each state a subset of states that the agent implicitly considers
possible. We assume

Reflexivity: ω∗ ∈ P (ω∗) for all ω∗ ∈ Ω∗.
Stationarity: For all ω∗1, ω

∗
2 ∈ Ω∗, ω∗1 ∈ P (ω∗2) implies both P (ω∗1) = P (ω∗2) and A(ω∗1) =

A(ω∗2).

For Q ⊆ Q∗, let ΩQ =
∏
q∈Q{1q, 0q} denote the state space in which states contain answers

to questions in the subset Q only. Using the awareness correspondence, the subjective state-
space of the agent at ω∗ ∈ Ω∗ is ΩA(ω∗).

Let ? :
⋃
Q⊆Q∗ 2ΩQ −→ 2Q

∗
denote the correspondence that assigns to each subset of each

state space the set of questions that define the space. That is, if E ⊆ ΩQ, then ?(E) = Q.

For Q ⊆ Q∗, denote by rQ : Ω∗ −→ ΩQ the surjective projection. If E ⊆ ΩQ, denote
by E∗ = r−1

Q (E) the set of objective states in Ω∗ that project to E, i.e., the inverse image
of E in Ω∗. An event is a pair E = (E∗, ?(E)). We define ¬E := (¬E∗, ?(E)), E1 ∧ E2 :=
(E∗1 ∩ E∗2 , ?(E1)∪?(E2)). Disjunction is defined by the De Morgan law using negation and
conjunction as just defined. Note that there are many vacuous events ∅Q := ¬ΩQ, Q ⊆ Q∗, one
for each subset of questions.

The unawareness operator is defined by

U(E) = {ω∗ ∈ Ω∗ : ?(E) * A(ω∗)}.
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The awareness operator is defined by A(E) := ¬U(E). Note that for every event E, the U(E)
and A(E) are subsets of the objective space. Thus, they capture an agent’s reasoning about
awareness from an outside modeler’s point of view.

There are two knowledge operators. As our notation suggests, “objective knowledge” in Li
[2009] is best understood as implicit knowledge

L(E) := {ω∗ ∈ Ω∗ : P (ω∗) ⊆ E∗}.

The second knowledge operator refers to “subjective knowledge from the modeler’s perspective”.
Although Li [2009] states it differently, it is equivalent to explicit knowledge

K(E) := L(E) ∩A(E).

Note however, that both L(E) and K(E) are subsets of the objective state-space and therefore
not necessarily “accessible” to the agent. As remedy, Li [2009] also defines a subjective possibil-
ity correspondence and uses it to define a knowledge operator reflecting “subjective knowledge
from the agent’s perspective” (see also Heinsalu [2012]). Yet, since she states her results in
terms of implicit and explicit knowledge, we focus on implicit and explicit knowledge only but
will illustrate also the subjective versions in the speculative trade example below.

Proposition 4 (Li [2009]) For the product model, the following properties obtain for any
events E,E1, E2 and ω∗ ∈ Ω∗,

Subjective Necessitation: ω∗ ∈ K(Ω(ω∗)),
Distribution: K(E1) ∩K(E2) = K(E1 ∧ E2),
Monotonicity: E∗1 ⊆ E∗2 and ?(E1) ⊇ ?(E2) implies K(E1) ⊆ K(E2),
Truth: K(E) ⊆ E∗,
Positive Introspection: K(E) ⊆ KK(E),
Weak Negative Introspection: ¬K(E) ∩A(E) = K¬K(E),
MR Awareness: A(E) = K(E) ∪K¬K(E),
Strong Plausibility: U(E) =

⋂∞
n=1(¬K)n(E),

KU Introspection: KU(E) = ∅Q∗,
AU Reflection: U(E) = UU(E),
Symmetry: A(E) = A(¬E).

The proof follows from definitions and properties of the possibility correspondence.

At this point, it may be instructive to consider as an illustration the speculative trade ex-
ample.

Speculative Trade Example (continued). Li [2009] introduces the product model for
a single agent only. Thus, we cannot use it to model the speculative trade example. Yet,
in an unpublished paper, Li [2008a] presents a multi-agent extension. We will illustrate the
multi-agent extension with the speculative trade example. The set of questions is {n, `}, where
we let n and ` stand for the questions “Is the innovation true?” and “Is the lawsuit true?”,
respectively. The objective state space is Ω∗ = Ω{n,`} = {1n, 0n}×{1`, 0`}; the upmost space in
Figure 3. For instance, at the state (1n, 0`) the question “Is the innovation true?” is answered in
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Figure 3: A Product Model for the Speculative Trade Example

the affirmative, “The innovation is true.”, while the question “Is the lawsuit true?” is answered
in the negative, “The lawsuit is not true.”

The awareness correspondences are indicated in Figure 3 by “speech bubbles” above each
state. The solid blue speech bubbles belong to the owner, while the intermitted red speech
bubbles are the buyer’s. Both awareness correspondences are very special as they are constant
on Ω∗. At every state Ω∗, the owner is aware only of questions involving the lawsuit while the
buyer is only aware of questions involving the innovation. The possibility correspondences are
indicated in Figure 3 by the solid blue and intermitted red soft-edged rectangles for the owner
and buyer, respectively. Again, the possibility correspondences are very special in this example
as no agent can distinguish any objective states in Ω∗.

Given the awareness correspondences defined on the set of objective states Ω∗, we can
construct the subjective state spaces of both agents by considering for each agent only the
questions of which he is aware. At every state in Ω∗, the buyer’s subjective state space is the
space to the left, Ωb(Ω

∗), while the owner’s subjective state space is the space to the right,
Ωo(Ω

∗). So far, these are all the primitives of the product model. Li [2008a, 2009] also defines
subjective versions of the awareness and possibility correspondences that do not play a role in her
result (Proposition 4), but that are useful for modeling the example. To define the subjective
awareness correspondence on Ωb(Ω

∗), we extend the objective awareness correspondence on
Ω∗ to the subjective states in Ωb(Ω

∗) and Ωo(Ω
∗) by restricting the awareness sets at the

subjective states to questions available at those subjective states, respectively.18 Similarly,

18Note that, for instance, the owner’s awareness correspondence on Ωb(Ω
∗) cannot really be interpreted as the

owner’s subjective awareness correspondence but rather as the owner’s awareness correspondence as perceived
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we can extend the objective possibility correspondences defined on Ω∗ to subjective states by
taking the projections to Ωb(Ω

∗) and Ωo(Ω
∗), respectively.

The subjective awareness correspondences allow us to defined another subjective state space
shown as the lowest space in Figure 3. At every state in Ωb(Ω

∗), the owner is unaware of the
innovation (and the lawsuit), hence his subjective state space (in the eyes of the buyer) is
Ωo(Ωb(Ω

∗)). Similarly, at every state in the owner’s subjective state space Ωo(Ω
∗), the buyer

is unaware of the lawsuit (and the innovation); thus his subjective state space (in the eyes of
the owner) is Ωb(Ωo(Ω

∗). Both spaces are defined from an empty set of questions. They are
identical and singleton. Again, we can extend the awareness and possibility correspondences to
the lowest space as outlined above.

This example illustrates the multi-agent product model of Li [2008a]. As it should be clear
by now, it models the introductory example of speculative trade. Moreover, it suggests that
Li’s model bears features both of awareness structures by Fagin and Halpern [1988] and un-
awareness frames by Heifetz, Meier, and Schipper [2006]. First, with awareness structures it has
in common that awareness is modeled separately with an awareness correspondence although
questions are used as primitive instead atomic formulae. Since one can define a one-to-one re-
lation between questions and atomic formulae, the upmost space is analogous to the awareness
structure depicted in Figure 1. We will use this relationship more generally in the discussion
below. Second, we see clearly that the possibility correspondence models implicit knowledge
and not necessarily explicit knowledge. For instance, the possibility sets on the objective space
Ω∗ and the owner’s (the buyer’s, resp.) possibility sets on Ωb(Ω

∗) (on Ωo(Ω
∗), respectively) can

be understood only in terms of implicit knowledge. With unawareness frames it has in common
the idea of subjective states and the lattice structure. �

The following discussion is confined to the single-agent product model of Li [2009]. The
exposition follows mostly Heinsalu [2012]. Li [2009] does not present an axiomatization of
product models. The product model is analogous to a frame but with an additional set of
questions as a primitive. In order to extend it to a structure, we need to relate questions to
formulae and introduce a valuation. Let b : Q∗ −→ At be a bijection. For every question q ∈ Q∗
there is exactly one primitive proposition p such that b(q) = p. The bijection is interpreted as
assigning to each question q ∈ Q∗ exactly one primitive proposition p ∈ At that stands for “q
is answered affirmatively” and q stands for “Is p true?”. We can consider now the language
LL,K,A1 (b(Q∗)).

A valuation V : b(Q∗) −→ 2Ω∗ is defined by V (p) = {ω∗ ∈ Ω∗ : r{b−1(p)}(ω
∗) = 1}. The

corresponding subjective event is [p] = (V (p), {b−1(p)}). Note [p]∗ = V (p). The satisfaction
relation is defined by induction on the structure of formulae:

M,ω∗ |= p if and only if ω∗ ∈ V (p),
M,ω∗ |= ¬ϕ if and only if ω∗ ∈ ¬[ϕ]∗,
M,ω∗ |= ϕ ∧ ψ if and only if ω∗ ∈ [ϕ]∗ ∧ [ψ]∗,
M,ω∗ |= Aϕ if and only if ω∗ ∈ A[ϕ],
M,ω∗ |= Lϕ if and only if ω∗ ∈ L[ϕ],
M,ω∗ |= Kϕ if and only if ω∗ ∈ K[ϕ].

by the buyer.
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Note that the satisfaction relation is defined only for objective states in Ω∗. Thus, similar
to Modica and Rustichini [1999] the setting so far allows for a notion of objective validity only.
We can relate product models to structures discussed in the previous sections. LetMLi denote
the class of product models over the set of questions Q∗.

Theorem 9 (Heinsalu [2012]) For any partitional awareness structure M = (S,R,A, V ) ∈
MFH(At) in which awareness is generated by primitive propositions there is a product model
M = (b−1(At), S, P,A′, V ′) ∈ MLi with A′ := b−1 ◦ A such that for any ϕ ∈ LL,K,A1 (At),
M, s |= ϕ if and only if M ′, s |= ϕ.

Conversely, for every product model M = (Q∗,Ω∗, P,A) ∈MLi there is a partitional aware-
ness structure M ′ = (Ω∗, R,A′, V ′) ∈MFH(b(Q∗)) in which awareness is generated by primitive
propositions such that for any ϕ ∈ LL,K,A1 (b(Q∗)), M,ω∗ |= ϕ if and only if M ′, ω∗ |= ϕ.

Heinsalu [2012] proves the theorem for product models (awareness structures, respectively)
for which reflexivity and stationarity (reflexivity, transitivity, and Euclideaness) may fail. But it
is straightforward to extend it to any corresponding subset of those properties. The relationship
between the multi-agent extension of the product model by Li [2008a] and the rest of the
literature is still open.

3.7 Synopsis of Other Approaches: Pires [1994], Ewerhart [2001], and Fein-
berg [2004, 2005, 2012]

Around the same time as Modica and Rustichini published the first paper on awareness in
economics (Modica and Rustichini [1994]), Pires finished her doctoral dissertation in economics
at MIT with an unpublished chapter on awareness that unfortunately has been ignored in
the literature so far. Pires [1994] presents a model of non-trivial awareness for a single-agent
that essentially captures awareness generated by primitive propositions. She already considers
weak negative introspection, weak necessitation, and plausibility as properties of awareness
and knowledge. Although she introduces both a logic and a state-space semantics, she has no
soundness or completeness result. She also anticipates modeling awareness of unawareness very
much in the spirit of later works by Ågotnes and N. [2007] and Walker [2014]. Finally, she
studies updating of awareness as refinements of conceivable states.

Ewerhart [2001] introduces a state-space model in which at each state an agent may only be
aware of a subset of states. But since no special event structure is assumed, an agent may be
aware of an event but unaware of its complement or vise versa, thus violating symmetry. Ewer-
hart [2001] considers both implicit and explicit knowledge and the model satisfies, for instance,
weak negative introspection with respect to explicit knowledge but not weak necessitation.
Under an additional richness assumption, it satisfies KU-introspection and AU-introspection,
strong plausibility with “⊆” but not the Modica-Rustichini definition of awareness unless un-
awareness is trivial. He proves a generalization of Aumann’s “No-agreeing-to-disagree” theorem
for his models with unawareness.

Feinberg [2004, 2005, 2012] provides different versions of an approach that models interactive
awareness of components of games by explicit unbounded sequences of mutual views of players.
Among the properties imposed on awareness is that (1) if a player is aware of what an opponent
is aware of, then the player herself is also aware of it, and (2), if a player (“she”) is aware that an
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opponent (“he”) is aware of something, then she is also aware that the opponent is aware that he
is aware of it. These two properties are satisfied also by the notion of propositionally determined
awareness discussed earlier. Yet, the precise connection between Feinberg’s approach and the
rest of the literature is still open.

4 Awareness and Probabilistic Beliefs

4.1 Type Spaces with Unawareness

Models of unawareness are mostly applied in strategic contexts when agents are players in a
game and have to take decisions that are rational/optimal with respect to their state of mind. In
such situations, it is extremely helpful for players to judge uncertain events probabilistically. To
model such agents, we need to replace the qualitative notions of knowledge or belief discussed
until now by the quantitative notion of probabilistic beliefs. In standard game theory with
incomplete information, this is done with Harsanyi type spaces (Harsanyi [1967/68]). Type
spaces do not just model in a parsimonious way a player’s belief about some basic uncertain
events but also their beliefs about other players’ beliefs, beliefs about that, and so on. That is,
they model infinite hierarchies of beliefs. Under unawareness, the problem is complicated by
the fact that agents may also be unaware of different events and may form beliefs about other
players’ unawareness, their belief about other players’ beliefs about unawareness, etc. Com-
bining ideas from unawareness frames and Harsanyi type spaces, Heifetz, Meier, and Schipper

[2013a] define an unawareness type space
(
S, (rS′S )S′�S;S,S′∈S , (ta)a∈Ag

)
by a complete lattice

of disjoint measurable spaces S = {Sα}α∈A, each with a σ-field FS , and measurable surjective

projections (rS
′

S )S′�S;S,S′∈S . Let ∆(S) be the set of probability measures on (S,FS). We con-
sider this set itself as a measurable space endowed with the σ-field F∆(S) generated by the sets
{µ ∈ ∆(S) : µ(D) ≥ p}, where D ∈ FS and p ∈ [0, 1].

For a probability measure µ ∈ ∆(S′), the marginal µ|S of µ on S � S′ is defined by

µ|S(D) := µ

((
rS
′

S

)−1
(D)

)
, D ∈ FS .

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E), we abuse
notation slightly and write

µ(E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

For each agent a ∈ Ag, there is a type mapping ta : Ω −→
⋃
α∈A∆ (Sα), which is measurable

in the sense that for every S ∈ S and Q ∈ F∆(S) we require t−1
a (Q) ∩ S ∈ FS . Analogous to

properties of the possibility correspondence in unawareness frames, the type mapping ta should
satisfy the following properties:19

Confinement: If ω ∈ S′ then ta(ω) ∈ 4(S) for some S � S′.

19Heifetz, Meier, and Schipper [2013a] introduce also an additional property and show that it is implied by
the other properties.
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(2) If S
′′ � S′ � S, ω ∈ S′′ , and ta(ω) ∈ 4(S′) then ta(ωS) = ta(ω)|S .

(3) If S
′′ � S′ � S, ω ∈ S′′ , and ta(ωS′) ∈ 4(S) then Sta(ω) � S.

ta(ω) represents agent a’s belief at state ω. The properties guarantee the consistent fit of
beliefs and awareness at different state spaces. Confinement means that at any given state ω ∈ Ω
an agent’s belief is concentrated on states that are all described with the same “vocabulary” -
the “vocabulary” available to the agent at ω. This “vocabulary” may be less expressive than
the “vocabulary” used to describe statements in the state ω.

Properties (2) and (3) compare the types of an agent in a state ω ∈ S′ and its projection
to ωS , for some S � S′. Property (2) means that at the projected state ωS the agent believes
everything she believes at ω given that she is aware of it at ωS . Property (3) means that at ω
an agent cannot be unaware of an event that she is aware of at the projected state ωS′ .

Define the set of states at which agent a’s type or the marginal thereof coincides with her

type at ω by Bena(ω) :=
{
ω′ ∈ Ω : ta(ω

′)|Sta(ω) = ta(ω)
}

. This is an event of the unawareness-

belief frame although it may not be a measurable event (even in a standard type-space). It is
assumed that if Bena(ω) ⊆ E, for an event E, then ta(ω)(E) = 1. This assumption implies
introspection with respect to beliefs.

For agent a ∈ Ag and an (not necessarily measurable) event E, define the awareness operator
by

Aa(E) := {ω ∈ Ω : ta(ω) ∈ ∆(S), S � S(E)}

if there is a state ω such that ta(ω) ∈ ∆(S) with S � S(E), and by Aa(E) := ∅S(E) otherwise.
This is analogous to awareness in unawareness frames.

For each agent a ∈ Ag, p ∈ [0, 1], and measurable event E, the probability-of-at-least-p-belief
operator is defined as usual (see for instance Monderer and Samet [1989]) by

Bp
a(E) := {ω ∈ Ω : ta(ω)(E) ≥ p},

if there is a state ω such that ta(ω)(E) ≥ p, and by Bp
a(E) := ∅S(E) otherwise.

Lemma 3 If E is an event, then both Aa(E) and Bp
a(E) are S(E)-based events.

The proof follows from the properties of the type mapping and the definitions.

The unawareness operator is defined by Ua(E) := ¬Aa(E).

Let Ag be an at most countable set of agents. Interactive beliefs are defined as usual
(e.g. Monderer and Samet [1989]). The mutual p-belief operator Bp is defined analogously to
the mutual knowledge operator in Section 3.3 with Ka replaced by Ba. The common certainty
operator CB1 is defined analogously to the the common knowledge operator but with K replaced
B1.

Proposition 5 (Heifetz, Meier, and Schipper [2013a]) Let E and F be events, {El}l=1,2,...

be an at most countable collection of events, and p, q ∈ [0, 1]. The following properties of belief
obtain:

(o) Bp
a(E) ⊆ Bq

a(E), for q ≤ p,
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(i) Necessitation: B1
a(Ω) = Ω,

(ii) Additivity: Bp
a(E) ⊆ ¬Bq

a(¬E), for p+ q > 1,
(iiia) Bp

a (
⋂∞
l=1El) ⊆

⋂∞
l=1 B

p
a(El),

(iiib) for any decreasing sequence of events {El}∞l=1, Bp
a (
⋂∞
l=1El) =

⋂∞
l=1 B

p
a(El),

(iiic) B1
a (
⋂∞
l=1El) =

⋂∞
l=1 B

1
a(El),

(iv) Monotonicity: E ⊆ F implies Bp
a(E) ⊆ Bp

a(F ),
(va) Introspection: Bp

a (E) ⊆ B1
aB

p
a (E),

(vb) Introspection II: Bp
aB

q
a (E) ⊆ Bq

a (E), for p > 0.

Proposition 6 (Heifetz, Meier, and Schipper [2013a]) Let E be an event and p, q ∈ [0, 1].
The following properties of awareness and belief obtain:

1. Plausibility: Ua(E) ⊆ ¬Bp
a(E) ∩ ¬Bp

a¬Bp
a(E),

2. Strong Plausibility: Ua(E) ⊆
⋂∞
n=1 (¬Bp

a)
n

(E),
3. Bp U Introspection: Bp

aUa(E) = ∅S(E) for p ∈ (0, 1] and B0
aUa(E) = Aa(E),

4. AU Reflection: Ua(E) = UaUa(E),
5. Weak Necessitation: Aa(E) = B1

a

(
S(E)↑

)
,

6. Bp
a(E) ⊆ Aa(E) and B0

a(E) = Aa(E),
7. Bp

a(E) ⊆ AaB
q
a(E),

8. Symmetry: Aa(E) = Aa(¬E),
9. A Conjunction:

⋂
λ∈LAa (Eλ) = Aa

(⋂
λ∈LEλ

)
,

10. ABp Reflection: AaB
p
a(E) = Aa(E),

11. Awareness Reflection: AaAa(E) = Aa(E), and
12. Bp

aAa(E) = Aa(E).

Proposition 7 (Heifetz, Meier, and Schipper [2013a]) Let E be an event and p, q ∈ [0, 1].
The following multi-person properties obtain:

1. Aa(E) = AaAb(E), 7.
Bp(E) ⊆ CA(E),
B0(E) = CA(E),

2. Aa(E) = AaB
p
b(E), 8.

Bp(E) ⊆ A(E),
B0(E) = A(E),

3. Bp
a(E) ⊆ AaB

q
b(E), 9. A(E) = B1(S(E)↑),

4. Bp
a(E) ⊆ AaAb(E), 10. CA(E) = B1(S(E)↑),

5. CA(E) = A(E), 11. CB1(S(E)↑) ⊆ A(E),
6. CB1(E) ⊆ CA(E), 12. CB1(S(E)↑) ⊆ CA(E),

We conclude that unawareness type spaces are the probabilistic analogue to unawareness
frames.

4.2 Universal Type Space with Unawareness

Unawareness type spaces capture unawareness and beliefs, beliefs about beliefs (including be-
liefs about unawareness), beliefs about that and so on in a parsimonious way familiar from
standard type spaces. That is, hierarchies of beliefs are captured implicitly by states and type
mappings. This begs two questions: First, can we construct unawareness type spaces from
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explicit hierarchies of beliefs? Such a construction, if possible, is complicated by the multiple
awareness levels involved. Player 1 with a certain awareness level may believe that player 2 has
a lower awareness level. Moreover, he may believe that player 2 believes that player 1 has yet
an even lower awareness level, etc. The second question that arises is whether there exists a
universal unawareness type space in the sense that every hierarchy of beliefs is represented in
it. In using such a universal type space for an application, the modeler ensures that she can
analyze any hierarchy of beliefs. For standard type spaces these questions have been answered
by Mertens and Zamir [1985] for the case when the space of underlying uncertainties is com-
pact Hausdorff and beliefs are regular probability measures. Heifetz and Samet [1998] drop
the topological assumptions and assume instead that the space of underlying uncertainties is
measurable. This latter result has been generalized and reformulated in a category theoretic
setting by Moss and Viglizzo [2004], who show a connection to coalgebraic modal logic .

Similar approaches can be taken for unawareness type spaces. Heifetz, Meier, and Schipper
[2012] present the hierarchical construction and show the existence of a universal unawareness
type space analogous to Mertens and Zamir [1985]. The advantage of the topological case over
the measure theoretic case is that it is constructive. This is especially helpful for unaware-
ness where hierarchies of beliefs are complicated by the presence of multiple awareness levels.
Heinsalu proved independently the measurable case (see also Pinter and Udvari [2012]).

The presentation of unawareness type spaces is somewhat divorced from awareness struc-
tures and unawareness structures presented earlier. Those structures we could axiomatize. We
could describe in minute detail knowledge and awareness of all agents in each state. While
the hierarchical construction of unawareness type spaces by Heifetz, Meier, and Schipper [2012]
retains the flavor of explicit descriptions of beliefs, it begs the question of whether unawareness
type spaces could be axiomatized using a logic with modal operators pµa interpreted as “agent a
assigns probability at least µ”, for rational numbers µ ∈ [0, 1]. That is, can we axiomatize the
probabilistic analogue of awareness structures or unawareness structures? Fagin, Halpern, and
Meggido [1990] and Heifetz and Mongin [2001] axiomatized the class of standard type spaces
without unawareness. But they do so in terms of a purely finitary logic that won’t allow for
strong soundness and strong completeness. Meier [2012] circumvents the problem and devises
an infinitary axiom system that he shows to be strongly sound and strongly complete for stan-
dard type spaces without unawareness. Sadzik [2007] presents extensions of both awareness
and unawareness structures to the probabilistic cases and provides axiomatizations. In a recent
paper, Cozic [2012] also extends Heifetz and Mongin [2001] to the case of unawareness of a
single-agent analogous to generalized standard structures of Modica and Rustichini [1999]. An
extension of Meier [2012] to unawareness and to multi-agent settings with unawareness is still
open.

4.3 Speculative Trade and Agreement

In this section we revisit the speculative trade example discussed earlier. Unawareness type
spaces allow us now to provide an answer to the question posed in the introduction, namely
whether at a price of $100 per share the owner is going to sell to the buyer. If this question
is answered in the affirmative, then under unawareness we have a counterexample to the “No-
speculative-trade” for standard structures (e.g. Milgrom and Stokey [1982]), thus illustrating
that asymmetric awareness may have different implications from asymmetric (standard) infor-

34



mation. In standard structures, if there is a common prior probability (i.e., common among
agents), then common certainty of willingness to trade implies that agents are indifferent to
trade. To address how our example fits to the “No-speculative-trade” theorems, we need to
recast it into an unawareness type space with a common prior. This is illustrated in Figure 4.

Figure 4: An Unawareness Type Space with a Common Prior for the Speculative Trade Example

The type-mappings are represented in Figure 4 as follows. At any state in the upmost space
S{n,`}, the buyer’s belief has full support on the left space S{n} given by the red intermitted
soft-edged rectangle and the owner’s belief has full support on S{`} given by the solid blue
soft-edge rectangle. At any state in S{n} the owner’s belief has full support on the lowest space
S∅. Analogously, the owner is certain that the buyer is unaware of the law suit since at any
state in S{`} the belief of the buyer has full support on the space S∅. This example is analogous
to Figure 2 except that the supports of types are displayed rather the possibility sets and we
write to the left of each state its common prior probability as well. For instance, state (n, `)
has common prior probability 1

4 . We see that, for instance, the common prior on Sn is the
marginal of the common prior on S{n,`}. Indeed, the common prior in unawareness type spaces
generally constitutes a projective system of probability measures. Both agents’ beliefs are
consistent with the common prior. Of course, referring to a “prior” is misleading terminology
under unawareness as it is nonsensical to think of a prior stage at which all agents are aware of
all states while at the interim stage, after they received their type, they are unaware of some
events. Rather than understanding the prior as a primitive of the model, it should be considered
as derived from the types of players. As in standard structures (see for instance Samet [1999]),
it is a convex combination of types (for the definition and discussion of the common prior under
unawareness, see Heifetz, Meier, and Schipper [2013a]).

Say that the buyer prefers to buy at price x if his expected value of the firm is at least x,
while the owner prefers to sell at price x if her expected value is at most x. The buyer strictly
prefers to buy at price x if his expected value of the firm is strictly above x, while the owner
strictly prefers to sell at price x if her expected value is strictly below x. Note that at any state
in S{n,`}, the owner’s beliefs are concentrated on S{`} and thus his expected value of a firm’s
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share is $90. Similarly, at any state in S{n,`}, the buyer’s beliefs are concentrated on S{n} and
thus her expected value of a firm’s share is $110. Thus the owner strictly prefers to sell at
the price $100 while the buyer strictly prefers to buy at the price of $100. Moreover, at the
price $100 it is common certainty that each agent prefers to trade because each agent strictly
prefers to trade at $100 and is certain that the other agent is indifferent between trading or
not at $100. Hence, we have a common prior, common certainty of willingness to trade but
each agent has a strict preference to trade. We conclude that speculative trade is possible
under asymmetric awareness while it is ruled out under symmetric awareness by the standard
“No-speculative-trade” theorems (i.e., see Milgrom and Stokey [1982]).

At a second glance, we realize that speculative trade is a knife-edge case in this example.
Suppose that there are some transaction costs. For instance, the government may require the
buyer to pay a tax of $1 per share. Then the owner knows that the buyer is not just indifferent
between buying or not but must have a strict preference to trade as well (similar for the buyer).
This leads to the question of whether the common prior assumption rules out common certainty
of strict preference to trade. Heifetz, Meier, and Schipper [2013a] (Theorem 1) prove for finite
unawareness type spaces that a non-degenerate common prior rules out common certainty of
strict preference to trade. This result has been extended to infinite unawareness type spaces
by Meier and Schipper. Thus, arbitrary small transaction costs such as the famous Tobin tax
on transactions rule out speculation under unawareness. The “No-speculative-trade” result
under unawareness is also relevant for the following reason: one may casually conjecture that
any behavior is possible when awareness is allowed to vary among agents and thus behavior
under unawareness may have no testable predictions. The “No-speculative-trade” result under
unawareness shows that this is not the case.

The common prior assumption is a sufficient condition for the “No-speculative-trade” result.
This begs the question of whether it would also be necessary. In standard state-spaces, the
absence of speculative trade implies a common prior (see for instance Feinberg [2000], Heifetz
[2006]). This is the converse to the “No-speculative-trade” theorem. Such a converse is desirable
because it provides a conceptual interpretation of the common prior assumption. Yet, Heifetz,
Meier, and Schipper [2013a] show a counterexample to the converse of the “No-speculative-
trade” theorem under unawareness.

The “No-speculative-trade” results for standard structures without unawareness extend Au-
mann’s famous “No-agreeing-to-disagree” result according to which if agents share a common
prior probability measure, then it cannot be common knowledge that their posteriors disagree
(Aumann [1976]). Heifetz, Meier, and Schipper [2013a] prove also a generalization of Aumann
[1976]’s “No-agreeing-to-disagree” result to unawareness structures.

5 Awareness of Unawareness

According to KU introspection, an agent never knows or believes that she is unaware of a
specific event. This does not mean that she couldn’t know that she is unaware of something.
There is a difference between knowing (or not knowing) that you are unaware of the proposition
ϕ and knowing (or not knowing) that there exists some proposition that you are unaware of. To
borrow an example from Halpern and Rêgo [2009], a primary care physician may be unaware
of a specific disease and may not even realize that she is unaware of this specific disease. But
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she may refer a patient to a specialist because she believes that the specialist is aware of some
diseases that she doesn’t even think or have heard about. Grant and Quiggin [2013] argue that
agents should generally induce from prior experience and experience with other agents that they
may be unaware of something. All previous approaches outlined so far are silent on awareness of
unawareness of something. As the discussion suggests, we could model awareness of unawareness
with an existential quantifier like “I am uncertain about whether there exists a proposition that
I am unaware of”. In this section, we will present several alternative approaches.

5.1 Propositional Quantifiers and Extended Awareness Structures

Halpern and Rêgo [2009] presented an extension of awareness structures with propositional
quantifiers. They extend the syntax to allow for quantification over quantifier-free formulae.
Unfortunately, formulae expressing that an agent considers it possible that she is aware of all
formulae and also considers it possible that she is not aware of all formulae are not satisfiable
in any of their extended awareness structures. This is a serious limitation for applications as
it is very natural to consider agents who may be uncertain about whether they are aware of
everything or not. As remedy, Halpern and Rêgo [2013] introduce extended awareness structures
that allow different languages to be defined at different states, very much in the spirit of Modica
and Rustichini [1999] and Heifetz, Meier, and Schipper [2008]. We will focus in this section on
Halpern and Rêgo [2013].

Given a nonempty set of agents Ag = {1, ..., n} indexed by a, a countable infinite set
of primitive propositions At as well as a countable infinite set of variables X, the languages
are L∀,K,An (At′,X), ∅ 6= At′ ⊆ At. Different from LK,An (At) introduced earlier, we allow for
quantification with domain LK,An (At): If ϕ is a formula in LK,An (At′), then ∀xϕ is a formula in

L∀,K,An (At′,X). That is, the domain of quantification are just quantifier-free formulae. As usual,
we define ∃xϕ by ¬∀x¬ϕ.

An occurrence of a variable x is free in a formula ϕ if it is not bound by a quantifier. More
formally, define inductively: If ϕ does not contain a quantifier, then every occurrence of x is
free in ϕ. An occurrence of the variable x is free in ¬ϕ, (in Kaϕ and Aaϕ, respectively) if and
only if its corresponding occurrence is free in ϕ. An occurrence of the variable x is free in ϕ∧ψ
if and only if the corresponding occurrence of x in ϕ or ψ is free. An occurrence of x is free in
∀yϕ if and only if the corresponding occurrence of x is free in ϕ and x is different from y. A
formula that contains no free variables is a sentence.

If ψ is a formula, we denote by ϕ[x/ψ] the formula that results in replacing all free occur-
rences of the variable x in ϕ with ψ.

An extended awareness structure is a tuple M = (S, (Ra)a∈Ag, (Aa)a∈Ag, V,At), where
(S, (Ra)a∈Ag(Aa)a∈Ag, V ) is an awareness structure as introduced in Section 3.1 and At : S −→
2At \ {∅} is a correspondence that assigns to each state s in S a nonempty subset of primitive
propositions in At. We require that at each state every agent is only aware of sentences that
are in the language of this state. That is, Aa(s) ⊆ L∀,K,An (At(s),X). Moreover, the properties
“awareness generated by primitive propositions” and “agents know what they are aware of” take
the following form: for all a ∈ Ag and s, s′ ∈ S, if (s, s′) ∈ Ra then Aa(s) ⊆ L∀,K,An (At(s′),X).

The satisfaction relation is defined inductively on the structure of formulae in L∀,K,An (At,X)
as follows:

37



M, s |= p if and only if p ∈ At(s) and V (s, p) = true,

M, s |= ϕ ∧ ψ if and only if ϕ,ψ ∈ L∀,K,An (At(s),X) and both M, s |= ϕ and M, s |= ψ,

M, s |= ¬ϕ if and only if ϕ ∈ L∀,K,An (At(s),X) and M, s 6|= ϕ,

M, s |= Aaϕ if and only if ϕ ∈ L∀,K,An (At(s),X) and ϕ ∈ Aa(s),
M, s |= Kaϕ if and only if ϕ ∈ L∀,K,An (At(s),X) and both M, s |= Aaϕ and M, t |= ϕ for
all t ∈ S such that (s, t) ∈ Ra,
M, s |= ∀xϕ if and only if ϕ ∈ L∀,K,An (At(s),X) and M, s |= ϕ[x/ψ] for all ψ ∈ LK,An (At).

Note that for a formula ϕ to be true at a world s, we require now also that ϕ ∈ L∀,K,An (At(s),X).
We say that a formula ϕ is defined at s if (with the obvious abuse of notation) At(ϕ) ⊆ At(s).
Otherwise, ϕ is undefined at s. Like in unawareness structures, a formula may not be defined
in all states in an extended awareness structure. This requires us to define validity analogous
to unawareness structures, that is, a formula ϕ is valid in an extended awareness structure M
if M, s |= ϕ for all s in which ϕ is defined. The notions of soundness and completeness are as
defined previously.

Consider the following axiom system that we call S5∀,K,An :

Prop. All substitution instances of valid formulae of propositional logic.
AGPP. Aaϕ↔

∧
p∈At(ϕ)Aap

AI. Aaϕ→ KaAaϕ
KA. Kaϕ→ Aiϕ

K. (Kaϕ ∧Ka(ϕ→ ψ))→ Kaψ
T. Kaϕ→ ϕ
4. Kaϕ→ KaKaϕ

5A. ¬Kaϕ ∧Aaϕ→ Ka¬Kaϕ
1∀. ∀xϕ→ ϕ[x/ψ] if ψ is a quantifier-free sentence
6∀. ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)
N∀. ϕ→ ∀xϕ if x is not free in ϕ
FA. ∀xUax→ Ka∀xUax

Barcan∗A. (Aa(∀xϕ) ∧ ∀x(Aax→ Kaϕ))→ Ka(∀xAax→ ∀xϕ)
MP. From ϕ and ϕ→ ψ infer ψ.

GenA. From ϕ infer Aaϕ→ Kaϕ.
Gen∀. If q ∈ At, then from ϕ infer ∀xϕ[q/x].

All axioms and inference rules that do not involve quantification were discussed earlier. 1∀
means that if a universally quantified formula is true then so is every instance of it. FA and
Barcan∗A are more difficult to interpret. FA says that if an agent is unaware of everything then
she knows that she is unaware of everything. It is hard to judge the reasonableness of this
axiom as the hypothesis of being unaware of everything is extreme. At a first glance, it may
even appear paradoxical: If she knows that she is unaware of everything then by KA she is
aware that she is unaware of everything. But if she is aware that she is unaware of everything,
how can she be unaware of everything? Recall that quantification is just over quantifier-free
sentences. Thus, the agent may be unaware of every quantifier-free sentence but still be aware
that she is unaware of every quantifier-free sentence.

Barcan∗A should be contrasted with the “standard” Barcan axiom ∀xKaϕ→ Ka∀xϕ: If the
agent knows ϕ[x/ψ] for every quantifier-free sentence ψ, then she knows ∀xϕ. Barcan∗A. also
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connects knowledge with quantification but it requires awareness. In the antecedent it requires
that the agent is aware of the formula ∀xϕ. Moreover, the agent is required to know ϕ[x/ψ]
only if she is aware of ψ. In the conclusions, ∀xϕ is true only if the agent is aware of all
(quantifier-free) formulae.

Theorem 10 (Halpern and Rêgo [2013]) For the language L∀,K,An (At,X), the axiom system
S5∀,K,An is a sound and complete axiomatization with respect to extended awareness structures.

The completeness part of the proof is by constructing a canonical model but dealing ap-
propriately with complications arising from quantification as in Halpern and Rêgo [2009]. The
soundness parts for modus ponens, Barcan∗A, and Gen∀ are nonstandard.

Extended awareness structures merge features of both awareness structures and unawareness
structures introduced in Sections 3.1 and 3.4, respectively. Recall that in awareness structures
the awareness correspondence associates potentially different subsets of formulae with different
states but all formulae are defined at each state, while in unawareness structures potentially dif-
ferent subsets of formulae are defined at different states. This difference between the formalisms
are immaterial as long as we are “just” interested in modeling reasoning about knowledge and
propositionally determined awareness and do not care about the important conceptual issue of
whether structures can be viewed from an agent’s subjective perspective. In extended aware-
ness structures, the difference between formulae defined at a state and the formulae that an
agent is aware of at that state is of conceptual significance for a second reason. Roughly these
are the labels that the agent is aware that he is unaware of.

Halpern and Rêgo [2013] explore the connection between awareness and unawareness struc-
tures by showing that quantifier-free fragment of their logic is characterized by exactly the same
axioms as the logic of Heifetz, Meier, and Schipper [2008]. Moreover, they show that under
minimal assumptions they can dispense with Fagin and Halpern [1988]’s syntactic notion of
awareness as this notion of awareness is essentially equivalent to the one used in Modica and
Rustichini [1999] and Heifetz, Meier, and Schipper [2006, 2008].

5.2 First-Order Logic with Unawareness of Objects

In an unpublished paper, Board and Chung [2011a] proposed a first-order modal logic with
unawareness in order to model awareness of unawareness. Different from extended awareness
structures, the quantification is over objects rather than over quantifier-free formulae.

Given a nonempty set of agents Ag = {1, ..., n}, a countable infinite set of variables X,
and k-ary predicates P for every k = 1, 2, ..., the set of atomic formulae At is generated by
P (x1, ..., xk) where x1, ..., xk ∈ X. We require that there is a unary predicate E. The intended

interpretation of E(x) is “x is real”. The language we consider is L∀,L,K,An (At,X). We allow

for quantification: If ϕ is a formula in L∀,L,K,An (At,X) and x ∈ X, then ∀xϕ ∈ L∀,L,K,An (At,X).
We define a variable to be free in a formula as in Section 5.1. Moreover, if ϕ is a formula, we
denote by ϕ[x/y] the formula that results from replacing all free occurrences of x with y.

An object-based unawareness structure is a tupleM = (S,D, {D(s)}s∈S , (Πa)a∈Ag, (Aa)a∈Ag, π),
where S is a nonempty set of states, D is a nonempty set of objects, D(s) is a nonempty subset
of D containing objects that are “real” in s, and Πa : S −→ 2S is a possibility correspondence
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of agent a ∈ Ag. We focus here on the case in which, for each agent a ∈ Ag, the possibility
correspondence forms a partition of the state-space. That is, we assume that it satisfies

Reflexivity: s ∈ Πa(s) for all s ∈ S,
Stationarity: s′ ∈ Πa(s) implies Πa(s

′) = Πa(s), for all s, s′ ∈ S.

Aa : S −→ 2D is the awareness correspondence of agent a ∈ Ag. Different from awareness
structures or the product model discussed earlier, the awareness correspondence in object-based
unawareness structures assigns subsets of objects to states. We focus here on the case, in which
for each agent a ∈ Ag, the possibility correspondence and the awareness correspondence satisfy
jointly

s′ ∈ Πa(s) implies Aa(s′) = Aa(s).

Thus analogous to the corresponding property in awareness structures, agents know what they
are aware of.

π is a state-dependent assignment of a k-ary relation π(s)(P ) ⊆ Dk to each k-ary predicate
P . Intuitively, the assignment π ascribes in each state and to each property the subset of objects
satisfying this property at that state. It is sometimes called a classical first-order interpretation
function.

A valuation V : X −→ D assigns to each variable an object. Intuitively, V (x) denotes
the object referred to by variable x, provided that x is free in a given formula. Call V ′ is an
x-alternative valuation of V if, for every variable y except possibly x, V ′(y) = V (y).

Since the truth value of a formula depends on the valuation, on the left-hand side of |=
we have a model, a state in the model, and a valuation. The satisfaction relation is defined
inductively on the structure of formulae in L∀,L,K,An (At,X) as follows:

M, s, V |= E(x) if and only if V (x) ∈ D(s),
M, s, V |= P (x1, ..., xk) if and only if (V (x1), ..., V (xk)) ∈ π(s)(P ),
M, s, V |= ¬ϕ if and only if M, s, V 6|= ϕ,
M, s, V |= ϕ ∧ ψ if and only if M, s, V |= ϕ and M, s, V |= ψ,
M, s, V |= ∀xϕ if and only if M, s, V ′ |= ϕ and V ′(x) ∈ D(s) for every x-alternative
valuation V ′,
M, s, V |= Aaϕ if and only if V (x) ∈ Aa(s) for every x that is free in ϕ,
M, s, V |= Laϕ if M, s′, V |= ϕ for all s′ ∈ Πa(s),
M, s, V |= Kaϕ if and only if M, s, V |= Aaϕ and M, s, V |= Laϕ.

A formula ϕ is valid in the object-based unawareness structure M under the valuation V if
M, s, V |= ϕ for all s ∈ S. The notions of soundness and completeness are now the standard
notions.

The unawareness operator is defined, as usual, as the negation of awareness, that is, Uaϕ :=
¬Aaϕ.

Consider the following axiom system that we call S5∀,L,K,An :

Prop. All substitution instances of valid formulae of propositional logic.
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A. Aaϕ if there is no free variable in ϕ;
AC−. Aaϕ ∧Aaψ → Aa(ϕ ∧ ψ)

A3. If every variable free in ψ is also free in ϕ, then Aaϕ→ Aaψ.
K. La(ϕ→ ψ)→ (Laϕ→ Laψ)
T. Laϕ→ ϕ
4. Laϕ→ LaLaϕ
5. ¬Laϕ→ La¬Laϕ

KL. Kaϕ↔ Aaϕ ∧ Laϕ.
AIL. Aaϕ→ LaAaϕ.
UIL. Uaϕ→ LaUaϕ.

E. ∀xE(x).
1∀,E . ∀xϕ→ (E(y)→ ϕ[x/y]).

6∀. ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)
N∗∀. ϕ↔ ∀xϕ if x is not free in ϕ

MP. From ϕ and ϕ→ ψ infer ψ.
GenL. From ϕ infer Laϕ.

Gen∀,L. For all natural numbers n ≥ 1, from ϕ → La(ϕ1 → · · · → La(ϕn → Laψ) · · · ) infer
ϕ→ La(ϕ1 → · · · → La(ϕn → La∀xψ) · · · ), provided that x is not free in ϕ,ϕ1, ..., ϕn.

Gen∗∀. From ϕ infer ∀xϕ.

Theorem 11 (Board and Chung [2011a]) For the language L∀,L,K,An (At,X), the axiom sys-
tem S5∀,L,K,An is a sound and complete axiomatization with respect to object-based unawareness
structures.

The proof uses standard methods. Board and Chung [2011a] present the proof of a version
not imposing the assumption of a partitional possibility correspondence.

Board and Chung [2011b] consider also “frames” of object-based unawareness structures
for modeling reasoning about knowledge of unawareness. This is approach is not purely event-
based, though, as it requires the modeler to consider for each event also the set of objects
referred to in the event.

Formally, an event in an object-based unawareness frame is a pair (E,O), where E ∈ 2S is
a subset of states and O ∈ 2D is a subset of objects. (E is now a set of states, not the existence
predicate introduced earlier.) We let states(E,O) := E, and objects(E,O) := O. Negation
and conjunction of events are defined by

¬(E,O) := (S \ E,O),∧
i

(Ei, Oi) :=

(⋂
i

Ei,
⋃
i

Oi

)
.

The negation pertains to the set of states in which E does not obtain but refers to the same
set of objects. The conjunctions of events is the set of states in which all these events obtain
and the union of objects referred to by those events. Conjunction is defined by the De-Morgan
law by

∨
i

(Ei, Oi) = ¬

(∧
i

¬(Ei, Oi)

)
=

(⋃
i

Ei,
⋃
i

Oi

)
.
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We let Σ denote the set of all events.

For each agent a ∈ Ag, the awareness operator is defined on events by

Aa(E,O) := ({s ∈ S : O ⊆ Aa(s)}, O) .

As before, the unawareness operator is defined as the negation of the awareness, Ua(E,O) :=
¬Aa(E,O).

The implicity knowledge operator is defined on events by

La(E,O) := ({s ∈ S : Πa(s) ⊆ E}, O) .

Explicit knowledge is defined, as in awareness structures, by the conjunction of awareness and
implicit knowledge, i.e.,

Ka(E,O) := Aa(E,O) ∧ La(E,O).

Awareness, implicit knowledge, and explicit knowledge of an event with a given subset of objects
are events, respectively, with the same subset of objects.

Properties are defined as functions p : D −→ Σ such that p(o) = (Epo , Op ∪ {o}) for some
Epo ∈ 2S and Op ∈ 2D. Epo is the set of states in which object o possesses property p and Op

is the set of objects referred to in that property. For instance, a property could be “... has as
many legs as horses.” If object o is a unicorn, then Epo is the set of states in which this unicorn
has as many legs as horses and Op is the set of horses.

Object-based unawareness structures allow for quantification over objects. In the object-
based unawareness frame, we will consider quantified events. Board and Chung [2011b] focus
on an actualist quantifier that ranges over objects that “actually exist”. Formally, first define
the property

e(o) = ({s ∈ S : o ∈ D(s)}, {o}) .

That is, e(o) is the event that object o exists. For any property p, the event that all (actually
existing) objects satisfy property p is defined by

Allp =

(⋂
o∈D

Ee→po , Op

)
.

Allp obtains if all existing objects possess property p. Quantified events satisfy the following
properties:

(i) All(∧ipi) = ∧i(Allpi)

(ii) If s ∈ Epo for every o ∈ D, then s ∈ states(Allp).

(iii) If Epo = Eqo for every o ∈ D, then states(Allp) = states(Allq).

At this point, it may be helpful to consider our simple example.

Speculative Trade Example (continued). Let ` denote the object “lawsuit” and n the
object “innovation”. Figure 5 presents a simply objective-based unawareness frame. There are
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four states. Below each state we indicate which atomic formulas are true or false. The picture
is analogous to the corresponding picture for awareness structures (Figure 1) except that the
awareness correspondence is now indicated by rectangular text bubbles above states in which
we indicate the set of objects the agent is aware of that state. The blue solid-lined rectangular
text bubbles belong to the owner while the red intermitted-lined are the buyer’s. Each agent’s
awareness correspondence is very special in this example because it is constant across states.
As in Figure 1, the soft-edged rectangles indicate the possibility correspondences. The blue
solid-lined possibility set belongs to the owner, while the red intermitted-lined is the buyer’s.
Both agents consider all states possible.

Figure 5: An Object-Based Unawareness Frame for the Speculative Trade Example

This simple figure models the story outlined in the introduction. The awareness correspon-
dences shows that at any state, the owner is aware of the lawsuit and unaware of the innovation,
while the buyer is aware of the innovation and unaware of the lawsuit. The possibility corre-
spondences model implicit knowledge. The owner does not implicitly know whether the law
suit obtains, and implicitly knows that the buyer is unaware of the lawsuit. But he also ex-
plicitly knows that because he is aware of the lawsuit. The buyer does not implicitly know
whether the innovation obtains, and implicitly knows that the owner is unaware of the innova-
tion. But she also explicitly knows that because she is aware of the innovation. Both agents
also implicitly know what they are unaware of. This is hard to interpret. Similar to awareness
structures discussed earlier, object-based unawareness structures are best understood from an
outside modeler’s point of view. The same structure can generally not be used as an analytical
device by the agent herself to reason about her and other agents’ knowledge and awareness.

We should mention that the introductory speculative trade example does not do full justice
to objective-based unawareness structures as the example does not make use of quantification
over objects. How would awareness of unawareness affect speculative trade? Board and Chung
[2011b] show a “No-speculative-trade” theorem for the case that agents are paranoid in the
sense that they always consider it possible that there is something they are unaware of. This
echoes Grant and Quiggin [2013], who argue that agents’ past experience lends support to
the hypothesis that there are some contingencies that they are unaware of. This awareness of
unawareness coupled with the precautionary principle may make them reluctant to engage in
speculative trade. �
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The object-based unawareness frame allows us to easily compare this approach to unaware-
ness frames introduced in Section 3.3. Already on an informal level, some differences become
obvious. First, quantification is not explicitly considered in unawareness frames. Second, similar
to awareness structures by Fagin and Halpern [1988], the set of states in object-based unaware-
ness structures are “objective” descriptions that should be interpreted as given to an outside
observer. This is different from “subjective” descriptions in unawareness structures. Third,
Board and Chung [2011a] present no axiomatization for a language with explicit knowledge
and awareness only. As in awareness structures of Fagin and Halpern [1988], their possibility
correspondence models implicit knowledge. Arguably, explicit knowledge is what is of ultimate
interest in applications and this is the notion focused on in unawareness structures. Finally,
object-based unawareness frames model unawareness about propositions where the unaware-
ness arises from unawareness of objects referred to in the propositions, and no unawareness
of properties is considered. In contrast, unawareness structures model unawareness of ab-
stract propositions. Yet, the more fine-grained distinction between objects and properties in
object-based unawareness structures may yield an advantage in some applications where this
distinction may be necessary.

More formally, common to both frames is that there is a set of events Σ, a negation operator
¬, a conjunction operator ∧, and for each agent a ∈ Ag a knowledge operator Ka and an
awareness operator Aa defined on events in Σ. We say that a frame (Σ,¬,∧, (Ka,Aa)a∈Ag) can
be embedded into a frame (Σ′,¬,∧, (K′a,A′a)a∈Ag) if there is an injective function f : Σ −→ Σ′

with the following properties: For any events E,F ∈ Σ,

Negation-Preserving: f(¬E) = ¬f(E)
Conjunction-Preserving: f(E ∧ F ) = f(E) ∧ f(F )
Knowledge-Preserving: f(Ka(E)) = K′a(f(E))
Awareness-Preserving: f(Aa(E)) = A′a(f(E))

Theorem 12 (Board, Chung, and Schipper [2011]) Every object-based unawareness frame
can be embedded into some unawareness frame. Conversely, every unawareness frame can be
embedded into an object-based unawareness frame that does not necessarily satisfy that agents
know what they are aware of.

The proof is constructive in that one can construct an embedding and show that it “works”.
Moreover, one can show that the property of ’agents know what they are aware of’ is required
for any embedding of object-based unawareness frames into unawareness frames. Board, Chung,
and Schipper [2011] also show that if generalized reflexivity (i.e., the truth axiom) and station-
arity (i.e, the introspection properties of knowledge) are dropped from unawareness frames,
then any object-based unawareness frame (not necessarily satisfying reflexivity, stationarity,
or ’agents know what they are aware of’) can be embedded into an unawareness frame and
vice versa. While this result is mathematically more general and “cleaner” than Theorem 12
(because it has the full converse), it is of less interest because we want to know how even strong
notions of knowledge are embedded into various frames. So far, it is open whether with strong
notions of knowledge a full converse can be obtained with some different embedding than the
one used in the proof.
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5.3 Neighborhood Semantics and First-Order Logic with Awareness of Ob-
jects and Properties

Sillari [2008a,b] introduces a first-order logic of awareness but with a semantics based on aware-
ness neighborhood frames mentioned already in Section 3.1. The language is as in Section 5.2.
That is, L∀,L,K,An (At,X) consists of well-formed formulae having the following syntax

ϕ ::= P (x1, ..., xk) | A!a(x) | ¬ϕ | ϕ ∧ ψ | Laϕ | Kaϕ | Aaϕ | ∀xϕ

A!a(x) denotes the awareness predicate of agent a, which is somewhat similar to the agent-
independent existence predicate E(x) in Section 5.2.

An awareness neighborhood structure isM = (S, (Na)a∈Ag, (Aa)a∈Ag, D, (Da)a∈Ag, π, (πa)a∈Ag)

in which S is a space of states and Na : S −→ 22S is the neighborhood correspondence of agent
a that assigns to each state the set of events that the agent knows at this state. Sillari [2008a,b]

imposes no conditions on Na. As in awareness structures, Aa : S −→ 2L
∀,L,K,A
n (At,X) is the

awareness correspondence of agent a. D is a nonempty set called the domain. Da : S −→ 2D

is a correspondence of agent a assigning to each state s a subjective domain Da(s) of objects.
Intuitively, Da(s) represents the objects that agent a is aware of at state s. As in the previous
section, π is a state-dependent assignment of a k-ary relation π(s)(P ) ⊆ Dk to each k-ary
predicate P . Finally, for each agent a ∈ Ag, πa is a state-dependent assignment of a k-ary
relation πa(s)(P ) ⊆ Dk

a(s) to each k-ary predicate P that may possibly agree partially with π.
This “agent-based” assignment is motivated by the author’s desire to model also awareness of
properties.

Recall that in first-order logic an atomic formula takes the form P (x1, ..., xk) where P is a
k-ary predicate and x1, ..., xk ∈ X. The notion of ’awareness generated by atomic formulae’ is
analogous to awareness structures, i.e., for all s ∈ S, ϕ ∈ Aa(s) if and only if At(ϕ) ⊆ Aa(s).
We require that P (x1, ..., xk) ∈ Aa(s) if and only if (i) V (x`) ∈ Da(s) for ` = 1, ..., k, and
(ii) (V (x1), ..., V (xk)) ∈ πa(s)(P ). As before, V : X −→ D is a valuation or substitution. By
Property (i), if at a state an agent is aware of an atomic formula then at that state she must be
aware of any object referred to in the atomic formula. This formalizes the idea of awareness of
objects. Property (ii) is interpreted as formalizing the idea of awareness of properties of objects.
In order for an agent to be aware of a given atomic formula, she needs to be also aware of the
property mentioned in the formula, i.e., she needs to be aware that the objects in the formula
enjoy a given property. This is different from Section 5.2 where only awareness of objects is
considered.

The satisfaction relation is defined by

M, s, V |= A!a(x) if and only if V (x) ∈ Da(s),
M, s, V |= P (x1, ..., xk) if and only if (V (x1), ..., V (xk)) ∈ π(s)(P )
M, s, V |= ¬ϕ if and only if M, s, V 6|= ϕ,
M, s, V |= ϕ ∧ ψ if and only if M, s, V |= ϕ and M, s, V |= ψ,
M, s, V |= ∀xϕ(x) if and only if M, s, V ′ |= ϕ for every x-alternative valuation V ′ for
which V ′(y) = V (y) for all y 6= x,
M, s, V |= Laϕ if and only if {t ∈ S : M, t, V |= ϕ} ∈ Na(s),
M, s, V |= Aaϕ if and only if ϕ ∈ Aa(s),
M, s, V |= Kaϕ if and only if M, s, V |= Aaϕ and M, s, V |= Laϕ.
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In addition to some axioms on awareness discussed already in Section 3.1, Sillari [2008a,b]
discusses two axioms that relate awareness and quantifiers. Recall that ∃xϕ stands for ¬∀x¬ϕ.
The first axiom is

A∃. Aaϕ[x/y]→ Aa∃xϕ(x).

If agent a is aware that y, which substitutes a free x, has property ϕ, then she is aware that
there exists an x with property ϕ. Second,

A∀. Aa∀xϕ(x)→ (A!a(y)→ Aaϕ[x/y]).

If agent a is aware that any x has property ϕ, then, provided that a is aware of y, she is aware
that y, which substitutes a free x, has property ϕ. This axiom has a similar flavor as the axiom
1∀,E in the previous section except that it now involves awareness.

Sillari [2008a,b] does not present soundness and completeness proofs of first-order modal
logic with awareness, but Sillari [2008a] suggests that results in Arló-Costa and Pacuit [2006]
could be extended to awareness.

Sillari [2008b] proves two theorems. First, he shows that awareness neighborhood structures
(without restrictions on the awareness correspondences and neighborhood correspondences) are
equally expressive to impossible possible worlds structures introduced by Rantala [1982a,b]
and Hintikka [1975]. This complements results on equal expressivity of awareness (Kripke)
structures and impossible possible worlds structures by Wansing [1990]. Second, he shows an
analogous result for quantified impossible possible worlds structures and quantified awareness
neighborhood structures . This implies that one should be able to model awareness also with
impossible possible worlds structures. Yet, without knowing how exactly various restrictions
on awareness and belief translate into impossible possible worlds, it is not clear how tractable
it would be to model awareness with these structures.

5.4 Awareness of Unawareness without Quantifiers

In this section we present the idea originally due to Ågotnes and N. [2007] of modeling awareness
of unawareness by propositional constants such as “agent a is aware of everything” and “agent
b is aware of everything that agent a is aware of” rather than with quantifiers. Unfortunately,
their approach does not allow an agent to be uncertain about whether she is aware of everything
or not. As a remedy, we will present the two-stage semantics by Walker [2014] in order to allow
an agent also to be uncertain about her awareness of unawareness.

Let LL,K,A,F,Rn (At) consists of well-formed formulae having the following syntactic forms

ϕ ::= p | Fa | Rab | ϕ | ¬ϕ | ϕ ∧ ψ | Laϕ | Kaϕ | Aaϕ

The propositional constants, Fa and Rab for a, b ∈ Ag, are new. Formula Fa stands for “agent
a is aware of everything” (i.e., “full” awareness) while formula Rab reads “agent b is aware of
everything that agent a is aware of” (i.e., “relative” awareness). (Note that, different from
previous sections, Rab does not denote the accessibility relation but a propositional constant.)

A modified awareness structure M = (S, (Πa)a∈Ag, (Aa)a∈Ag, (Dsa)a∈Ag,s∈S , V ) consists of a
space of states S and for each agent a ∈ Ag a possibility correspondence Πa : S −→ 2S . As in
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the previous sections, we will focus on the case where Πa forms a partition of S. That is, for
all a ∈ Ag and s ∈ S, we require

Reflexivity: s ∈ Πa(s), and

Stationarity: s′ ∈ Πa(s) implies Πa(s
′) = Πa(s).

Modified awareness structures in which every Πa forms a partition are called partitional modified
awareness structures.

The awareness correspondence Aa : S −→ 2At assigns to each state a subset of atomic
formulae. Note that different from awareness structures introduced in Section 3.1, the codomain
of the awareness correspondence is restricted to the set of all subsets of atomic formulae only
(instead allowing for the entire language). We focus on the case in which agents know what
they are aware of, that is, for all a ∈ Ag and s ∈ S,

s′ ∈ Πa(s) implies Aa(s′) = Aa(s).

The next ingredient is new: For each state s ∈ S, Dsa is a preorder (i.e., a reflexive and
transitive binary relation) on Ag∪{At} with At ∈ maxDsa{Ag∪{At}}. The preorder Dsa describes
agent a’s conjecture about the relative extent of all agent’s awareness at state s. b Dsa c means
that agent a conjectures in state s that agent b’s awareness is more extensive than agent c’s
awareness. b Dsa At means that agent a conjectures agent b to be aware of everything. At Dsa b
means that agent a conjectures agent b to be not more than aware of everything (which does not
imply that agent a is aware of everything). We focus on the case in which for s ∈ S and agents
a, b, c ∈ Ag, the awareness correspondences and the preorders jointly satisfy the condition that
we may dub coherent relative awareness:

Aa(s) ∩ Ab(s) + Aa(s) ∩ Ac(s) implies b 4sa c.

This condition may be interpreted as saying that agent a’s conjecture at state s about agent b’s
awareness relative to agent c’s awareness is based on those agents’ actual awareness conditional
on agent a’s awareness at that state.

The last component of the modified awareness structure is the valuation function V : S ×
At −→ {true, false}.

Walker [2014] introduces a two-stage semantics. At the first stage, an “individualized pre-
liminary” truth value is assigned to every formula at every state. At the second stage, the final
truth value is assigned. We denote the individualized preliminary satisfaction relation of agent
a by |=1

a and the final satisfaction relation by |=. The individualized preliminary satisfaction
relation is defined inductively on the structure of formulae in LL,K,A,F,Rn (At) as follows:

M, s |=1
a p if and only if V (s, p) = true,

M, s |=1
a Fb if and only if b Dsa At,

M, s |=1
a Rbc if and only if c Dsa b,

M, s |=1
a ¬ϕ if and only if M, s 6|=1

a ϕ,
M, s |=1

a ϕ ∧ ψ if and only if both M, s |=1
a ϕ and M, s |=1

a ψ,
M, s |=1

a Lbϕ if and only if M, s′ |=1
b ϕ for all s′ ∈ Πb(s),
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M, s |=1
a Abϕ if and only if At(ϕ) ⊆ Ab(s),

M, s |=1
a Kbϕ if and only if both M, s |=1

a Abϕ and M, s |=1
a Lbϕ.

All clauses with the exception of the second and third clause are familiar from the satisfaction
relation defined for awareness structures. In the modified awareness structure M , formula Fb
is preliminarily true for agent a at state s if and only if at state s agent a conjectures that
agent b is aware of everything. Similarly, in the modified awareness structure M , formula
Rbc is preliminarily true for agent a at state s if and only if at state s agent a conjectures
that agent c’s awareness is more extensive than agent b’s awareness. Note that although the
preliminary satisfaction relation is individualized, it is hard to interpret it as a subjective notion
because states in an awareness structure should be interpreted as “objective” descriptions from
an modeler’s point of view and not necessarily from the agent’s point of view.

The final satisfaction relation is defined inductively on the structure of formulae in LL,K,A,F,Rn (At)
and makes use of the individualized preliminary satisfaction relation as follows:

M, s |= p if and only if V (s, p) = true,
M, s |= Fa if and only if Aa(s) = At,
M, s |= Rab if and only if Ab(s) ⊇ Aa(s),
M, s |= ¬ϕ if and only if M, s 6|= ϕ,
M, s |= ϕ ∧ ψ if and only if both M, s |= ϕ and M, s |= ψ,
M, s |= Laϕ if and only if M, s′ |=1

a ϕ for all s′ ∈ Πa(s),
M, s |= Aaϕ if and only if At(ϕ) ⊆ Aa(s),
M, s |= Kbϕ if and only if both M, s |= Abϕ and M, s |= Lbϕ.

The second and third clauses use now the awareness correspondences instead individual con-
jectures captured by the preorders. In the modified awareness structure M , formula Fa is true
at state s if and only if at state s agent a is aware of everything. Similarly, in the modified
awareness structure M , formula Rab is true at state s if and only if at state s agent b’s awareness
as given by his awareness set is more extensive than agent a’s awareness. Most important is the
clause giving semantics to implicit knowledge, which refers to the preliminary satisfaction rela-
tion of agent a. In the modified awareness structure M , agent a implicitly knows formula ϕ at
state s if ϕ is preliminary true for agent a at every state that he considers possible at s. Thus,
whether or not an agent implicitly knows a formula depends on his preliminary satisfaction
relation at states that he considers possible. This can be different from the final satisfaction
relation for formulas involving Fa and Rab.

The notion of validity is as in Kripke or awareness structures using the final satisfaction
relation |= just defined.

The aim is to characterize modified awareness structures in terms of properties of knowledge
and awareness. To state the axiom system, it will be helpful to define the sublanguage L− ⊆
LL,K,A,F,Rn (At) that consists exactly of the set of formulae whose final truth values in any state
and any modified awareness structure coincides with the individualized preliminary truth values.
Define L− inductively as follows:

p ∈ At implies p ∈ L−,

Aaϕ,Laϕ,Kaϕ ∈ L− for any ϕ ∈ LL,K,A,F,Rn (At),
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ϕ ∈ L− implies ¬ϕ ∈ L−,

ϕ, φ ∈ L− implies ϕ ∧ φ ∈ L−.

Note that ϕ ∈ L− does not imply that Fa or Rab for some a, b ∈ Ag could not be a subformula of
ϕ. With this definition on hand, we consider the following axiom system that we call S5L,K,A,F,Rn :

Prop. All substitution instances of tautologies of propositional logic.
KL. Kaϕ↔ Laϕ ∧Aaϕ (Explicit Knowledge is Implicit Knowledge and Awareness)
AS. Aa¬ϕ↔ Aaϕ (Symmetry)
AC. Aa(ϕ ∧ ψ)↔ Aaϕ ∧Aaψ (Awareness Conjunction)

AKR. Aaϕ↔ AaKaϕ (Awareness Explicit Knowledge Reflection)
ALR. Aaϕ↔ AaLaϕ (Awareness Implicit Knowledge Reflection)

AR. Aaϕ↔ AaAaϕ (Awareness Reflection)
AI. Aaϕ→ KaAaϕ (Awareness Introspection)
F0. AaFb
R0. AaRbc
F1. Fa → Aaϕ
F2. Fa → Rba
F3. Fa ∧Rab → Fb
R1. Rab → (Aaϕ→ Abϕ)
R2. Rab ∧Rbc → Rac (Transitivity of Relative Awareness)
R3. Raa (Reflexivity of Relative Awareness)
R4. Aaϕ→ Ka((Abϕ ∧ ¬Acϕ)→ ¬Rbc)
K. (Laϕ ∧ La(ϕ→ ψ))→ Laψ (Distribution Axiom)

T−. Laϕ→ ϕ for any ϕ ∈ L− (Modified Implicit Knowledge Truth Axiom)
4. Laϕ→ LaLaϕ (Implicit Positive Introspection Axiom)
5. ¬Laϕ→ La¬Laϕ (Implicit Negative Introspection Axiom)

MP. From ϕ and ϕ→ ψ infer ψ (modus ponens)
Gen−. From ϕ proved without application of F1 or R1 infer Laϕ (Modified Implicit Knowledge

Generalization)

Most axiom schemes are familiar from previous sections. F0 means that the agent is always
aware that an agent is aware of everything. R0 means that the agent is always aware that an
agent’s awareness is as extensive as another (or the same) agent’s awareness. F1 states that
full awareness implies awareness of any particular formula. Of course, these properties do not
necessarily imply that an agent is aware of everything or is as aware as other agents. F2 means
that full awareness implies relative awareness with respect to any agent.

F3 says that relative awareness of one agent with respect to a second agent implies full
awareness of the first agent in the case that the second agent is fully aware. R1 states that
if agent b’s awareness is as extensive as agent a’s awareness, then agent a being aware of a
formula implies that agent b must be aware of it as well. R2 encapsulates the idea that relative
awareness is transitive among agents. If agent b is as aware as agent a and agent c is as aware
as agent b, then also agent c must be as aware as agent a. R3 states that relative awareness is
reflexive in the sense that every agent is aware of everything that he is aware of. Finally, R4
says that when agent a is aware of a formula then he knows that if agent b is aware of it and
agent c is not, then c’s awareness is not as extensive as b’s awareness. It is closely connected
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to the condition “coherent relative awareness”. Axioms F1 to F3 and R1 to R3 appear also in
Ågotnes and N. [2007].

The set of formulae for which the individualized preliminary truth values and the final truth
values agree, L−, play a role in the statement of the truth axiom T−, which is restricted to
just these formulae. This means that the agent may be delusional with respect to reasoning
about full awareness of an agent or the awareness of an agent relative to another. Similarly,
implicit knowledge generalization, Gen−, has been weakened as it applies only to theorems that
are deduced without use of axioms F1 or R1. We note that most of the axioms are stated in
terms of implicit knowledge. As mentioned previously, axioms and inference rules that involve
implicit knowledge are hard to interpret as it is not necessarily the knowledge that is “present
in the agent’s mind”.

Theorem 13 (Walker [2014]) For the language LL,K,A,F,Rn (At), the axiom system S5L,K,A,F,Rn

is a sound and complete axiomatization with respect to partitional modified awareness structures
in which agents know what they are aware of and relative awareness conjectures are coherent.

Modeling awareness of unawareness with propositional constants rather than quantification
yields a language that is less expressive than the approaches introduced in Sections 5.1 to 5.3.
For instance, we cannot express that an agent a knows that there is no more than one proposition
that agent b is aware of but agent c is not. Nevertheless, the approach allows for modeling
awareness of unawareness in relevant examples such as the doctor example mentioned earlier.

6 Synopsis of Extensions

6.1 Dynamic Awareness

All structures introduced in previous sections deal with agents in a static situation. Yet, many
applications are likely to involve also changes of awareness and information. It is therefore
desirable to devise structures capable of modeling changes of awareness and information. van
Ditmarsch and French [2009, 2011a,b], van Ditmarsch, French, and Velázquez-Quesada [2012],
as well as van Ditmarsch, French, Velázquez-Quesada, and Wáng [2013] study various logical
semantics for changes of awareness. Central to their work are notions of bisimulation between
awareness structures that may also be of independent interest. Intuitively, a bisimulation is a
relation between Kripke models such that atomic formulas in related states have identical truth
values and the information embedded in the accessibility relations is preserved. For aware-
ness structures, we should also require from the notion of bisimulation that related states have
identical awareness sets. Bisimulations are used to characterize modal equivalence, i.e., when
states in distinct structures are indistinguishable by the formulae that are true in those states.
Recall that accessibility relations in awareness structures model implicit knowledge. Thus, it
is not surprising that the notion of bisimulation just mentioned yields modal equivalence with
respect to a language with implicit knowledge. To characterize modal equivalence with respect
to a language with explicit knowledge, the authors introduce a more appropriate notion of
awareness bisimulation in which for each agent the information embedded in the accessibility
relation is preserved when restricted to the fragment of the language of which the agent is
aware. Using this notion of awareness bisimulation, the authors define a notion of speculative
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knowledge. Speculative knowledge is similar to explicit knowledge in awareness structures; one
notable difference is that an agent always knows tautologies even if those tautologies involve
primitive propositions the agent may be unaware. van Ditmarsch, French, Velázquez-Quesada,
and Wáng [2013] prove axiomatizations of awareness structures with respect to languages in-
volving either implicit knowledge, explicit knowledge, or speculative knowledge. van Ditmarsch,
French, and Velázquez-Quesada [2012], as well as van Ditmarsch, French, Velázquez-Quesada,
and Wáng [2013] introduce epistemic awareness action models in which awareness and infor-
mation of agents may change via certain actions (although agents cannot be differently aware
of those actions) and prove an axiomatization. van Benthem and Velázquez-Quesada [2010]
analyze changes of awareness by adding or dropping formulas from an agent’s awareness set,
and prove completeness of their logic. They also discuss epistemic action models. Grossi and
Velázquez-Quesada [2009] discuss changing awareness and additional inferences that may be
induced by awareness changes in a nice example, “Twelve Angry Men”, using yet another
framework. Hill [2010] introduces an algebraic semantic for modeling awareness of a single
agent case and studies dynamic awareness logic.

Changes of awareness have also been studied within in stochastic processes (Modica [2008]),
decision theory (Karni and Vierø [2013a,b], Li [2008b]), and in dynamic games discussed below.

6.2 Games with Unawareness

Situations in which agents with asymmetric awareness interact among each other are of partic-
ular interest. To what extent is an agent able to use her superior awareness to her advantage?
Would agents want to make each other aware of some selected features of the situation but not
on others? To study such issues, we need to complement epistemic structures capable of mod-
eling awareness in multi-agent settings with actions that agents could take and incentives for
agents. In other words, the analysis of such situations requires us to extend epistemic structures
to games.

Strategic interaction among multiple players under incomplete information is usually mod-
eled with Bayesian games. A standard Bayesian game (see for instance, Mertens and Zamir
[1985], Section 5) consists of a type-space for n-players augmented with a set of actions and
a utility function for each player.20 The utility of a player depends both on the state of the
world and the actions chosen by all players. A standard Bayesian game is implicitly common
knowledge and common awareness among the players although they may have different beliefs
about types of players. Feinberg [2012], Meier and Schipper [2014], and Sadzik [2007] extend
Bayesian games to unawareness.

Meier and Schipper [2014] simply replace the type spaces in Bayesian games by unawareness
type spaces as introduced in Section 4. They also model explicitly unawareness of actions and
unawareness of players, define Bayesian equilibrium for games with unawareness, and prove
existence of equilibrium. Meier and Schipper [2014] define a notion on unawareness perfection to
capture the robustness of equilibria to uncertainty about opponents’ awareness of their actions.
They show that an equilibrium is unawareness perfect if and only if it is an undominated

20That is, a finite Bayesian game 〈Ag,Ω, (ta)a∈Ag, (Ma)a∈Ag, (ua)a∈Ag〉 consists of a nonempty finite set of
players Ag and a nonempty finite space of states Ω. For each player a ∈ Ag, there is a type mapping ta : Ω −→
∆(Ω) satisfying introspection, ta({ω′ ∈ Ω : ta(ω′) = ta(ω)})(ω) = 1 for all ω ∈ Ω. Further, each player a ∈ Ag
has a nonempty finite set of actions Ma and a utility function ua : Ω×

∏
b∈AgMb −→ R.
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equilibrium.

Sadzik [2007] develops a similar approach to Bayesian games with unawareness. Yet, dif-
ferent from Meier and Schipper [2014], he assumes a common prior probability distribution.
Moreover, he imposes restrictions on strategies. In standard Bayesian games, a strategy is a
mapping from types into probability distributions over actions.21 Consider now a type τ of
a player (i.e., a set of states in which the player has the same beliefs and awareness) who is
unaware of some parameter relevant to the strategic situation. Let there be also two other
types, τ ′ and τ ′′, of the this player who are aware of everything that τ is aware and something
else, and hold the same beliefs as τ for everything that τ is aware of. Sadzik [2007] requires
that the mixed action chosen by type τ is some average of the actions chosen by all such types
τ ′ and τ ′′. Meier and Schipper [2014] do not impose such a restriction because types τ ′ and τ ′′

are aware of some relevant parameter that τ is unaware of. Consequently, there is no way in
which τ could take (even indirectly) some restrictions based on the corresponding more aware
types into account.

Feinberg [2012] pursues a different approach. Rather than describing parsimoniously the
players’ beliefs and awareness by their types, analogously standard Bayesian games, he explicitly
models each (mutual) view of the Bayesian game as a finite sequence of player names i1, ..., in
with the interpretation that this is how i1 views how .... how in views the game. This is
reminiscent of explicit syntactic descriptions or constructions of hierarchies of beliefs. He defines
Bayesian Nash equilibrium in his setting and proves existence of equilibrium.

Bayesian games with unawareness are most faithfully interpreted as one-shot situations in
which players choose actions simultaneously. The beliefs and awareness of players refer to their
state of mind at the moment of choosing their actions. Yet, most strategic situations involve
some time dimension. Players may not move simultaneously. Some actions may be taken before
others. Awareness and beliefs may change during the course actions. Such a dynamic interaction
is usually modeled with dynamic games. A dynamic game (or extensive-form game) consists
of a tree in which subsets of players (including nature) are associated with nodes and edges
represent profiles of actions that players at the emanating node can take. Further, information
is modeled with information sets of nodes (modeling which histories of play the players at those
nodes cannot distinguish from each other). Finally, for each player there is a utility function
that assigns a payoff to each terminal nodes which represent the outcomes of game. Standard
extensive-form games are implicitly common knowledge and common awareness among players.
I.e., all players are aware of all players, all actions, etc. To allow for different levels of awareness,
the game tree has to be replaced with a partially ordered forest of game trees , which is very
much in analogy to the lattice of state-spaces in unawareness structures. Intuitively, each tree
of the forest corresponds to a more or less rich description of the strategic situation. This is
essentially the approach taken by Halpern and Rêgo [2014], Heifetz, Meier, and Schipper [2013b],
and Feinberg [2012], who present general frameworks for modeling dynamic strategic interaction.
The frameworks differ in the details of how the forest of game trees is constructed, the modeling
of the players subjective views of the game, and their changes thereof. Recall that awareness
structures and unawareness structures take slightly different approach to modeling information.
These differences also surface again in the proposals by Halpern and Rêgo [2014] and Heifetz,

21I.e., a strategy of player a is σa : Ω −→ ∆(Ma) such that for all ω ∈ Ω, σa(ω′) = σa(ω) for all ω′ ∈ {ω′′ ∈
Ω : ta(ω′′) = ta(ω)}.
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Meier, and Schipper [2013b]. Whereas information sets in Halpern and Rêgo [2014] are best
understood as modeling implicit knowledge, information sets in Heifetz, Meier, and Schipper
[2013b] model explicit knowledge and thus also awareness. The information set associated
with a node in a given tree may comprise of nodes in a less expressive tree. In contrast,
Halpern and Rêgo [2014] specify information sets at nodes of a game tree even if a player is
not aware of that game tree. Then they devise a mapping that associates with each game tree
and node a subtree and an information set in this subtree. We view this mapping somewhat
analogous to “awareness” correspondences in awareness structures. Feinberg [2012] extends
his approach to Bayesian games discussed above to extensive-form games with unawareness.
That is, he models explicitly each (mutual) view of the dynamic game as a finite sequence of
player names i1, ..., in with the interpretation that this is how i1 views how .... how in views
the dynamic game. Earlier, Feinberg [2004] discussed a nice example of a repeated prisoners’
dilemma game in which a small grain of uncertainty about the opponent’s unawareness of
the defect-action induces cooperation even for finite repetitions. This echoes the literature
on reputations in game theory that obtained an analogous result by adding an “irrational”
type whose irrationality is suitably tailored to the solution. In contrast, Feinberg’s example
demonstrates that cooperation in such games can be obtained with a rather natural assumption
on players’ beliefs about opponents’ unawareness of actions.

In game theory, there is a clear “division of labor” between the game and the solution
concept. While the game represents the players’ (change of) awareness and information of the
strategic situation, the solution concept captures the behavioral assumptions about the players.
Various solution concepts to standard dynamic games exist in the literature. Although their
mathematical definitions can be somehow extended to dynamic games with unawareness, their
application to strategic situations under unawareness may no longer be conceptually appropri-
ate. Most commonly used solution concepts are refinements of Nash equilibrium. A profile of
strategies, one for each player, is a Nash equilibrium if each player’s strategy is a best response
to the opponents’ strategies. It presumes that strategies are mutual knowledge among players.
This is often informally motivated with interactive learning of the equilibrium convention: If
players interact in the game repeatedly, then eventually they will learn somehow about the
strategies used by opponents. Such a motivation cannot apply to games with unawareness in
general. Games with unawareness model situations where some players may be unaware of
some actions; thus they couldn’t have learned previously about such actions. If such an action
is played during the play of the game, then it is far from clear where the players’ knowledge of
the new equilibrium convention should come from. Therefore, equilibrium notions in strategic
situations with unawareness may make sense only in special situations such as when players’
awareness along the equilibrium path never changes, or when becoming aware also implies that
by some kind of process the new equilibrium convention becomes mutual knowledge.

To avoid the conceptual problems of equilibrium under unawareness, Heifetz, Meier, and
Schipper [2013b] extend extensive-form rationalizability to dynamic games with unawareness.
Extensive-form rationalizablity is an algorithmic solution concept that iteratively eliminates
possible beliefs of players about opponents’ strategies. It does not presume equilibrium. Never-
theless it is a strong solution for standard dynamic games because it entails forward-induction
(Pearce [1984], Battigalli [1997]). In contrast to backward induction, which assumes that play-
ers’ future behavior will be rational, forward induction also attributes rationality to players’
past behavior if possible. Rather than simply excusing unexpected behavior of opponents as
mistakes, a player who uses forward-induction tries to rationalize opponents’ past behavior to
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form predictions about their future behavior. This is important under unawareness because if
a rational player “becomes aware”, she is by definition surprised. If becoming aware is a result
of an opponent’ action, then she should consider the opponent’s intention for making her aware
(rather than discounting it as a mistake) and should use this information to play optimally.

Heifetz, Meier, and Schipper [2011] introduce prudent rationalizability , an outcome refine-
ment of extensive-form rationalizability and an extensive-form analogue to iterated admissi-
bility, for dynamic games with unawareness. Meier and Schipper [2012] define the associated
normal-form game to dynamic games with unawareness and characterize both extensive-form
rationalizability and prudent rationalizability in dynamic games with unawareness by iterated
conditional strict (weak, resp.) dominance in the associated normal-form. Halpern and Rêgo
[2014] extend Nash equilibrium to dynamic games with unawareness. Rêgo and Halpern [2012]
extend sequential equilibrium , a refinement of Nash equilibrium, to dynamic games with un-
awareness because it is known that Nash equilibrium is a quite weak solution concept even in
standard extensive-form games: it does not eliminate, for instance, incredible threats. Feinberg
[2012] extends assessments, the main “ingredient” of sequential equilibrium, to his framework
of dynamic games with unawareness.

While the frameworks briefly discussed above are completely general, some authors consider
certain special classes of games with unawareness. Li [2006] studies a class of dynamic games
that are restricted to perfect information but allow for unawareness. Ozbay [2008] studies
dynamic interaction among one fully aware first-mover and a potentially unaware second mover.
He introduces a refinement of an analogue to Perfect Bayesian equilibrium that entails forward
induction. Grant and Quiggin [2013] present a framework for dynamic games with unawareness
and apply sequential equilibrium as solution concept. Their framework is somewhat special
because it excludes situations in which the set of terminal nodes of which one player is aware
may be disjoint from the set of terminal nodes of which another player is aware.

Nielsen and Sebald [2012] merge dynamic unawareness games with another conceptual inno-
vation of recent game theory: dynamic psychological games (Battigalli and Dufwenberg [2009]).
In standard dynamic games, preferences of players are defined over terminal nodes of the game.
But players may also have a variety of psychological attitudes such as emotions and intentions
like guilt and reciprocity. Thus, they may not just care about the material outcome of the
game but also about other player’s beliefs about them. Preferences over opponent’s beliefs are
excluded in standard dynamic games but explicitly allowed in dynamic psychological games.
Nielsen and Sebald [2012] are motivated by the observation that psychological attitudes of a
player like feeling guilty when taking a certain action depend very much on whether the oppo-
nent is aware that the player could have acted otherwise. They consider dynamic psychological
games with unawareness and sequential equilibrium but restrict themselves to two players only.

7 Summary

An overview over approaches discussed in this chapter is given in Figure 6. For lack of space,
we excluded in this picture probabilistic approaches to unawareness (Section 4) as well as
extensions to dynamic awareness and games with unawareness (Section 6). While the upper
part of the figure lists single-agent structures, the middle part shows multi-agent structures.
Finally, the lower part presents structures with awareness of unawareness. Roughly, we indicate
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generalizations by an arrow and equivalence by a bi-directional arrow. Beside the arrows, we
sometimes list articles that show the connection between the approaches. Often these results
imply further relationships. The interested reader should consult the original papers for the
precise notions of equivalence.

Figure 6 also shows a connection to the impossible worlds approach by Rantala [1982a,b].
Wansing [1990] shows that it is equally expressive to awareness structures of Fagin and Halpern
[1988]. Thijsse [1991], Thijsse and Wansing [1996], and Sillari [2008a,b] contain further results
along those lines.

Our review leaves out many topics. For instance, some of the discussed papers also contain
results on the complexity of deciding the satisfiability of formulas (e.g., Fagin and Halpern
[1988], Ågotnes and N. [2007], Halpern and Rêgo [2009] and van Ditmarsch and French [2011a]).

Complexity may also be related to awareness on a conceptual level. Already Fagin and
Halpern [1988] suggested that one may want to consider a computational-based notion of aware-
ness of agents who may lack the computational ability to deduce all logical consequences of their
knowledge. Fagin, Halpern, Moses, and Vardi [1995] (Chapter 10.2.2) discuss the connection
between algorithmic knowledge and awareness. One may also conceive of a computational-
based notion of awareness of an object that roughly corresponds to the amount of time needed
to generate that object within a certain environment. Such an approach is pursued by Devanur
and Fortnow [2009] using Kolmogorov complexity.

There is a growing literature to unforeseen contingencies in decision theory. Here is not
the space to give an adequate review and the interested reader may want to consult Dekel,
Lipman, and Rustichini [1998b] for an early review of some of the approaches. Most work on
unforeseen contingencies is best understood in terms of awareness of unawareness discussed in
Section 5. More recent work appears, among others, in Nehring [1999], Dekel, Lipman, and
Rustichini [2001], Epstein, Marinacci, and Seo [2007], Krishna and Sandowski [2013], Ahn and
Ergin [2010] and the literature cited therein. Decision theoretic approaches to unawareness are
pursued in Schipper [2013, 2014], Li [2008b] and Karni and Vierø [2013a,b]. Schipper [2013]
replaces the state-space in the Anscombe-Aumann approach to subjective expected utility by a
lattice of spaces (like in unawareness frames) and axiomatizes subjective expected utility that
depends on the decision maker’s awareness level. He then uses the approach to show that
unawareness has behavioral implications distinct from zero-probability. Li (2008) also studies
zero-probability versus unawareness. Karni and Vierø [2013a,b] study updating of beliefs and
awareness. Expanding awareness is analogous to “reverse Bayesian updating”.

Although we expect many more applications of unawareness to emerge, this concept has been
applied to various contexts already. In Section 4.3 we outlined the application of unawareness to
speculative trade. Another application pertains to the disclosure of verifiably information (and
awareness) (see Heifetz, Meier, and Schipper [2011], Schipper and Woo [2014] and Li, Peitz, and
Zhao [2014]). For instance, Schipper and Woo [2014] study modern electoral campaigning in
which candidates microtarget voters with limited political awareness by raising certain political
issues and providing some information on their political preferences over those issues. Galanis
[2013b] analyzes the value of information under unawareness. Unawareness has been naturally
applied to incomplete contracting (Lee [2008], Filiz-Ozbay [2012], Auster [2013], Grant, Kline,
and Quiggin [2012] and von Thadden and Zhao [2012a,b]). Board and Chung [2011b] discuss
unawareness in the presence of some legal doctrines. Liu [2008] discusses an application to fair
disclosure in financial markets.
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Figure 6: Partial overview over the literature
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