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Abstract
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tion of the opponent, in time periods, and in the discount rate. As an interesting
example outside this class of games we present a repeated “textbook-like” Cournot
duopoly with non-negative prices and show that the optimal control strategy in-
volves a cycle.

Keywords: Strategic teaching, learning, adaptive heuristics, dynamic optimiza-
tion, strategic substitutes, strategic complements, myopic players.

JEL-Classifications: C70, C72, C73.

∗I thank Rabah Amir, the associate editor, and three anonymous reviewers as well as participants
at the 2007 Stony Brook Game Theory Festival for helpful comments. I also thank Zhong Sichen for
very able research assistance. This work developed from a joint experimental project with Peter Dürsch,
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1 Introduction

The question of how to get to equilibrium is arguably as old as the notion of equilibrium.
Already Cournot (1838) suggested that firms may reach equilibrium in a quantity setting
duopoly by using myopic best response learning. By now there is a large literature on
learning in games (for monographs reviewing the literature, see Fudenberg and Levine,
1998, Young, 2013, Hart and Mas-Colell, 2013). This literature focused on “symmetric
learning”: All players follow the same learning heuristic. Yet, as abilities of players
may differ in the real world, it is natural to ask whether a more sophisticated player
could strategically teach other learning players and manipulate them to her advantage.
Strategic teaching has received only limited attention in the literature on learning (last
chapter of Fudenberg and Levine, 1998, Schipper, 2017, Hyndman, Ozbay, Schotter, and
Ehrblatt, 2012, Camerer, Ho, and Chong, 2002, Duersch, Kolb, Oechssler, and Schipper,
2010, and Terracol and Vaksmann, 2009). Although some learning heuristics are quite
simple (sometimes to the extent that players seem oblivious to the strategic aspects of
the interaction), it may still be a non-trivial problem to find the optimal strategy against
it. In the case in which the opponent learns according to myopic best response, we are
able to characterize the optimal strategy in large relevant classes of two-player games
that include games in which a each player’s payoff function satisfies strategic substitutes
or complements and positive or negative externalities. We think that focusing on myopic
best response learning provides a natural starting point because it is arguably the first
learning heuristic that has been studied in a game (Cournot, 1838), it has been widely
studied in various classes of games (e.g., Dubey, Haimanko, and Zapechelnyuk, 2006,
Kukushkin, 2004, Monderer and Shapley, 1996), and many other learning heuristics retain
some features of best response learning (e.g., Hart and Mas-Colell, 2006).

For the sake of concreteness, consider a repeated symmetric Cournot duopoly in which
a player’s one-shot payoff function is given by

m(xt, yt) = max{109− xt − yt, 0} · xt − xt, (1)

where xt ∈ R+ (resp. yt ∈ R+) denotes the action of the player (resp. opponent) in
period t. Assume further that the opponent plays a myopic best response to the previous
period’s quantity of the player, that is

yt = max

{
108− xt−1

2
, 0

}
. (2)

Myopic best response can be viewed as a very simple adaptive heuristics. What is the
player’s optimal strategy against such an opponent? Is there a possibility to strategically
manipulate the opponent such that he plays favorable to the player? This may require
that the player forgoes some short-run profit in order to gain more in the long run.

We can view this setting as a dynamic programming problem for which the player’s
one period objective function is given by function (1) into which we substitute func-
tion (2). The problem is a bit non-standard in the sense that the objective function is

2



not everywhere concave and differentiable, conditions usually required for dynamic pro-
gramming (see Stokey, Lucas and Prescott, 1989, Bertsekas, 2005). Nevertheless, it is
quite natural to conjecture that the optimal strategy of the player may involve to play
a (current) best response in the last period and Stackelberg leadership in the previous
periods. However, in an experiment in which human subjects played this game against
a computer programmed to myopic best response (see Duersch, Kolb, Oechssler and
Schipper, 2010), we discovered to our surprise one participant who played the 4-cycle
of quantities depicted by the upper time series in Figure 1 and obtained a much higher
average profit than the Stackelberg leader profit.1 This experimental discovery triggered
the current analysis. Can such a cycle be optimal?

Figure 1: Cycle played by a participant

In this article we will show that if the two-player game satisfies a version of strategic
substitutes or strategic complements, namely decreasing or increasing differences, then
the optimal control strategy is monotone in the initial action of the opponent, the discount
rate, and in time periods. Examples of this class of games include some Cournot duopolies
(Amir, 1996b), Bertrand duopolies (Vives, 1999), common pool resource games, public
goods games, rent seeking games, Diamond’s search, arms race (Milgrom and Roberts,
1990) etc. The key for the results is to apply methods from lattice programming (Topkis,
1978, 1998) to dynamic programming (see Topkis, 1978, Puterman, 1994, Amir, 1996a).
It turns out that our problem is similar to a Ramsey-type capital accumulation problem
solved in Amir (1996a). That paper was motivated by a very different application in

1The game was repeated over 40 rounds. The participant played the cycle of quantities (108, 70, 54,
42). This cycle yields an average payoff of 1520 which is well above Stackelberg leader payoff of 1458. In
this game, the Stackelberg leader’s quantity is 54, the follower’s quantity is 27 (payoff 728), the Cournot
Nash equilibrium quantity 36 (payoff 1296). The computer is programmed to myopic best response with
some noise. The x-axis in Figure 1 indicates the rounds of play, the y-axis the quantities. The lower
time series depicts the computer’s sequence of actions. The upper time series shows the participant’s
quantities. See Duersch, Kolb, Oechssler and Schipper (2010) for details of the game and the experiment.
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macroeconomics and no connection was made to our game theoretic problem. We ap-
ply his results to manipulation of myopic best-response learning and slightly extend it
whenever necessary. Note that above example of the Cournot duopoly does not satisfy
decreasing or increasing differences everywhere, which is caused by insisting on a non-
negative price (see Section 3). That is, the results in Section 2 cannot be directly applied
to our Cournot duopoly. Yet, we show in Section 3 how to use the results “piecewise” to
conclude that a cycle of the four quantities (108, 68, 54, 41) is the optimal control strat-
egy, which is very close to the cycle (108, 70, 54, 42) actually played by the participant in
the experiment discussed above.2

Our approach in this paper bears some resemblance with the literature on infinitely
repeated games with long-run and short-run players (sometimes referred to also as long-
lived and short-lived players) (see Fudenberg, Kreps, and Maskin, 1990, Fudenberg and
Levine, 1989, 1994). In this literature a long-run optimizer faces a sequence of static (or
current period’s) best response players who play only once. This is different from our
model, in which the short-run player plays a best response to the previous period’s action
of the opponent. Our study can be seen as replacing the short-run player by a previous
period’s best response player. In a sense we “merge” the literature on repeated games
with the literature on adaptive learning. As Fudenberg and Levine (1998, Chapter 8.11)
point out, strategic teaching has been studied in repeated games with rational players
but it is less prominent in learning theory. Camerer, Ho, and Chong (2002, 2006) study
adaptive experience-weighted attraction learning of players in repeated games but allow
for sophisticated players who respond optimally to their forecasts of all others’ behav-
ior. Their focus is on estimating such learning models with experimental data. There
are only a few theoretical papers on learning in games in which players follow different
learning theories (Banerjee and Weibull, 1995, Droste, Hommes, and Tuinstra, 2002,
Hehenkamp and Kaarbøe, 2008, Juang, 2002, Schipper, 2009, 2017, Duersch, Oechssler,
and Schipper, 2012, 2014). They focus on the evolutionary selection or relative success
of different boundedly rational learning rules.3 For instance, Duersch, Oechssler, and
Schipper (2012) characterize the class of symmetric two-player games (that includes the
Cournot duopoly mentioned in our paper) in which imitate-if-better cannot be beaten by
any other decision rule no matter how sophisticated. Similarly, Duersch, Oechssler, and
Schipper (2014) show that in symmetric two-player game tit-for-tat cannot be beaten
by any other decision rule if and only if the game is an exact potential game. Another
paper related to our work is Ellison (1997), who analyzes a large population which be-
sides of players following a version of fictitious play also contains a single rational player.
He shows that if players are randomly matched to play a 2x2 coordination game, the
rational player may shift the play from a risk and Pareto dominated equilibrium to a risk

2In fact, the average payoff of the optimal cycle is 1522, only a minor improvement over the average
payoff (1520) of the cycle played by the participant.

3As a reviewer pointed out, this literature is related to the literature on indirect evolution (e.g., Güth
and Peleg, 2001, Heifetz, Shannon, and Spiegel, 2007). Yet, instead of the evolution of utility function,
the evolution of learning heuristics is featured.
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and Pareto dominant equilibrium but not vice versa. He also presents examples of some
other 2x2 games and some 3x3 games, and shows that there can be cycles in which the
rational player can achieve larger payoffs than in equilibrium. Our results go beyond 2x2
and 3x3 games and focus on a dynamic optimizer against a myopic best response player.
In Section 4, we provide a further discussion of selected related literature.

The next section presents the model and monotonicity results. In Section 3 we discuss
the cyclic Cournot example. We conclude with a discussion in Section 4. For better
readability, all proofs are relegated to the appendix.

2 Model

2.1 The Dynamic Programming Problem

There are two players, a manipulator and a puppet. Let X, Y be two nonempty compact
subsets of R. We denote by x ∈ Xy (resp. y ∈ Y ) the manipulator’s (resp. puppet’s)
action, where Xy is a continuous nonempty compact-valued correspondence from Y to
2X . That is, we allow that the manipulator’s set of actions may depend upon the puppet’s
action.4

Let m : X × Y −→ R (resp. p : Y ×X −→ R) be the manipulator’s (resp. puppet’s)
one-period payoff function. We write m(xt, yt) for the payoff obtained by the manipulator
in period t if he plays xt and the puppet plays yt (analogous for the puppet). We assume
that each player’s payoff function is bounded. Further, we assume that m is upper
semi-continuous on X × Y and p is continuous on Y × X and strictly quasiconcave in
y ∈ Y . These assumptions are motivated in Lemma 1 below. Some of the assumptions
may be stronger than necessary. For instance, in Section 4, we discuss how to weaken
strict quasiconcavity of p to quasiconcavity. Note that we do not impose any concavity
assumption on m.

Let B : X −→ 2Y be the puppet’s best response correspondence. Moreover, let
the puppet’s best response function b : X −→ Y be a selection of the best response
correspondence, i.e., b(x) ∈ B(x) for any x ∈ X.

Time is discrete and indexed by t = 0, ..., T . T may be infinity. We assume that the
puppet is a myopic best response player with a given best response function. That is,
given the manipulator’s action xt−1 in period t− 1, the puppet’s action at period t is

yt = b(xt−1)

for t = 1, ... and given y0 ∈ Y .

Let b(X) be the range of the puppet’s best response function. We assume that
y0 ∈ b(X), i.e., the puppet’s initial action is a best response to some action of the

4In Section 4 we explain why we do not consider here multi-dimensional strategy sets.
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manipulator. We believe that this assumption is not restrictive since a best response
player should play by definition a best response to some action of the opponent.5

We allow the manipulator’s set of actions to depend on the puppet’s action for the
sake of generality. The manipulator anticipates how his action today affects his set of
feasible actions tomorrow via the puppet’s best response tomorrow.6 Nothing changes in
our analysis if we were to assume instead that Xy is constant in y, but assumptions on
Xy do play a role in the statements of the results.

For the existence of an optimal strategy, the manipulator’s objective function should
satisfy some continuity properties. While m above is assumed to be upper semicontinuous
on X×Y , this property does not necessarily extend to the modified one-period objective
function m̂(·, ·) := m(·, b(·)) defined on X ×X. This is the reason for imposing stronger
assumptions on the puppet’s objective function p.7 The following lemma is useful for the
study of the optimization problem of the manipulator when the puppet is a myopic best
response player.

Lemma 1 If Xy is a continuous, nonempty, and compact-valued correspondence from Y
to 2X , m is upper semicontinuous on X×Y , and p is continuous and strictly quasi-concave
in y on Y given x ∈ X, then m̂(·, ·) := m(·, b(·)) is upper semicontinuous on X ×X and
Xx := Xb(x) is a upper hemicontinuous, nonempty, and compact-valued correspondence
from X to 2X .

The proof is contained in the appendix.

We can now consider the following Ramsey-type dynamic optimization problem

sup
T−1∑
t=0

δtm̂(xt, xt−1) (3)

s.t. x−1 ∈ b−1(y0) given y0, and xt ∈ Xxt−1 for t = 0, 1, ..., T − 1, and 0 < δ < 1.

By standard arguments of dynamic programming (see Stokey, Lucas and Prescott,
1989, Bertsekas, 2005), the value function or Bellman equation satisfies

Mn(x) = sup
z∈Xx

{m̂(z, x) + δMn−1(z)} (4)

for n = 1, 2, ... with M0 ≡ 0, and

M∞(x) = sup
z∈Xx

{m̂(z, x) + δM∞(z)}. (5)

5Note that throughout the analysis we do not allow the manipulator to choose suitably the initial
action of the puppet.

6As a reviewer rightfully points out this would be problematic if the manipulator does not know the
learning heuristic used by the puppet.

7As a reviewer pointed out, we could have stated the model just in terms of assumptions on m and a
continuous best response function b. This might be even more realistic as the manipulator may observe
the opponent’s best responses but not necessarily the opponent’s payoff function.
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Note that the index in the equations corresponds to the time horizon of the optimization
problem. Mn(x) denotes the manipulator’s objective function of the n-period dynamic
optimization problem. That is, the index n runs backwards in time.

Lemma 2 If Xy is a continuous, nonempty, and compact-valued correspondence from
Y to 2X , m is upper semicontinuous on X × Y , and p is continuous and strictly quasi-
concave in y on Y given x ∈ X, then for n = 1, 2, ..., the value functions Mn and M∞
are upper semicontinuous on X

The proof is contained in the appendix.

In light of Lemma 2, optimal control strategies exist. We can replace the sup in
equation (4) and (5) by the max. Let Sn(x) be the arg max w.r.t. equation (4) (resp. (5))
if n is finite (resp. infinite). Sn(x) is the set of all optimal decisions in the first period
when the problem’s horizon consists of n periods. Let sn be a selection of Sn, and s̄n and
sn be the maximum and minimum selection of Sn. If T is finite, we restrict attention to
Markovian control strategies defined as sequence of transition functions (d0, d1, ..., dT−1)
with dt : X −→ X and dt(x) ∈ Xx. When T is infinity, then we restrict our analysis to
stationary Markovian control strategies (d, d, ...) with d : X −→ X and d(x) ∈ Xx. Such
optimal control strategies exist but there may exist other optimal control strategies as
well.

One may reasonably conjecture that actions of the manipulator approach the action
of the leader in a Stackelberg outcome. This is not necessarily the case. This is easiest
seen in the finite horizon. Suppose that the manipulator had played the Stackelberg
leader quantity in the second last period. Then in the last period the puppet plays the
Stackelberg follower quantity. Consequently, the optimal action of the manipulator in
the last period is to play a best response to the Stackelberg follower quantity rather than
to play the Stackelberg leader quantity. An example is discussed in the next section.8

Nevertheless, there is a close connection to Stackelberg outcomes in terms of payoffs.
The manipulator can guarantee herself the Stackelberg leader payoff (except for the
initial period). The intuition is simply that since the puppet plays a best response to
the manipulator’s previous action, it would adjust to the Stackelberg follower quantity
(with respect to his selection b from the best response correspondence) if the manipulator
plays a Stackelberg leader quantity. Thus, the manipulator can now guarantee herself
the Stackelberg leader payoff by simply playing the Stackelberg leader action.

To make this precise, let XS = arg maxx∈Xx m(x, b(x)). This is the set of Stackelberg
leader actions when the puppet uses best response selection b. Clearly, by Lemma 1,
XS 6= ∅. Assume any initial action of the puppet y0 ∈ Y such that XS ∩ Xy0 . This
assumption avoids the problem that none of the Stackelberg leader actions are feasible
when the puppet plays initial action y0. Since there could be more than one Stackelberg

8In the first four periods, the cyclic example of Section 3 coincides with the smooth problem that we
discuss in Section 3. Proposition 1 applies to this smooth problem. The manipulator’s quantity in the
last period is 41, which is the best response to the puppet’s Stackelberg follower quantity.
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leader action, let xs ∈ arg maxx∈XS∩Xyo
m(x, y0). That is, xs is a Stackelberg leader

action that is feasible and payoff maximizing given the puppet’s initial action y0. Again,
such action exists in light of Lemma 1. Now, given δ and the initial action of the puppet,
y0, define the n-period discounted Stackelberg leader payoff by

Ln(y0) := m(xs, y0) +
n−1∑
t=1

δtm̂(xs, xs).

We can now state the observation on the payoff bound as follows:

Remark 1 For any initial action of the puppet y0 ∈ Y such that XS ∩Xy0 6= ∅ and any
time horizon n > 1, there exists δ̄ ∈ [0, 1) such that for all δ ∈ (δ̄, 1) and x ∈ b−1(y0),

Mn(x) ≥ Ln(y0) and M∞(x) ≥ Ln(y0).

The proof follows now simply from the fact that the manipulator could resort to play
the Stackelberg leader action xs in every period, which would guarantee her a payoff of
Ln(y0). The example discussed in the introduction and Section 3 shows that this bound
is not necessarily tight. That is, there are games for which the manipulator can achieve
a strictly higher payoff than the discounted Stackelberg leader payoff (see Footnote 1).

2.2 Monotonicity of Objective Functions

Before we can study properties of the solution for our dynamic optimization problem,
we need to state some definitions and preliminary results. The first definition concerns
a common notion of strategic complements (resp. strategic substitutes). A function
f : X × Y −→ R has increasing (resp. decreasing) differences in (x, y) on X × Y if for
x′′ > x′, x′′, x′ ∈ Xy′′ ∩Xy′ and for all y′′, y′ ∈ Y ∩ Y with y′′ > y′,

f(x′′, y′′)− f(x′, y′′) ≥ (≤)f(x′′, y′)− f(x′, y′).

This function has strictly increasing (resp. strictly decreasing) differences if the inequality
holds strictly. The function f is a valuation if it has both increasing and decreasing
differences. The function f has strongly increasing (resp. strongly decreasing) differences
in (x, y) on Xy × Y if X, Y ⊆ R+, Xy is a continuous, convex- and compact-valued
correspondence from Y to 2X , f is continuously differentiable, and for all y′′, y′ ∈ Y with
y′′ > y′,

∂f(x, y′′)

∂x
> (<)

∂f(x, y′)

∂x
.

A payoff function has positive (resp. negative) externalities if it is increasing (resp.
decreasing) in the opponent’s action.
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The following examples illustrate the relatively broad applicability of our analysis.
More general versions could be considered but the point is that many any “textbook”-
like two-player games from a wide array of applications fall into the class of games we
consider here.

Example 1 (Cournot Duopoly with Linear Demand) Consider a (quasi) Cournot
duopoly given by the symmetric payoff function m(x, y) = (b− x− y)x− c(x) with b > 0
(and analogously for p(y, x)). The payoff function m has strictly decreasing differences
and negative externalities. Moreover, p is strictly concave if costs are convex.

Example 2 (Bertrand Duopoly with Product Differentiation) Consider a differ-
entiated duopoly with constant marginal costs, in which the manipulator’s payoff function
is given by m(x, y) = (x − c)(a + by − 1

2
x), for a > 0, b ∈ [0, 1/2) (and symmetrically

for the puppet). This game has strictly increasing differences and positive externalities.
Moreover, payoffs are also strictly concave.

Example 3 (Public Goods) Consider the class of symmetric public good games de-
fined by m(x, y) = g(x, y) − c(x) where g(x, y) is some symmetric benefit function in-
creasing in both arguments and c(x) is an increasing cost function (and symmetrically
for p). Various assumptions on g have been studied in the literature but often some com-
plementarity of contributions is assumed. If g has increasing differences then so has m
and p. If g is concave in y and c is convex, then p is convex.

Example 4 (Common Pool Resources) Consider a common pool resource game with
two appropriators (Walker, Gardner, and Ostrom, 1990). Each appropriator has an en-
dowment e > 0 that can be invested in an outside activity with marginal payoff c > 0 or
into the common pool resource. Let x ∈ X ⊆ [0, e] denote the opponent’s investment into
the common pool resource (likewise y denotes the imitator’s investment). The return from
investment into the common pool resource is x

x+y
(a(x+ y)− b(x+ y)2), with a, b > 0. So

the manipulator’s payoff function is given by m(x, y) = c(e−x)+ x
x+y

(a(x+y)−b(x+y)2)

if x, y > 0 and ce otherwise (and symmetrically for the puppet). This game has negative
externalities, decreasing differences, and is strictly concave in the player’s action.

Example 5 (Minimum Effort Coordination) Consider the class of minimum effort
games given by the symmetric payoff function m(x, y) = min{x, y}−c(x) for some convex
cost function c(·) (see Bryant, 1983, and Van Huyck, Battalio, and Beil, 1990). This
game has positive externalities, increasing differences, and is concave.

Example 6 (Synergistic Relationship) Consider a synergistic relationship among two
individuals. If both devote more effort to the relationship, then they are both better off,
but for any given effort of the opponent, the return of the player’s effort first increases
and then decreases (see Osborne, 2004, p.39). The manipulator’s payoff function is given
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by m(x, y) = x(c+ y − x) with c > 0 and x, y ∈ X ⊂ R+ with X compact (and symmet-
rically for the puppet). This game has positive externalities, increasing differences, and
is strictly concave.

Example 7 (Diamond’s Search) Consider two players who exert effort searching for
a trading partner. Any trader’s probability of finding another particular trader is propor-
tional to his own effort and the effort by the other. The symmetric payoff function is
given by m(x, y) = αxy − c(x) for α > 0 and c increasing and convex (see Milgrom and
Roberts, 1990, p. 1270). The game has positive externalities, increasing differences, and
is concave.

A set of actions Xy ⊆ R is expanding (resp. contracting) if y′′ ≥ y′ in Y implies that
Xy′′ ⊇ (⊆)Xy′ . A correspondence F : X −→ 2Y is increasing (resp. decreasing) if x′′ ≥ x′

in X, y′′ ∈ F (x′′), y′ ∈ F (x′) implies that max{y′′, y′} ∈ F (x′′) (resp. min{y′′, y′} ∈
F (x′)).

The following lemma shows how above conditions on the game’s payoff functions
m and p translate into properties of the manipulator’s objective function m̂. These
properties will allow us later on to show properties of optimal control strategies.

Lemma 3 (Properties of m̂) (i) Monotone Differences: Table 1 establishes rela-
tionships between increasing and decreasing differences of m, p, and m̂. E.g., if
both m and p have increasing differences, then so has m̂ (first line of Table 1).

(ii) Monotonicity in the Second Argument: Table 2 establishes relationships between
positive and negative externalities of m, increasing or decreasing differences of p,
and monotonicity of m̂(xt+1, xt) in xt. E.g., if m has positive externalities and p
has increasing differences, then m̂(xt+1, xt) is increasing in xt for every xt+1 (first
line of Table 2).

The proof is contained in the appendix. It makes use of results by Topkis (1998).

According to Lemma 3 (i) whenever m and p have the same kind of monotone differ-
ences, then m̂ has increasing differences. Moreover, when m and p have different kinds
of monotone differences, then m̂ has decreasing differences. These facts are not too sur-
prising. Monotone differences of the puppet’s objective function translate into monotone
best responses. If the puppet’s best responses are increasing - as in the case of increas-
ing differences of the puppet’s payoff function - then it preserves increasing differences
of the manipulator’s payoff function (understood now as a function of the manipulator’s
actions today and yesterday). Yet, with decreasing puppet’s best responses, it essentially
reorders the second argument of the manipulator’s payoff function by the dual order and
the manipulator’s payoff function with increasing differences in her and the opponent’s
actions has now decreasing differences in her actions today and yesterday.

The significance of Lemma 3 is that it allows us now to apply some results proved for
Ramsey-type capital accumulation problems by Amir (1996a) (see Puterman, 1994, for
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Table 1:

If and then
m has p has m̂ has

strongly strictly incr. decr strongly strictly incr. decr. strongly strictly incr. decr.
differences differences differences
√ √ √

√ √ √
√ √ √

√ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √

√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √

Table 2:

If and then
m has p has m̂(xt+1, xt) is

positive negative increasing decreasing increasing decreasing

externalities differences in xt√ √ √
√ √ √

√ √ √
√ √ √

related results) to derive some properties of n-period value functions. Lemma 4 states
that the n-period value functions are monotone in the previous period’s action of the
manipulator.

Lemma 4 Table 3 establishes the monotonicity of the n-period value functions Mn in
the previous period’s action of the manipulator. E.g., if m has positive externalities, p
has increasing differences, and Xy is expanding, then Mn is increasing in x (first line of
Table 3).

The proof follows from above lemmata and the proof of Theorem 1(i) in Amir (1996a).
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Table 3:

If and and then
m has p has Xy is Mn is on X

positive negative increasing decreasing expanding contracting increasing decreasing

externalities differences
√ √ √ √

√ √ √ √
√ √ √ √

√ √ √ √

According to Lemma 4 the monotonicity of the n-period value function does not depend
on increasing or decreasing differences of the manipulator’s payoff function. This is
because it pertains to the monotonicity with respect to previous period’s action by the
manipulator. This also suggests that it should depend crucially on whether m displays
positive or negative externalities in the puppet’s action.

2.3 Monotone Optimal Control Strategies

Proposition 1 (i) states that the n-period optimal control strategies are monotone in
the previous period’s action of the manipulator. The monotonicity crucially depends
on both the increasing or decreasing differences of m and p. Whenever, both m and p
have increasing differences or both have decreasing differences, then largest and smallest
selections of n-period optimal control strategies are increasing in the previous period’s
action of the manipulator. Otherwise, if monotone differences of m and p differ, these
selections are decreasing in the previous period’s action of the manipulator. In analogy
to monotone best responses for games with monotone differences, this can be viewed
as a results on monotone “dynamic” best responses (i.e., monotone best responses to a
dynamic optimization problem).

Proposition 1 (ii) claims that the (n+1)-horizon optimal control strategy is larger than
the n-horizon optimal control strategy. That is, optimal control strategies are monotone
over time. This means, that for any initial action of the manipulator the first-period
action of the manipulator in the n + 1-period horizon optimization problem is larger
than the manipulator’s first-period action in the n-period horizon problem. This can be
viewed as a dynamic version of Topkis style monotone comparative statics result where
the comparative statics is with respect to the time horizon of the dynamic optimization
problem.

Finally, Proposition 1 (iii) states sufficient conditions for maximal and minimal se-
lections of the optimal control strategies being monotone increasing in the discount rate.
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This is a dynamic version of Topkis style monotone comparative statics results where the
comparative statics is with respect to the discount factor.

Proposition 1 (i) Table 4 establishes that the n-period optimal control strategies are
monotone in the previous period’s action of the manipulator, for n = 1, 2, ... E.g.,
if both m and p have increasing differences and Xy is increasing, then both s̄n and
sn is increasing on X (first line of Table 4).

Table 4:

If and and then
m has p has Xy is ... is

strictly incr. decr. strongly incr. decr. increasing decreasing incr. decr.

differences differences on X
√ √ √

s̄n, sn√ √ √
s̄n, sn√ √ √

s̄n, sn√ √ √
s̄n, sn√ √ √ √ √

sn√ √ √ √ √
sn√ √ √ √ √

sn√ √ √ √ √
sn

(ii) Table 5 establishes the relationship between (n+ 1)-horizon optimal control strategy
and the n-horizon optimal control strategy, for n = 1, 2, .... E.g., if m has positive
externalities, both m and p have increasing differences, and Xy is expanding, then
for n = 1, 2, ..., s̄n+1 ≥ s̄n and sn+1 ≥ sn (first line of Table 5).

Table 5:

If and and then
m has both m and p have Xy is

positive negative increasing decreasing expanding contracting for n = 1, 2, ...

externalities differences
√ √ √

s̄n+1 ≥ s̄n, sn+1 ≥ sn√ √ √
s̄n+1 ≥ s̄n, sn+1 ≥ sn√ √ √
s̄n+1 ≤ s̄n, sn+1 ≤ sn√ √ √
s̄n+1 ≤ s̄n, sn+1 ≤ sn

13



(iii) Suppose that [m has positive externalities and both m and p have increasing dif-
ferences] or [m has negative externalities and both m and p have decreasing differ-
ences] and Xy is expanding. If δ′′ ≥ δ′, δ′′, δ′ ∈ (0, 1), then s̄n(·, δ′′) ≥ s̄n(·, δ′) and
sn(·, δ′′) ≥ sn(·, δ′).

This proposition is essentially an application of Topkis’s (1978, 1998) results on the
monotone comparative statics of supermodular functions on lattices. The proof of Propo-
sition 1 (i) follows from above lemmata and the proof of Theorem 1 (iii) in Amir (1996a).
The proof of the first two lines in the table of Proposition 1 (ii) follow from above lem-
mata and Amir (1996a, Theorem 2 (i)). The last two lines extend Theorem 2 (i) in Amir
(1996a) and the proof is contained in the appendix. Such extension becomes possible
here because we focus only on single-dimensional variables whereas Amir (1996a) allows
the set of variables to be a lattice. Given previous lemmata, the proof of Proposition 1
(iii) is essentially analogous to the proof of Theorem 2 (ii) in Amir (1996a). Nevertheless
we decided to state it in the appendix.9

One may be tempted to conjecture analogous results to Proposition 1 (ii) for cases in
which the monotone differences of m and p differ. In the appendix we show an auxiliary
result (Proposition 3) according to which if monotone differences of payoff functions
differ, then Mn(x) has no monotone differences in (n, x) unless it is a valuation. Hence,
we can not hope to prove with the same methods a result similar to Proposition 1 (ii)
if monotone differences of m and p differ. How do optimal control strategies look like in
such cases? Below Example 1 suggests that if monotone differences of m and p differ,
then the optimal control strategy may involve a cycle. Moreover the example shows that
the manipulator may play a strictly dominated action of the one-shot game within the
cycle. Thus, apparent “irrational” behavior may in fact be rational in a dynamic context
even if just finite repetitions are considered.

Example 8 Consider the following 2x2 game:

l r
t 0, 1 0, 3
d 6, 6 20, 4

For any possible ordering of each player’s action set, the game has monotone differences
but the monotone differences differ among players. That is, if either [l > r and t > d] or
[l < r and t < d], then the row player’s payoff function has increasing differences whereas
the column player’s payoff function has decreasing differences. Otherwise, if either [l > r
and t < d] or [l < r and t > d], then the row player’s payoff function has decreasing
differences whereas the column player’s payoff function has increasing differences.

Let the manipulator’s payoff function correspond to the row player’s payoffs, and the
puppet’s payoff function to the column player’s payoffs. If T ≥ 2, T an even integer (T

9Amir (1996a, Theorem 2 (ii)) does not state explicitly that the one-period value function is increasing
and Xy is expanding. Yet, this property is required in the proof.
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may be finite), then it is easy to see that a cycle of t, d, t, d, ... is optimal. If the puppet’s
initial action is l, such a cycle yields a payoff stream of 0, 20, 0, 20, ... whereas repeated
play of the unique Nash equilibrium action d, d, d, d, ... yields 6, 6, 6, 6, ....

Note that t is strictly dominated by d in the one-shot game. Thus, the example
demonstrates that the manipulator may use a strictly dominanted action in an optimal
control strategy if it induces the puppet to a response favorable to the manipulator.10

One may also conjecture results analogous to Proposition 1 (iii) for the cases in which
monotone differences of m and p differ or when externalities of m are reversed. We
discuss this in the appendix and show with some auxiliary results (Proposition 4) that
the results of Proposition 1 do not extend to such cases.

The next proposition strengthens the conclusions of Proposition 1 to strict monotonic-
ity. This comes at the cost of assuming strongly increasing or decreasing differences (and
thus the differentiability of the payoff functions). The result may be useful in applications
where strict monotonicity is of interest.

Proposition 2 Let X be a nonempty, convex compact subset of R+, and let Xx be a
compact-valued, convex-valued, and continuous correspondence from X to 2X . Moreover,
let sn be any interior optimal strategy for n = 1, 2, ..., i.e. sn(x) is in the interior of Xx.

(i) Table 6 establishes that the n-period optimal control strategies are monotone in
the previous period’s action of the manipulator, for n = 1, 2, ... E.g., if both m
and p have strongly increasing differences and Xy is increasing, then sn is strictly
increasing on X (first line of Table 6).

Table 6:

If and and then
m has strongly p has strongly Xy is ... is strictly

incr. decr. incr. decr. incr. decr. incr. decr.

differences differences on X
√ √ √

sn√ √ √
sn√ √ √

sn√ √ √
sn

(ii) Table 7 establishes the relationship between (n + 1)-horizon optimal control strat-
egy and the n-horizon optimal control strategy, for n = 1, 2, .... E.g., if m has
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Table 7:

If and and then
m has both m and p have strongly Xy is

positive negative increasing decreasing expanding contracting for n = 1, 2, ...

externalities differences
√ √ √

sn+1 > sn√ √ √
sn+1 > sn√ √ √
sn+1 < sn√ √ √
sn+1 < sn

positive externalities, both m and p have strongly increasing differences, and Xy is
expanding, then n = 1, ..., sn+1 > sn (first line of Table 7).

(iii) Suppose that [m has positive externalities and both m and p have strongly increas-
ing differences] or [m has negative externalities and both m and p have strongly
decreasing differences] and Xy is expanding. If δ′′ > δ′, δ′′, δ′ ∈ (0, 1), then
sn(·, δ′′) > sn(·, δ′).

The proofs of the first two lines in Proposition 2 (i) follow from previous lemmata
and Amir (1996a, Theorem 3(i)). The last two lines extend Amir (1996a, Theorem 3(i)),
and the proof is contained in the appendix. Such an extension becomes possible here
because we focus on one-dimensional action sets only. The proof of the first two lines
in Proposition 2 (ii) follow from previous lemmata and Amir (1996a, Theorem 3 (ii)).
The last two lines extend Amir (1996a, Theorem 3(ii)), and the proof is contained in
the appendix. Again, such an extension becomes possible here because we focus on
one-dimensional action sets only. The proof of Proposition 2 (iii) follows from previous
lemmata, Proposition 1 (iii), and the proof of Amir (1996a, Theorem 3 (iii)).

3 The Cyclic Example

Consider the standard textbook Cournot duopoly discussed in the introduction. In this
section we want to show that a cycle is optimal in this example. First note that the results
from the previous section do not apply to the example. The Cournot duopoly does not
satisfy decreasing differences everywhere, which is due to insisting on a non-negative

10This finding that an optimal control strategy involve strictly dominated actions is not restricted to
games for which monotone differences differ among players.
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price. To see this note that for instance

m(100, 0)−m(50, 0) < m(100, 100)−m(50, 100)

800− 2900 < −100− 50

while

m(40, 20)−m(30, 20) > m(40, 30)−m(30, 30)

1920− 1740 > 1520− 1440.

Consider now a “smooth” version of the game, in which we do not insist on a non-
negative price. The symmetric payoff function is given by

m̃(x, y) = (108− x− y) · x.

This game has strongly decreasing differences everywhere and negative externalities.
Thus, Proposition 1 applies. Optimal control strategies are monotone decreasing over
time periods, decreasing in the puppet’s initial quantity, and increasing in the discount
factor. The graph of the smooth payoff function m̃ is identical to the graph of the orig-
inal payoff function for the range of actions x ∈ [0, 109 − y]. In this range the original
game satisfies strictly decreasing differences. Similarly, for any n we can find the range
of x0 where the smooth n-period objective function coincides with the original n-period’s
objective function.

We want to prove that a cycle of four actions (108, 68, 54, 41) is optimal. This cycle is
very close to the cycle actually played by the participant in the experiment as discussed in
the introduction. The idea of the proof is as follows: Since we consider a finite repetition
of the game, we can use backwards induction. By our previous results, any optimal
sequence of actions must be monotonically decreasing over time as long as x0 is in the
range where the n-period objective function coincides with the smooth n-period objective
function.11 We show that if the game is repeated for eight periods, then this assumption
is violated in the fifth period. We show that in this game it means that there must be
cycle if n = 8, and it turns out that the 4-cycle (108, 68, 54, 41) is optimal. Using our
monotonicity results, we extend the result to n > 8.

For n = 1, 2, ..., 8, we write down recursively the n-period objective functionsMn(x1, x0)
as a function of the past quantity x0 and the quantity decided by the manipulator in
period 1. The quantities of the manipulator in the following n−1 periods are the optimal

11Since we look at cycles (of finite length), we can neglect discounting in the calculations below.
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quantities given by the n− 1 period problems.12

M1(x1, x0) = max{109− x1 − b(x0), 0} · x1 − x1
M2(x1, x0) = max{109− x1 − b(x0), 0} · x1 − x1

+ max{109− s1(x1)− b(x1)} · s1(x1)− s1(x1)
M3(x1, x0) = max{109− x1 − b(x0), 0} · x1 − x1

+ max{109− s2(x1)− b(x1)} · s2(x1)− s2(x1)
+ max{109− s1(x2)− b(x2)} · s1(x2)− s1(x2)

...
...

...

and solve for the n-period optimal control action sn(x) under the assumption that x is
in the range where the n-period objective function coincides with the smooth n-period
objective function:13

s1(x) =
1

4
· x+ 27 if x ∈ [0, 108]

s2(x) =
4

15
· x+ 36 if x ∈ [41.59, 108]

s3(x) =
15

56
· x+

270

7
if x ∈ [53.560, 108]

s4(x) =
56

209
· x+

432

11
if x ∈ [56.264, 108]

s5(x) =
209

780
· x+

513

13
if x ∈ [56.959, 108]

s6(x) =
780

2911
· x+

1620

41
if x ∈ [57.142, 108]

s7(x) =
2911

10864
· x+

3834

97
if x ∈ [57.191, 108]

s8(x) =
10864

40545
· x+

672

17
if x ∈ [57.204, 108]

E.g., s2(x) above is the manipulator’s optimal first period quantity to the two-period
problem for the original non-smooth problem if the initial quantity satisfies x ∈ [41.59, 108]
since under the latter condition the non-smooth problem coincides with the smooth prob-
lem.

If x is outside the respective for range for which the n-period objective function
coincides with the smooth n-period objective function, then there is a corner solution
sn(x) = 108 since the graph of the n-period objective function has the typical shape
depicted in Figure 2. The figure depicts as an example the smooth (lower graph) and the

12To save space, we write out only the objective functions for n = 1, 2, 3.

13Interestingly, the denominator in the linear factor in sn is identical the numerator of the linear factor
in sn+1.
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original (upper graph) n-period objective functions for n = 2, M2(x1, x0). The vertical
axis measures profits over two periods. Variable x1 refers to the decision variable of the
manipulator in the first period of the 2-period problem. Variable x0 is the manipulator’s
initial quantity. For n > 2, the graphs of the objective functions are qualitatively similar.
There is always a segment in which the smooth and original objective functions separate.

Figure 2: Smooth and Original Objective Functions for n = 2

If x1 = 108, then Mn(108, x0) is constant for all x0 > 1. That is, if x1 = 108 then the
n-periods payoff is constant in x0. It does not matter to the manipulator what the pup-
pet plays in period 1. In particular, the puppet could play a best response to x0. Now,
this creates an opportunity for a n-period cycle to emerge that starts with the manip-
ulator playing x1 = 108. Then by Proposition 1 the quantity of the manipulator would
fall monotonically as time progresses as long as the (n − k)-period objective function
coincides with the smooth (n− k)-period objective function for k = 1, ..., n− 1 since the
game has decreasing differences and negative externalities. The cycle restarts once the
manipulator’s quantity falls outside the range for which the smooth n-period objective
function coincides with the original n-period objective function. At this point, the ma-
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nipulator plays again 108 and the puppet best responds to the previous quantity of the
manipulator. The cycle length depends now on n for which the manipulator’s quantity
falls outside the range for which the smooth n-period objective function coincides with
the original n-period objective function.

In the experiment mentioned in the introduction, the initial puppet’s action was set
to y = 40. That is, if we consider the (n = 8)-period problem, already in the 0-period’s
quantity x0 = 28 (defined by 40 = b(x0)) would be outside the range for which the 8-
period objective function coincides with the smooth 8-period objective function. Hence
there must be at least an 8-cycle (or lower cycle-length) in the 8-period problem.

Suppose there is such a 8-cycle in the 8-period problem, then by above arguments
x8 = 108. Using the n-period optimal control strategies for n = 1, 2, ..., 6, 7 above, we
can compute the optimal sequence of quantities of the manipulator when x8 = 108:

t 1 2 3 4 5 6 7 8
n 8 7 6 5 4 3 2 1

sn(xt=8−n) = xt 108 68.464 57.857 54.964 54 53.036 50.143 39.536

We note that n = 4 is the largest n for which the previous period’s quantity x8−n is
outside the range for which the n-period objective function coincides with the n-period
smooth objective function. I.e., x4 = 54.964 /∈ [56.264, 108]. Therefore we cannot use
s4(x4) to compute the optimal quantity in t = 5. Hence, x5 above is not optimal. Thus,
the proposed 8-cycle cannot be optimal. It follows that a smaller cycle must be optimal.
Indeed, when we compute all smaller cycles using n-period optimal control strategies sn
with starting value 108, then we find that the 4-cycle is optimal.

Consider now the strategic control problems for this game with more than k periods
for k > n for k being a multiple of 4. Suppose that a 4-cycle is not optimal anymore for
such a problem with a time period larger than 8. Then we must have that xk−4 in optimal
path for the k-period problem is strictly larger than x4 for the 8 period problem above.
Otherwise, by previous arguments the 4-cycle would be optimal. This could only be true
if xk−7 in the optimal path of k-period problem is strictly larger than x1 for the 8-period
problem, since by Proposition 1 (i) for n = 1, 2, ... we have that sn is monotone increasing
in the previous period’s quantity. However, already for the 8-period problem we have
x1 = 108, the largest undominated action that makes the puppet leave the market in the
following period. Hence, xk−7 in the optimal path for the k period problem can not be
larger than 108. This implies that xk−4 in optimal path for the k-period problem is not
strictly larger than x4 in the 8-period problem. We conclude that the 4-cycle is optimal.

What happens if there is a finite repetition of the game for which the number of
periods can not be divided by 4? For all problems with less then 8 periods it is easy to
verify that in the last 4 periods the 4-cycle is optimal. In any previous periods there is
an optimal path monotone over periods since the range-assumption won’t be violated.
For problems with a finite number of periods larger than 8 that can not divided by 4, the
4-cycle is optimal for the last 4` periods for ` = 1, 2, .... For any previous periods, there
is an optimal path monotone over periods since the range-assumption is not violated.
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The result of optimal cycles may be generalized to a larger class of Cournot games in
which we insist on a non-smooth lower bound for the price although the optimal cycle
length and quantities in the cycle may depend on the parameters of the game. Yet,
quantities should decrease over the length of each cycle before jumping up again since
the game has decreasing differences for substantial range of quantities as well as negative
externalities. The importance of the non-smooth lower bound for prices is that for market
quantities that would push the prices even lower, the game displays increasing differences
instead of decreasing differences. That is, the monotone differences switch once market
quantities are such that the price hits its lower bound. This is the point at which the
graph of the original objective function differs from the graph of the smooth objective
function in Figure 2. See the beginning of this section for an illustration.

Finally, we note that the example is not non-generic. That is, small perturbations of
the payoff functions m and p do not change the result qualitatively.

4 Discussion

In this article we assumed that actions are one-dimensional although lattice programming
allows usually to prove results even if strategies are multi-dimensional. The crucial
assumption required is that payoffs are supermodular in actions. To see what may go
wrong in our case, note that if we assume that both m and p are supermodular in
actions, then m̂ may not be supermodular even if every best response selection b(x) is
supermodular in x. E.g. the composition of m(·,−b(x)) may not be supermodular in x
on X.

We used the cardinal properties of decreasing and increasing differences to obtain
our results. Our results can not necessarily be extended to the weaker ordinal notion of
(dual) single crossing property. The reason is that the manipulator’s objective function is
a weighted sum of one-period payoff functions. It is well know that the sum of functions
each satisfying the single-crossing property may not satisfy the single-crossing property
(Milgrom and Shannon, 1994).

In Lemma 1 we assume that p is strict quasi-concave in y. This is probably too
strong. We require that m is upper semicontinuous and b continuous, since if b is just
upper semicontinuous the composition m̂ may not be an upper semicontinuous function.
E.g., if b is an upper semicontinuous function then −b is a lower semicontinuous function.
Hence m(·,−b(·)) may not be a upper semicontinuous function. It would suffice to obtain
a continuous selection b from B. By Michael’s Selection Theorem we could require that
B is a convex-valued lower hemicontinuous correspondence. But the Theorem of the
Maximum just yields a upper hemicontinuous correspondence. As a remedy, we could
try to find an approximation along arguments similar to the one used in generalizing
Brouwer’s fixed point theorem to Kakutani’s fixed point theorem. While it may not be
possible to find a continuous selection of an upper hemicontinuous correspondence, a
convex-valued upper hemicontinuous correspondence can be approximated by a closed
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and convex-valued lower hemicontinuous correspondence. Note that convex-valuedness
of B requires quasi-concavity of p anyway.

In our model we require that the initial action of the puppet is a best response to some
action of the manipulator. This may be quite restrictive when period 0 is viewed as the
first period. After all a motivation for learning theories is to study whether boundedly
rational learning could converge to a rational action without assuming that players start
already with it. Yet, we believe that this assumption is not restrictive because myopic
best response players are programmed to best replies. So no matter what they play, it
should be a best response to some of the opponent’s action.

At the first glance, the optimal cycle in the Cournot duopoly with a non-negative
price may look surprising. Yet, we also found optimal cycles in games where one player’s
payoff function has increasing differences while the other player’s payoff function has
decreasing differences (Example 1). Moreover, it is easy to see that the optimal control
strategy against a myopic best response player in a matching pennies game involves a
two-cycle. Similarly, a three-cycle is optimal in the Rock-Paper-Scissors game. Note
however that the optimal cycle in the Cournot game or Example 1 is more subtle since it
involves the manipulator’s play of strict dominanted actions of the one-shot game while
in those zero-sum games the manipulator always plays a best response and hence he does
not need to sacrifice short term for long term gain.14 I am thankful to a reviewer pointing
out that optimal cycles in control problems also appear in competitive economies with a
representative agent (Benhabib and Nishimura, 1985, Boldrin and Montrucchio, 1986).

Any optimal cycles are due to the “mechanistic” nature of myopic best response. It
seems quite unrealistic that a player even if he is adaptive should not recognize cycles
after some time. Aoyagi (1996) studies repeated two-player games with adaptive players
who are able to recognize patterns such as cycles in the path of play. Indeed, it may be
worthwhile to extend our analysis and allow the best response player to recognize cycles.

One reviewer raised the interesting question whether an example of Cournot duopoly
could be designed in which there is a chaotic optimal orbit (which would also preclude
the benefit of cycle recognition). It is known in the literature that chaotic orbits can
appear with best response type dynamics in versions of Cournot duopoly (Rand, 1978).
Moreover, as another reviewer pointed out, chaos has been observed in optimal capital
accumulation problems (Boldrin and Montrucchio, 1986). However, we conjecture that it
is impossible to create an example of Cournot duopoly with a myopic best response player
against whom the dynamically optimal player has an optimal chaotic strategy. The reason
is that in the range of output combinations in which the game has decreasing differences,
quantities of the optimizer are monotone decreasing over time (Proposition 1). So one
would need to create an example without decreasing differences in some “significant”
portion of the range. Such a game is hard to interpret as Cournot competition that

14We like to remark that not in all zero-sum games the optimal control strategy of the manipulator
involves a cycle. This is the case for some classes of zero-sum games studied in Duersch, Oechssler and
Schipper (2012, 2014).
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almost epitomizes decreasing differences. To sum up, while it possible to create complex
dynamics in Cournot duopoly, we doubt that there could be an example that still satisfies
the main features of our cyclic example, namely one myopic best response player and one
dynamic optimizer in Cournot duopoly.

Recently, Schipper (2017) studied strategic teaching of uncoupled learning heuristics
leading to Nash equilibrium. A learning heuristic is uncoupled if it does not take as
input opponents’ payoffs. Myopic best response is one example of an uncoupled learning
heuristic. It also converges to Nash equilibrium in an interesting class of games that
contains our example of the Cournot duopoly. Previous research has shown that there
exist uncouple learning heuristics that converge to Nash equilibrium in all finite games.
Schipper (2017) shows that there does not exist an uncouple learning learning heuristic
that if played by all players converges to Nash equilibrium in all finite games but that
cannot be manipulated away from Nash equilibrium. Some player may teach opponents
in order to increase his long run payoff. This result applies even when restricted to the
class of games with increasing differences or decreasing differences as considered in our
paper. His results are very general as they apply to large classes of games and all uncou-
pled learning heuristics leading to Nash equilibrium. The flip-side is that he is unable
characterize the optimal strategic teaching strategy. In the current paper we focus on
one uncoupled learning learning heuristic and particular interesting classes of games and
characterize the optimal strategic teaching strategy. Schipper (2017) also characterizes
bounds on long run payoff that a manipulator can achieve against an uncoupled learning
heuristic leading to Nash equilibrium. He shows that the manipulator can achieve at
least the worst Stackelberg leader payoff. This generalizes Remark 1 to all uncoupled
learning heuristics converging to Nash equilibrium in all games or subclasses of games I
consider in this paper.

A related recent paper is Kordonis, Charalampidis, and Papavassilopoulos (2017).
They study games with uncertainty over payoffs so that players can try to manipulate
other players by pretending to have payoffs different from their actual payoffs. With only
one pretender, she can achieve payoffs of the Stackelberg leader, echoing the literature on
reputation formation in repeated games (e.g., Fudenberg and Levine, 1989) and strategic
teaching of learners in Schipper (2017). Several classes of games are considered and the
results are applied to electricity markets.

We view our analysis as a first step towards studying strategic control of a particular
adaptive learning heuristic. We envision several possible extensions: First, one may want
extend our analysis to n-player games in order to allow for several manipulators and
puppets. Allowing for several manipulator’s brings the strategic aspect between rational
players back into the dynamic problem. The manipulators could cooperate using repeated
games strategies and take turns in making sacrifices required to manipulate puppets
to their advantage. I like to offer the following line of arguments in support of this
conjecture: Consider (m + p)-player game with m manipulators and p puppets. Since
the puppets are just myopic best response robots, we consider the game as a m-player
stochastic game in which the law of motion is given by the myopic best response of the p

23



puppets. Now we can use the folk theorem for stochastic games by Dutta (1995) to show
that the m manipulators through the construction of punishment strategies can cooperate
to achieve at least the Stackelberg leaders payoff (in the sense of the Stackelberg outcome
with many leaders that appeared in Bulavzky and Kalashnikov, ZAMM 1996). In such
an outcome, Stackelberg leaders play Nash equilibrium among themselves given the best
response output of Stackelberg followers. Manipulators should be able to do even better
by reaching joint payoff maximizing outcomes given the best response of puppets. At
present, I do not know whether there is an optimal manipulation strategy of manipulators
in the (m + p)-player extension of our Cournot duopoly that is also cyclic or whether
optimal manipulation strategies are monotone when games have increasing or decreasing
differences everywhere. This is left for future research.

Second, we can envision extensions to other adaptive learning heuristics such as fic-
titious play15, reinforcement learning, imitation, trail & error learning, etc. Third, we
assumed that the manipulator knows that the puppet plays myopic best response but
it is more realistic to assume that such knowledge is missing. Could the manipulator
learn the learning theory of the opponent (and the nature of the noise if any)? These
extensions are left for future research as well.

A Proofs and Auxiliary Results

Proof of Lemma 1 If p is upper semicontinuous in y on Y , then by the Weierstrass
Theorem an argmax exist. By the Theorem of the Maximum (Berge, 1963), the argmax
correspondence is upper hemicontinuous and compact-valued in x. Since p is strictly
quasi-concave, the argmax is unique. Hence the upper hemicontinuous best response
correspondence is a continuous best response function. Since m is upper semicontinuous
and b is continuous, we have that m̂ is upper semicontinuous. �

Proof of Lemma 2 Under the conditions of the Lemma we have by Lemma 1 that m̂
is upper semicontinuous on X×X. By the Theorem of the Maximum (Berge, 1963), M1

is upper semicontinuous on X. If Mn−1 is upper semicontinuous on X and m̂ is upper
semicontinuous on X×X, then since δ ≥ 0, m̂(x′, x)+δMn−1(x

′) is upper semicontinuous
in x′ on X. Again, by the Theorem of the Maximum, Mn is upper semicontinuous on X.
Thus by induction Mn is upper semicontinuous on X for any n.

Let L be an operator on the space of bounded upper semicontinuous functions on X

15One reviewer suggested that if the puppet uses fictitious play rather than myopic best response, then
it is much more difficult to manipulate with a cycle. Fictitious play is an uncoupled learning heuristic.
Moreover, in our Cournot example, the Stackelberg outcome is unique. Thus, it follows from Schipper
(2017) that the payoff to the dynamic optimizer would be strictly above Nash equilibrium. So fictitious
play can be exploited by a patient dynamic optimizers in our Cournot example although the strategy
may not be cyclic. At present, the form of the optimal manipulation strategy against a fictitious player
is not clear to us and is left for future research.
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defined by LM∞(x) = supx′∈Xx{m̂(x′, x)+δM∞(x′)}. This function is upper semicontin-
uous by the Theorem of the Maximum. Hence L maps bounded upper semicontinuous
functions to bounded upper semicontinuous functions. L is a contraction mapping by
Blackwell’s sufficiency conditions (Stokey, Lucas, and Prescott, 1989). Since the space
of bounded upper semicontinuous functions is a complete subset of the complete metric
space of bounded functions with the sup distance, it follows from the Contraction Map-
ping Theorem that L has a unique fixed pointM∞ which is upper semicontinuous onX. �

Proof of Lemma 3 We state the proof just for one case. The proof of the other cases
follow analogously.

(i) If p has strongly decreasing differences in (y, x) on Y ×X, then by Topkis (1998)
b is strictly decreasing in x on X. If m has strongly decreasing differences in (x, y) on
X × Y , m̂(·, ·) = m(·, b(·)) must have strongly increasing differences on X ×X.

(ii) If p has decreasing differences in (y, x) on Y × X, then by Topkis (1998) b is
decreasing in x on X. Hence, if m has negative externalities, m̂(x′, x) = m(x′, b(x)) must
be increasing in x. �

Proof of Proposition 1 (ii) The proofs of the first two lines in the table of Proposition 1
(ii) follow directly from previous Lemmata and Amir (1996a, Theorem 2 (i)). The last
two lines require a proof.

Line 3 (resp. Line 4): If m has positive externalities, and both m and p have de-
creasing differences (resp. m has negative externalities, and both m and p have increasing
differences), and Xy is contracting, then s̄n+1 ≤ s̄n and sn+1 ≤ sn.

We first show that in this case Mn(x) has decreasing differences in (n, x) on N×X.
We proceed by induction by showing that for x′′ ≥ x′ and for all n ∈ N,

Mn(x′′)−Mn(x′) ≤Mn−1(x
′′)−Mn−1(x

′). (6)

For n = 1, inequality (6) reduces to M1(x
′′) ≤ M1(x

′) since M0 ≡ 0. Since m has
positive externalities and p has decreasing differences (resp. m has negative externalities
and p has increasing differences), and Xy is contracting, we have by Lemma 4, line 3
(resp. line 4), that Mn is decreasing on X. Hence, the claim follows for n = 1.

Next, suppose that inequality (6) holds for all n ∈ {1, 2, ..., k − 1}. We have to show
that it holds for k = n. Consider the maximand in equation (4), i.e.,

m̂(z, x) + δMk−1(z).

Since both m and p have decreasing differences (resp. both m and p have increasing
differences), we have by Lemma 3 (i), line 2 (resp. line 1), that m̂(z, x) has increasing
differences in (z, x). Mn(z) has decreasing differences in (n, z) on {1, 2, ..., k − 1} ×
X by the induction hypothesis. Hence Mn(z) has increasing differences in (−n, x) on
{−(k−1), ...,−2,−1}×X. We conclude that the maximand is supermodular in (z, x,−n)

25



on Xy × X × {−(k − 1), ...,−2,−1}.16 By Topkis’s (1998, Theorem 2.7.6), Mn(x) has
increasing differences in (x,−n) on X×{−k,−(k−1), ...,−2,−1}. Thus it has decreasing
differences in (x, n) on X×{1, 2, ..., k}. This proves the claim that Mn(x) has decreasing
differences in (n, x) on N×X.

Finally, the dual result for decreasing differences to Topkis (1998, Theorem 2.8.3 (a))
implies that both s̄n+1 ≤ s̄n and sn+1 ≤ sn. This completes the proof of line 3 (resp. line
4) in Proposition 1 (ii). �

Auxiliary Result to Proposition 1 (ii) Proposition 1 (ii) makes no mentioning of
four other cases in which the monotone differences of m and p may differ. The following
proposition show that analogous results for those cases can not be obtained.

Proposition 3 (i) If [m has positive externalities and decreasing differences, and p
has increasing differences] or [m has negative externalities and increasing differ-
ences, and p has decreasing differences], and Xy is expanding, then Mn(x) has
neither increasing nor decreasing differences in (n, x) unless it is a valuation.

(ii) If [m has positive externalities and increasing differences, and p has decreasing
differences] or [m has negative externalities and decreasing differences, and p has
increasing differences], and Xy is expanding, then Mn(x) has neither increasing nor
decreasing differences in (n, x) unless it is a valuation.

Proof. We just prove here part (i). Part (ii) follows analogously.

Suppose to the contrary that Mn(x) has decreasing differences in (n, x). We want
to show inductively that for x′′ ≥ x′ we have for all n ∈ N inequality (6). For n = 1,
inequality (6) reduces to M1(x

′′) ≤ M1(x
′) since M0 ≡ 0. Since either [m has positive

externalities and p has increasing differences] or [m has negative externalities and p has
decreasing differences], and Xy is expanding, we have by Lemma 4, line 3 (resp. line 4),
that Mn is increasing on X. Hence, a contradiction unless M1(x

′′) = M1(x
′).

Suppose now to the contrary that Mn(x) has increasing differences in (n, x). We want
to show inductively that for x′′ ≥ x′ we have for all n ∈ N,

Mn(x′′)−Mn(x′) ≥Mn−1(x
′′)−Mn−1(x

′). (7)

For n = 1, inequality (7) reduces to M1(x
′′) ≥M1(x

′) since M0 ≡ 0. Since either [m has
positive externalities and p has increasing differences] or [m has negative externalities
and p has decreasing differences], and Xy is expanding, we have by Lemma 4, line 3
(resp. line 4), that Mn is increasing on X, which implies M1(x

′′) ≥M1(x
′).

Furthermore, suppose that inequality (7) holds for all n ∈ {1, 2, ..., k − 1}. We
have to show that it holds for k = n. Consider the maximand in equation (4), i.e.

16A real-valued function f on a lattice X is supermodular on X if f(x′′∨x′)−f(x′′) ≥ f(x′)−f(x′′∧x′)
for all x′′, x′ ∈ X (see Topkis, 1998, p. 43).
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m̂(z, x) + δMk−1(z). Since [m has decreasing differences and p has increasing differences]
or [m has increasing differences and p has decreasing differences], we have by Lemma 3 (i),
line 3 or 4, that m̂(z, x) has decreasing differences in (z, x). Hence m̂(z, x) has increasing
differences in (z,−x). Mn(z) has increasing differences in (n, z) on {1, 2, ..., k−1}×X by
the induction hypothesis. We conclude that the maximand is supermodular in (z,−x, n)
on Xy ×X × {1, 2, ..., k − 1}. By Topkis’s (1998, Theorem 2.7.6), Mn(x) has increasing
differences in (−x, n) on X ×{1, 2, ..., k− 1}. Thus it has decreasing differences in (x, n)
on X × {1, 2, ..., k}, a contradiction unless it is a valuation. �

Proof of Proposition 1 (iii) The proof is essentially analogous to the proof of Theorem
2 (ii) in Amir (1996a). We explicitly state where we require that m̂ is increasing on X
and Xy is expanding.

We show by induction on n that Mn(x, δ) has increasing differences in (x, δ) ∈ X ×
(0, 1). For n = 1, the claim holds trivially since M1 is independent of δ.

Assume that Mk−1(x, δ) has increasing differences in (x, δ). We need to show that
Mk(x, δ) has increasing differences in (x, δ) has well. We rewrite equation (4) with explicit
dependence on δ and n = k,

Mk(x, δ) = max
z∈Xy

{m̂(z, x)− δMk−1(z, δ)}. (8)

Since [both m and p have increasing differences] or [both m and p have decreasing dif-
ference], we have by Lemma 3 (i), line 1 or 2, that m̂(z, x) has increasing differences in
(z, x). Mk−1(z, δ) has increasing differences in (δ, z) by the induction hypothesis. That
is, for δ′′ ≥ δ′ and z′′ ≥ z′,

Mk−1(z
′′, δ′′)−Mk−1(z

′, δ′′) ≥Mk−1(z
′′, δ′)−Mk−1(z

′, δ′). (9)

Since [m has positive externalities and p has increasing differences] or [m has negative
externalities and p has decreasing differences] and Xy is expanding, we have by Lemma 4,
line 1 or 2, that Mk−1(z, δ) is increasing in z on Xy. Hence both the LHS and the RHS
of inequality (9) are positive. Therefore, multiplying the LHS with δ′′ and the RHS with
δ′ preserves the inequality. We conclude that δMk−1(z, δ) has increasing differences in
(δ, z). Hence the maximand in equation (8) is supermodular in (δ, z, x) on (0, 1)×Xy×X.

By Topkis’s (1998, Theorem 2.7.6), Mn(x, δ) has increasing differences in (δ, x) on
X× (0, 1). Finally, Topkis (1998, Theorem 2.8.3 (a)) implies that s̄n(·, δ′′) ≥ s̄n(·, δ′) and
sn(·, δ′′) ≥ sn(·, δ′). This completes the proof of Proposition 1 (iii). �

Auxiliary Results to Proposition 1 (iii) Proposition 1 (ii) is silent on a number of
cases:

Proposition 4 Suppose that [m has positive externalities, m has decreasing differences,
and p has increasing differences] or [m has negative externalities, m has increasing dif-
ferences, and p has decreasing differences] and Xy is expanding. Then Mn(x, δ) has NOT
increasing differences in (δ, x) on (0, 1)×X unless it is a valuation.
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Proof. Suppose to the contrary that Mn(x, δ) has increasing differences in (δ, x) ∈
(0, 1)×X. For n = 1 the claim is trivial since Mn is independent of δ.

Assume that Mk−1(x, δ) has increasing differences in (x, δ). We need to show that
Mk(x, δ) has increasing differences in (x, δ) has well. Consider the maximand in equa-
tion (8). Since [m has decreasing differences and p has increasing differences] or [m has
increasing differences and p has decreasing difference], we have by Lemma 3 (i), line 3 or
4, that m̂(z, x) has decreasing differences in (z, x). Hence, it has increasing differences
in (z,−x). Mk−1(z, δ) has increasing differences in (δ, z) by the induction hypothesis so
that inequality (9) holds.

Since [m has positive externalities and p has increasing differences] or [m has negative
externalities and p has decreasing differences] and Xy is expanding, we have by Lemma 4,
line 1 or 2, that Mk−1(z, δ) is increasing in z on Xy. Hence both the LHS and the RHS of
inequality (9) are positive. Therefore, multiplying the LHS with δ′′ and the RHS with δ′

preserves the inequality. We conclude that δMk−1(z, δ) has increasing differences in (δ, z).
Hence the maximand in equation (8) is supermodular in (δ, z,−x) on (0, 1)×Xy ×X.

By Topkis’s (1998, Theorem 2.7.6), Mn(x, δ) has increasing differences in (δ,−x) on
X × (0, 1). Hence it has decreasing differences in (δ, x), a contradiction unless it is a
valuation. �

Two other cases, namely

(i) [m has positive externalities and both m and p have decreasing differences] or [m
has negative externalities and both m and p have increasing differences] and Xy is
contracting,

(ii) [m has positive externalities, increasing differences, and p has decreasing differ-
ences] or [m has negative externalities, decreasing differences, and p has increasing
differences] and Xy is contracting,

can not be dealt with the method used to prove Proposition 1 (iii) and Proposition 4.
Both cases are such that according to Lemma 4 we have that Mn(x, δ) is decreasing on
X. Therefore the analogous inequality to (9) may be reversed if multiplying the LHS
with δ′′ and the RHS with δ′.

Proof of Proposition 2 (i) Note that the first-order condition for the maximization
in equation (5) (analogously for equation (4)) is

∂m̂(x, s(x))

∂z
+ δ

∂M(s(x))

∂x
= 0. (10)

Suppose that for some x′′ > x′, s(x′′) = s(x′). Then from equation (10) we conclude
∂m̂(x′′,s(x′′))

∂z
= ∂m̂(x′,s(x′))

∂z
, which contradicts that m̂ has strongly decreasing differences in

(x, z). Hence, s(x′′) = s(x′) is not possible, and then by Proposition 1 (i), s(x′′) < s(x′).
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This completes the proof of part (i). �

Proof of Proposition 2 (ii)

The proof is essentially “dual” to the proof of Amir (1996a, Theorem 3 (ii)).

By Proposition 1 (ii) that sn+1(x) ≥ sn(x) for all x ∈ X. Suppose that for some
xn ∈ X, sn+1(xn) = sn(xn). We will show that there exists x′ ∈ X such that sn−1(x

′) =
sn−2(x

′).

Plugging sn+1(xn) = sn(xn) in the Euler equations corresponding to the problem
given in equation (4) for n = 2, 3, ...

∂m̂(sn(xn), xn)

∂z
+ δ

∂m̂(sn−1(sn(xn)), sn(xn))

∂x
= 0, (11)

∂m̂(sn+1(xn), xn)

∂z
+ δ

∂m̂(sn(sn+1(xn)), sn+1(xn))

∂x
= 0, (12)

leads to
∂m̂(sn−1(sn(xn)), sn(xn))

∂x
=
∂m̂(sn(sn+1(xn)), sn+1(xn))

∂x
.

Since m̂ has strongly increasing differences by Lemma 3 (i) we must have sn−1(sn(xn)) =
sn(sn+1(xn)). Hence sn−1(sn(xn)) = sn(sn(xn)). Set xn−1 ≡ sn(xn). Thus sn−1(xn−1) =
sn(xn−1). Plugging into the Euler equations,

∂m̂(sn−1(xn−1), xn−1)

∂z
+ δ

∂m̂(sn−2(sn−1(xn−1)), sn−1(xn−1))

∂x
= 0, (13)

∂m̂(sn(xn−1), xn−1)

∂z
+ δ

∂m̂(sn−1(sn(xn−1)), sn(xn−1))

∂x
= 0, (14)

leads to

∂m̂(sn−2(sn−1(xn−1)), sn−1(xn−1))

∂x
=
∂m̂(sn−1(sn(xn−1)), sn(xn−1))

∂x
.

Since m̂ has strongly increasing differences by Lemma 3 (i) last equation implies that
sn−1(sn(xn−1)) = sn−2(sn−1(xn−1)) = sn−2(sn(xn−1)). Hence there exists x′ ∈ X such
that sn−1(x

′) = sn−2(x
′).

By induction we obtain the existence of x2 ∈ X for which s1(x2) = s2(x2). The Euler
equations for the one- and two-period problems at x2 are given by

∂m̂(s1(x2), x2)

∂z
= 0, (15)

∂m̂(s2(x2), x2)

∂z
+ δ

∂m̂(s1(s2(x2)), s2(x2))

∂x
= 0. (16)

Since x2 ∈ X is such that s1(x2) = s2(x2), the Euler equations imply ∂m̂(s1(s2(x2)),s2(x2))
∂x

=
0.

Note that the conditions of line 3 or 4 in Proposition 2 (ii) imply by Lemma 3 (ii)

that ∂m̂(z,x)
∂x

< 0, a contradiction. �
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