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Abstract

We consider a decision maker who is unaware of objects to be sampled and thus cannot
form beliefs about the occurrence of particular objects. Ex ante she can form beliefs about
the occurrence of novelty and the frequencies of yet to be known objects. Conditional on
any sampled objects, she can also form beliefs about the next object being novel or being
one of the previously sampled objects. We characterize behaviorally such beliefs under sub-
jective expected utility. In doing so, we relate “reverse” Bayesianism, a central property
in the literature on decision making under growing awareness, with exchangeable random
partitions, the central property in the literature on the discovery of species problem and
mutations in statistics, combinatorial probability theory, and population genetics. Parti-
tion exchangeable beliefs do not necessarily satisfy “reverse” Bayesianism. Yet, the most
prominent models of exchangeable random partitions, the model by De Morgan (1838), the
one parameter model of Ewens (1972), and the two parameter model of Pitman (1995) and
Zabell (1997), do satisfy “reverse” Bayesianism.
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1 Introduction

Consider a researcher/funding agency/humanity who each period creates/funds/invents a(n)
idea/research project/technology. How should such an agent form beliefs about whether or not
the outcome is truly novel or a derivative of an existing idea/project/technology? The issue is
that ex ante neither the researcher, funding agency, or humanity is aware of all research out-
comes or technologies. Therefore it is impossible to assign subjective probabilities to particular
future ideas, research outcomes, or technologies. Yet, the decision maker can surely reason
about events like the “occurrence of a novelty in period t”, the “reoccurrence of the outcome in
period t+ k that was previously encountered in period t” etc. Such reasoning involves proposi-
tions about objects that are stripped of their concepts. Their names are “delabeled” and objects
are labeled instead by their first time of occurrence. These arguments suggest that the decision
maker is at least able to reason about sampling times and possible partitions of sampling times
into equivalence classes in which the same yet to be known outcome is encountered.

To fix ideas about the setting, consider Figure 1. It depicts the evolution of partitions of
sampling times till period T = 4. Initially, nothing has been sampled as indicated by the empty
set ∅ at the left side of the figure. Since the decision maker is unaware of any particular objects,
she can only consider that a novel object will be drawn in period 1. We indicate the event “a
novel object is drawn” by a black ball “•” above the edge. This leads to the trivial partition
of sampling times in period T = 1, namely {{1}}. Now the agent is aware of the first object.
She can consider the event that the first object is drawn again, indicated by “1.” on top of the
upper edge connecting partition {{1}} to partition {{1, 2}}, or that a (different) novel object is
drawn, indicated by “•” on top of the lower edge connecting {{1}} to partition {{1}, {2}}. The
possible partitions at period T = 2 are {{1, 2}}, i.e., a first object was drawn in the first period
and it was redrawn in the second period, and {{1}, {2}}, i.e., a first object was drawn in period
1 and a second distinct necessarily novel object was drawn in period 2. The process continues.
Whenever the second object is redrawn it is indicated by “2.” above the edge. Analogously we
indicate the third object with “3.”.

What structure should be imposed on such beliefs and their evolution? We are not the
first to consider such questions. Related questions have been considered in the literature on the
discovery of species problem and population genetics, and the subsequent literature in statistics,
combinatorial probability theory, and mathematical biology. Following Kingman (1978a, b),
Aldous (1985), Pitman (1995, 2006), Zabell (1992, 1997) and others, we may impose partition
exchangeability, an extension of de Finetti’s exchangeability idea to partitions. Intuitively,
suppose that each time sampling is performed in a similar fashion. That is, each period the
process of organizing/funding a different avenue of research follows the same procedure. Then
it might be justified to surmise that the occurrence of a known object in one period followed
by a novelty in the next period is as likely as the occurrence of a novelty in the first period and
a known object in the next period. More generally, partitions of sampling times that have the
same frequency of partitions cells of the same cardinality (e.g., frequencies of frequencies) should
be judged equally likely. In terms of Figure 1, it means that partitions printed in the same
color (apart from black) should have the same probability. For instance, all the blue partitions
have exactly a cell of cardinality one and a cell of cardinality two and no other partitions have
exactly these features. In our decision theoretic framework, we impose a symmetry property
on preferences over Savage acts that will characterize partition exchangeable subjective beliefs.
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Figure 1: Partition of Sampling Times till T = 4

We are interested in updating of beliefs conditional on novel objects drawn. What are the
predictive subjective probabilities for drawing another novel object or for redrawing a particular
object drawn earlier? For instance, we may want to impose that the likelihood of novelty should
only depend on how often novelties have occurred in the past and on how many periods we
have sampled so far. Moreover, we may want to impose that the likelihood of a known object
should only depend on its frequency so far and on how many periods we have been sampling. In
such a case, Zabell (1997) showed that the prediction rule is characterized by two parameters.
Consider sampling period T . The conditional probability of a novelty is

Cond. prob. of a novel object in T + 1 =
α ·Number of times novelties experienced + θ

T + θ

and the conditional probability of the jth distinct object that occurred previously is

Cond. prob. of the jth distinct known object in T+1 =
Number of object jth occurrence− α

T + θ

with α ∈ [0, 1) and θ > −α. We characterize this prediction rule in terms properties on
preferences over Savage acts. If subjective beliefs conform to the prediction rule, then behavior
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must correspond to the behavioral characterization and vice versa. From a positive point of
view, it allows for testing with choice experiments whether or not a decision maker entertains
such subjective beliefs. From a normative point of view, it suggests guidelines on behavior that
need to be satisfied if and only if the prediction rule is judged desirable. The parameter θ
is positively associated with the prior belief of a novel object. The parameter α is positively
associated with the effect of observing novelty in the past on the belief of future novelty. We
can think of the decision maker as keeping a “mental” urn consisting of colored balls and a
black ball. Colored balls stand for known objects and the black ball for novelty. Initially the
urn contains a black ball with weight θ. Each time a colored ball is drawn, it is returned to
the urn together with another ball of the same color. Each time a black ball is drawn, it is
returned to the urn together with two other balls, one black ball with weight α and one of a new
color with weight 1 − α. See Aldous (1985) and Pitman (2006, Sections 3.1-2) for alternative
interpretations with the Chinese restaurant process.

The two-parameter model has been central to the literature on exchangeable random par-
titions (see Pitman, 1995). It generalizes the ubiquitous one-parameter model due to Ewens
(1972) according to which the conditional probability of a novelty only depends on the sampling
time. In this case, α = 0, and the urn interpretation corresponds to the Hoppe urn (Hoppe,
1984); see Crane (2016) for a survey on the model associated with the Ewens sampling formula.
We also provide properties on preferences that characterize the Ewens model. In the special
case, when θ = 1, this is the De Morgan (1838, 1845) prediction rule, which is likely the oldest
explicit prediction rule for novelty; see Zabell (1992, 1997) for marvelous discussions.

Well-justified prediction rules for novelties are of utmost importance for humanity. Novelties
can be both the cause for demise and the source for opportunities for humanity. Given the
short written human history, we just have limited data on human creativity. Thus, a subjective
interpretation of novelty creating processes seem desirable. For instance, the research movement
on existential risk aims to predict the occurrence of novel events that could devastate civilization
and ways to mitigate such risks. Typically researchers state subjective risk assessments and
seem to be open to arguments with “mental” urn models. For instance, Bostrom (2019) in his
discussion of the vulnerable world hypothesis uses an urn analogy to grasp the process of human
creativity. A behavioral characterization of subjective beliefs about future novelties allows for
interpreting them as bets.

While our analysis of the evolution of subjective beliefs in the face of discovery of novel
objects draws heavily on the statistical literature motivated by the discovery of species problem
and population genetics, our motivation comes from the literature on subjective belief updat-
ing under unawareness. Unawareness refers to the lack of conception rather than the lack of
information. A decision maker is unaware of an object if she cannot conceive of it. However,
this does not preclude her from realizing that there might be objects out there that she cannot
conceive of. This refers to awareness of unawareness. Several unawareness logics have been
developed that provide a rich formal framework for modeling unawareness1 and even awareness
of unawareness.2 Unawareness is not just a topic of intellectual curiosity but has been applied
to game theory, economics, contract theory, finance, business strategy, electoral campaigning,

1See Fagin and Halpern (1988), Modica and Rustichini (1999), Heifetz, Meier, Schipper (2005, 2008, 2013),
Halpern and Rêgo (2008), and Li (2009). See Schipper (2015) for a survey.

2See Board and Chung (2021), Halpern and Rêgo (2009, 2013), Sillari (2008), Ågotnes and Alechina (2014),
Halpern and Piermont (2019), Fukuda (2021), and Schipper (2021a).
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strategic network formation etc.3

In terms of belief updating in the face of growing awareness, Karni and Vierø (2013, 2017)
and Hayashi (2012) characterize behaviorally “reverse” Bayesianism4 according to which the
relatively likelihood ratio for events that the decision maker is already aware of remains un-
changed upon becoming aware of a novel event.5 Karni and Vierø (2013) and Hayashi (2012)
did not consider awareness of unawareness, i.e., beliefs about becoming aware. However, in
follow-up work, Karni and Vierø (2017) extend their approach to beliefs about becoming aware
(see also Vierø, 2021, for an intertemporal setting, and Vierø, 2023, for a setting with poten-
tially different unknowns). They just consider the case of becoming aware of another outcome
while we consider the case of becoming aware of states/objects. We show in Section 4 that
partition exchangeable beliefs do not necessarily satisfy “reverse” Bayesianism. Yet, the two-
parameter model by Pitman (1995) and Zabell (1997), the Ewens’ one-parameter model, and
the De Morgan model do satisfy it. They can be used to come up with more precise “reverse”
Bayesian updates in sampling problems. We also show that they satisfy an extended notion of
Bayesianism involving the invariance of likelihood ratios for sampling novelty versus a known
object upon sampling another known object. We also observe that the prediction rule for nov-
elties by Kuipers (1973) (that is inconsistent with partition exchangeability) does not satisfy
“reverse” Bayesianism.

The idea of bridging subjective expected utility theory and inductive methods when sam-
pling objects is inspired by Wakker (2002). He characterizes subjective expected utility theory
in the context of sampling known objects that satisfies Carnap’s prediction rule (also called
Carnap’s continuum of inductive methods or Carnap’s inductive logic). The two-parameter
model characterized in our paper can be viewed as a generalization of Carnap’s prediction rule
allowing also for novel objects; see Zabell (1997) for a discussion. Both Wakker (2002) and we
make use of Zabell’s work on inductive methods. Wakker (2002) draws on Zabell’s earlier char-
acterization of the Carnap-Johnson prediction rule for known objects while we draw on Zabell’s
(1997) characterization for the prediction rule of the two-parameter model for sampling with
novel objects. We also make use of Wakker’s (1989) approach to subjective expected utility, in
particular the extension of his “tradeoff consistency” approach to settings with countable addi-
tive probability measures. Two drawbacks of Savage’s approach to subjective expected utility
are that it just yields non-atomistic finitely additive probabilities measures. These features do
not fit with our setting. We avoid them with Wakker’s approach. Recently, Karni (2024) pre-
sented an extension of the Ewens model to sampling from several different urns that contain also
novel outcomes and embeds it into a decision problem. In his approach, predictive probabilities
are treated as objective probabilities while we characterize them as subjective probabilities.

The paper adds to the decision theoretic literature on unawareness beyond Karni and Vierø
(2013, 2017) and Hayashi (2012).6 Central to our approach is the idea of “delabeling” events

3For a bibliography, see http://faculty.econ.ucdavis.edu/faculty/schipper/unaw.htm.
4See also Dominiak and Tserenjigmid (2018, 2022), Dominiak (2022), Karni, Valenzuela-Stookey, and Vierø

(2021), Vierø (2021, 2023), and Chakravarty, Kelsey, and Teitelbaum (2022). Dietrich (2018) also considers
proportional changes of probabilities upon becoming aware.

5This principle has been experimentally studied by Becker et al. (2022). It has been generalized by Piermont
(2021). It has been applied as a belief restriction to solutions in games with unawareness by Francetich and
Schipper (2023). De Canson (2024), Steele and Stefánsson (2021), Mahtani (2021), Roussos (2021), Bradley
(2017), and Wenmackers and Romeijn (2016) provide further discussions of the principle.

6Ahn and Ergin (2010) present an account of partition-dependent expected utility in which likelihood ratios
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that is behind the partition structures of sampling times in the statistical literature originating
with Kingman (1978a,b). Even without concrete names or concepts, a decision maker can rea-
son about the occurrence of distinct but yet to be labeled events over time. For that reason, we
nicknamed Section 2 “delabeled subjective expected utility”. Our approach can be related to
awareness-dependent subjective expected utility of Schipper (2013). He uses it to behaviorally
characterize unawareness of events. The decision maker is unaware of an event if the event is
null and the complement of the event is null. Awareness-dependent subjective expected utility
is best understood as a static approach while the approach presented in this paper has a dy-
namic flavor. In Section 5, we demonstrate how the present approach can give rise to subjective
predictive probabilities in unawareness structures when state spaces in unawareness structures
are interpreted as arising recursively from a process of sampling novel objects. Schipper (2013)
only considers unawareness proper but not awareness of unawareness. Kochov (2018) pro-
vides an approach to behaviorally reveal awareness of unawareness in a dynamic three-period
model. Piermont (2017) uses menu choices to reveal awareness of unawareness. Grant and
Quiggin (2013) argue compellingly that decision makers should inductively infer from having
become aware of events in the past that there might be still events out there of which they
are unaware. Dietrich (2018) studies subjective expected utility à la Savage with unawareness.
Schipper (2014) connects the choice-theoretic approach to the epistemic approach to knowledge
and unawareness. Grant, Meneghel, and Tourky (2021) study learning upon becoming aware
where newly discovered events are initially ambiguous and become less so with learning. They
assume that the underlying stochastic process is a Dirichlet process. The models considered
in our paper are closely related to a generalization, the Poison-Dirichlet process (see Crane,
2016, for a survey). Eichberger and Guerdjikova (2023) consider case-based decisions when the
decision maker is aware of her unawareness of some characteristics of the decision context. They
characterize preferences including a degree of unawareness which is the decision weight placed
on “other characteristics”. Finally, Schipper (2021b) introduces a self-confirming equilibrium
concept for games in extensive form with unawareness that can be understood as a result of a
learning and discovery process.

The next section introduces “delabeled” subjective expected utility. Section 3 contains the
main results on the behavioral characterizations of the prediction rules. Section 4 relates the
prediction rules to “reverse” Bayesianism. An application to unawareness structures is briefly
discussed in Section 5. Section 6 concludes with a discussions. Proofs are relegated to an
appendix.

2 “Delabeled” Subjective Expected Utility

Time periods are discrete and indexed by t ∈ {1, 2, ....}. Each period, the decision maker
samples an object. Initially, the decision maker is unaware of all objects but is aware that
there are objects. Once an object is sampled, she becomes aware of the object. Thus, at
any point of time she is aware of all objects sampled at prior periods and the fact that there
could be novel objects never sampled before. Although she is unable to ex ante form beliefs

are invariant to the partition of the state-space. They also study a notion of completely overlooked events that is
different from the notion of propositional unawareness. Note though that they consider events that are unions of
partitions cells while we consider partitions of sampling times as events, which is very different both at a formal
and conceptual level.
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about particular objects or sequences of particular objects sampled, she can form beliefs over
partitions of sampling in times, for which each partition cell collects the sampling times in
which the same object is sampled. Thus, as in the species sampling literature influenced by
Kingman (1978a, b, c), we take partitions of sampling times as primitives of our analysis and
study the decision makers beliefs over those partitions.

For any T = 1, ..., let ΠT be the set of all partitions of {1, ..., T}. A generic partition of
{1, ..., T} is denoted by πT = (πT

j )
k
j=1 for some strict positive integer k ≤ T , where πT

j is the
j’th partition cell in the order of appearance. Since the order of appearance of partition cells
of samplings times will play role in our exposition, we write the collection of partitions as a
sequence using “(...)” rather than as a set “{...}”. Denote by πT (t) the cell of partition πT that
contains t. For T ′ < T , we write πT

|T ′ :=
{
πT (t) ∩ {1, ..., T ′}

}
t∈{1,...,T ′}. In words, πT

|T ′ is the

partition πT restricted to sampling times {1, ..., T ′} simply by “cutting off” all sampling times
after T ′. We say that a collection of partitions (πT )T=1,... is consistent if for any T > T ′ ≥ 1,
πT
|T ′ = πT ′

. An infinite partition π∞ of N+ is generated by a consistent collection of partitions

(πT )T=1,....

Let Ω be a nonempty topological state space endowed with a σ-algebra ΣΩ. In subjective
expected utility (see for instance Appendix B), the state space is just like an abstract probability
space. The interpretation of events depends on the particular application of subjective expected
utility. In our setting, we are interested in events that model partitions of sampling times. To
this end, we introduce a collection of consistent surjective measurable “partition functions”,
{πT : Ω −→ ΠT }T=1,..., such that for any T = 1, ...,

(0) Measurability: (πT )−1(πT ) ∈ ΣΩ for every partition of sampling times πT ∈ ΠT .

(i) Consistency: For any T ′ < T , πT ′
(ω) = πT (ω)|T ′ .

Condition (i) just says that every partition of sampling times gives rise to a measurable event
via the functions πT , T ≥ 1. Condition (i) requires that the collection of functions πT , T ≥ 1,
gives rise to consistent partitions of sampling times. That is, we exclude inconsistent sequences
of partitions from the analysis as they are objectively impossible. Note that the state space
needs to be large since the set of all partitions is uncountable.

For any T ≥ 1, πT ∈ ΠT , define the event

[πT ] := {ω ∈ Ω : πT (ω) = πT }.

Since πT is measurable for every T ≥ 1, [πT ] ∈ ΣΩ for every πT ∈ ΠT and T .

An real-valued (Savage) act is a measurable mapping f : Ω −→ R. An act is simple if it
is measurable w.r.t. some finite partition of Ω. We abuse notation and denote by x ∈ R the
constant act yielding x for all ω ∈ Ω. Let F denote a set of acts including constant acts and
simple acts.

Consider a preference relation ⪰ defined on F . We denote by ≻ and ∼ the strict preference
and indifference, respectively. The preference relation will be assumed to satisfy properties
such as weak order (i.e., completeness and transitivity), some weak monotonicity property,
some tradeoff consistency property, and continuity properties that capture countable additive
subjective expected utility (Wakker, 1989). See Appendix B for details.
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For any event E ∈ ΣΩ and acts f, g ∈ F , we write fEg for the composite act defined by for
all ω ∈ Ω,

fEg(ω) :=

{
f(ω) if ω ∈ E
g(ω) if ω ∈ Ω \ E

This act assigns outcomes prescribed by f for all states in the event E and outcomes prescribed
by g for all states not in E.

Event E ∈ ΣΩ is simple ⪰-null if for all simple acts f, g, h ∈ F ,

fEh ⪰ gEh.

Otherwise, E is simple ⪰-non-null. A null event is an event for which the decision maker does
not care which outcomes arises.

Below Assumption 1 implies that the Sure Thing Principle holds. Applied to events repre-
senting partitions, it implies that for any T ≥ 1, πT ∈ ΠT , and any acts f, g, h, h′ ∈ F ,

f[πT ]h ⪰ g[πT ]h if and only if f[πT ]h
′ ⪰ g[πT ]h

′.

That is, preferences over acts are just affected by the states for which outcomes differ among
acts. Given that the Sure Thing Principle holds for events representing partitions, we can define
partition-conditional preferences as follows: For any f, g ∈ F , T ≥ 1, and πT ∈ ΠT ,

f ⪰πT g if and only if f[πT ]h ⪰ g[πT ]h

for some h ∈ F . By the Sure Thing Principle for partition events, it immediately follows that
f[πT ]h ⪰ g[πT ]h for all h ∈ F . Note that conditional on πT , we trivially have that the event

Ω \ [πT ] is simple ⪰πT -null. That is, for any simple acts f, g, h ∈ F , fΩ\[πT ]h ⪰πT gΩ\[πT ]h.
Thus, by the Sure Thing Principle, the definition of partition-conditional preferences makes
sense.

Assumption 1 (Partition Dependent Countable-Additive Subjective Expected Utility)
We assume that ⪰πT , πT ∈ ΠT , T ≥ 1, admits a countable-additive Subjective Expected Utility
representation. That is, for all f, g ∈ F ,

f ⪰πT g

if and only if ∫
Ω
u(f)dµ(· | [πT ]) ≥

∫
Ω
u(g)dµ(· | [πT ]).

for a continuous utility function u : R −→ R and a countable additive probability measure
µ ∈ ∆(Ω).

If Ω is simple ⪰πT -null, then µ(· | [πT ]) is arbitrary and u is constant.

If Ω is simple ⪰πT -non-null but no two disjoint simple ⪰πT -non-null events exist in ΣΩ, then
µ(· | [πT ]) assigns probability 1 to every simple ⪰πT -non-null event and probability 0 to every
simple ⪰πT -null event, and u is unique up to continuous strictly increasing transformations.

Otherwise, the utility function is unique up to positive affine transformations and µ(· | [πT ])
is uniquely determined.
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In order not to distract from the focus of our work on the behavioral characterization of
prediction rules, we state the representation here just as an assumption and relegate its charac-
terization in terms of properties imposed on partition conditional preferences to Appendix B.
It is an immediate corollary of a representation theorem of subjective expected utility with
countable additive probabilities measures due to Wakker (1989, Chapter V.5). Note that the
utility function u is assumed to be independent of the partition, an assumption that is also
characterized in Appendix B.

Note that Ω = [{{1}}]. That is, in any state it is true that the partition of the first period
is the singleton partition consisting of the set that contains period one. Thus, ⪰ = ⪰{{1}}. We
let µ denote the unconditional probability measure associated with the representation of the
unconditional preference ⪰.

3 Partition Exchangeability

For any T, T ′ ≥ 1 with T > T ′ and partitions πT ∈ ΠT , πT ′ ∈ ΠT ′
with πT

|T ′ = πT ′
, we have[

πT
|T ′

]
=

{
ω ∈ Ω : πT (ω)|T ′ = πT

|T ′

}
=

{
ω ∈ Ω : πT ′

(ω) = πT ′
}
=

[
πT ′

]
by condition (i) of the

mappings
{
πT

}
T=1,...

. By Assumption 1, µ
([

πT
|T ′

])
= µ

([
πT ′

])
.

For any T ≥ 1 and πT ∈ ΠT , let aT (πT ) = (aT1 (π
T ), ..., aTT (π

T )) be the partition vector of
πT defined by aTi (π

T ) being the number of partition cells of πT with cardinality i. We emphasize
that aTi (π

T ) is not the cardinality of some partition cell but the number of cells of partition πT

with cardinality i. We can understand vector aT (πT ) as a “frequency of frequencies” because
it lists the frequency of the frequencies of distinct objects sampled up to T , i.e., how many
different objects have this or that frequency.

Suppose now that the decision maker draws objects one after another and the sampling
procedure does not change from one draw to another. By the virtue of not being able to
distinguish between different novel objects before they are sampled, the decision maker should
be ex ante indifferent between betting on let’s say the partitions of sampling times {{1, 2}, {3}}
and {{1}, {2, 3}}. Note that both partitions have the same partition vector. That is, both
partitions have exactly one cell of cardinality one and one of cardinality two. The following
property models this idea of symmetry of the situation.

Property 1 (Partition Symmetry) For any T > 1 and partitions πT , π̃T ∈ ΠT with aT (πT ) =
aT (π̃T ),

1[πT ]0 ∼ z if and only if 1[π̃T ]0 ∼ z

for some z ∈ R.

In words, Property 1 states that the decision maker would be indifferent between bets on
different partitions with the same partition vector. Here, 1[πT ]0 is the act that pays 1 in the

event
[
πT

]
and zero otherwise.

Property 1 characterizes partition exchangeability, the central property of the literature on
exchangeable random partitions in statistics.
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Proposition 1 Let {⪰πT }πT∈ΠT ,T≥1 satisfy Assumption 1 and denote by
(
µ(· | [πT ])

)
πT∈ΠT ,T≥1

the associated partition-conditional probability measures. Preferences {⪰πT }πT∈ΠT ,T≥1 satisfy
Property 1 if and only if for any T ≥ 1,

(i) Partition Exchangeability: for any partitions πT , π̃T ∈ ΠT with aT (πT ) = aT (π̃T ),

µ
([
πT

])
= µ

([
π̃T

])
.

(ii) for any partition πT ∈ ΠT

µ
([
πT+1

]
|
[
πT

])
= µ

([
π̃T+1

]
|
[
πT

])
for πT+1, π̃T+1 ∈ ΠT+1 with πT+1

|T = π̃T+1
|T = πT and aT+1(πT+1) = aT+1(π̃T+1).

The proof is contained in Appendix A.

The decision maker’s subjective beliefs are such that any two partitions with the same
partition vector must be assigned the same subjective probability. Similarly, conditional on a
partition πT , any partition of sampling times {1, ..., T + 1} that are consistent with πT must
get the same subjective probability if they give rise to the same partition vector.

Property 2 For any T and πT ∈ ΠT , [πT ] is simple ⪰-non-null.

This property implies that ex ante for any T ≥ 1, the decision maker does not rule out any
πT ∈ ΠT from arising. This is a cautiousness or admissibility property.

For any T ≥ 1 and k ∈ {1, ..., T}, define the event[
|πT (·)(T )| = k

]
:=

{
ω ∈ Ω : |πT (ω)(T )| = k

}
.

This is the event that the object drawn in T has been drawn the kth time. (Recall that for any
partition πT , we denote by πT (t) the partition cell containing period t.) Clearly, since πT is
measurable for all T ≥ 1, we have

[
|πT (·)(T )| = k

]
∈ ΣΩ for any T ≥ 1 and k ≤ T .

Define
ΠT,k :=

{
πT ∈ ΠT : |πT (t)| = k, for some t ∈ {1, ..., T}

}
.

This is the set of partitions of {1, ..., T} that have a partition cell of cardinality k.

Property 3 (Frequency Dependence of a Known) For all T ≥ 1, k ∈ {1, ...T}, πT , π̃T ∈
ΠT,k,

1[|πT+1(·)(T+1)|=k+1]0 ∼πT z if and only if 1[|πT+1(·)(T+1)|=k+1]0 ∼π̃T z

for some z ∈ R.

The property means the decision maker’s evaluation of the event that the object sampled
next is an object that has been previously sampled k times is invariant to the partition as
long as it contains a partition cell of cardinality k. Thus, the evaluation of sampling a known
particular object depends only on the frequency with which it has been sampled before and on
the sampling time.
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Property 4 (Frequency Dependence of Novelty) For all T ≥ 1 and πT , π̃T ∈ ΠT with
|πT | = |π̃T |,

1[|πT+1(·)(T+1)|=1]0 ∼πT z if and only if 1[|πT+1(·)(T+1)|=1]0 ∼π̃T z

for some z ∈ R.

This property pertains to the evaluation of sampling a novel object. When |πT+1(T+1)| = 1,
then the partition cell containing sampling time T +1 is a singleton. That is, at T +1 an object
is sampled that has never been sampled before. Note that Property 4 is not a special case of
Property 3 because Property 4 pertains to any two partitions with the same number of partition
cells while Property 3 pertains to any two partitions with a partition cell of cardinality k. The
number of partition cells of a partition represents the number of times novelty has been sampled.
Thus, Property 4 says that the evaluation of a novel object depends only on how often a novel
object has been sampled in the past and on the sampling time.

Define the event[
|πT+1(·)| = |πT (·)|+ 1

]
:=

{
ω ∈ Ω : |πT+1(ω)| = |πT (ω)|+ 1

}
.

Since πT
i is measurable,

[
|πT+1(·)| = |πT (·)|+ 1

]
∈ ΣΩ. To interpret this event recall that when

a novel object is sampled in period T , a new partition cell is added beyond the partition cells
already in partition of prior sampling times. Thus, this is the event that a novel object is
sampled at T + 1. Note that

[
|πT+1(·)| = |πT (·)|+ 1

]
=

[
|πT+1(·)(T + 1)| = 1

]
. That is, when

the next object adds a new partition cell then the partition cell of the sampling times of objects
corresponding to the next object must be a singleton and vice versa. These are just different
statement of the same event that we will use whenever convenient.

Also define the event[
|πT+1

j (·)| = |πT
j (·)|+ 1

]
:=

{
ω ∈ Ω : |πT+1

j (ω)| = |πT
j (ω)|+ 1

}
.

Clearly, since πT is measurable, we have
[
|πT+1

j (·)| = |πT
j (·)|+ 1

]
∈ ΣΩ for any j. To interpret

the event, recall that when a previously sampled object is sampled again in T+1, it must extend
one partition cell of prior sampling times by exactly one element. Thus, this is the event that
the object sampled previously at sampling times in partition cell πT

j is sampled again in period

T+1. Note the difference between events
[
|πT+1

j (·)| = |πT
j (·)|+ 1

]
and

[
|πT+1(·)| = |πT (·)|+ 1

]
.

Former event pertains to the cardinality of the jth partition cell (in the order of appearance).
Latter event pertains to the cardinality of partitions, i.e., the number of partition cells.

The following theorem behaviorally characterizes the two-parameter model and prediction
rule of Pitman (1995) and Zabell (1997).

Theorem 1 Let {⪰πT }πT∈ΠT ,T≥1 satisfy Assumption 1 and denote by
(
µ(· | [πT ])

)
πT∈ΠT ,T≥1

the partition-conditional probability measures and u the utility function of the representation.
The collection of partition-dependent preferences {⪰πT }πT∈ΠT ,T≥1 satisfy Properties 1 to 4 if

and only if for any T ≥ 1, πT ∈ ΠT , and j,

µ
([

|πT+1
j (·)| = |πT

j (·)|+ 1
]
|
[
πT

])
=

|πT
j | − α

T + θ
(1)

µ
([
|πT+1(·)| = |πT (·)|+ 1

]
|
[
πT

])
=

α|πT |+ θ

T + θ
. (2)
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for α ∈ [0, 1) and θ > −α. Moreover, let z ∈ R be defined by the choice behavior

1[{{1},{2,3},{4}}]0 ∼{{1},{2,3}} z

and k ∈ R be defined by the choice behavior

1[{{1,4},{2,3}}]0 ∼{{1},{2,3}} k.

If u is normalized such that u(0) = 0, then

α =
3u(k) + u(z)− u(1)

2u(k) + u(z)− u(1)
(3)

θ =
2u(1)− 6u(k)− 3u(z)

2u(k) + u(z)− u(1)
. (4)

The proof is contained in Appendix A. It extends results by Zabell (1997) to a behavioral
characterization. Equations (1) and (2) correspond to the predictive probabilities for sampling
a particular known object and sampling a novel object, respectively, as informally introduced
in the Introduction. Observe that in equation (1) we consider the cardinality of the partition
cell πT

j while in equation (2) we consider the cardinality of the partition πT , i.e., the number
of partition cells of the partition. Observe further that the sum of probabilities (over j) in
equations (1) plus the probability in equation (2) add up to one. Theorem 1 shows that
parameters α and θ can be identified from choices.

For the next result we need some notation: For t = 1, 2, ..., x, y ∈ R, let (x)t↑y denote the
t-th factorial power of x with increment y, i.e.,

(x)t↑y :=

t−1∏
i=0

(x+ iy).

Combining Theorem 1 with existing results in the literature (i.e., Pitman, 1995, 2006)
yields the following properties of beliefs of a subjective expected utility maximizer who satisfies
Properties 1 to 4:

Corollary 1 Let µ be the subjective probability measure of the representation of the collection
of partition-dependent preferences {⪰πT }πT∈ΠT ,T≥1 satisfying Assumption 1 and Properties 1
to 4. For T ≥ 1,

(i) Subjective belief in partition πT = (πT
1 , ...,π

T
k ) ∈ ΠT (some k ≤ T ):

µ
([
πT

])
=

(θ + α)k−1↑α
(θ + 1)T−1↑1

k∏
j=1

(1− α)|πT
j |−1↑1 (5)

(ii) Subjective probability of k novelties by sampling time T :

µ
([
|πT (·)| = k

])
=

(θ − α)k−1↑α
(θ + 1)T−1↑1

Sα(T, k) (6)

where Sα(T, k) is the generalized Stirling number and
[
|πT (·)| = k

]
:=

{
ω ∈ Ω : |πT (ω)| = k

}
∈

ΣΩ.
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(iii) Expected number of novelties by sampling time T :

E
[
|πT (·)|

]
=

T∑
i=1

(θ + α)i−1↑1
(θ + 1)i−1↑1

(7)

where α and θ are given by equations (3) and (4), respectively.

For (i), see Pitman (1995, Proposition 9). For (ii) and (iii), see Pitman (2006, p. 66). For
generalized Stirling numbers, see Pitman (2006, p. 20-21). The “closed-form” expressions in
previous corollary should prove to be useful in applications.

Next, we consider a strengthening of Property 4:

Property 5 (Sampling Time Dependence of Novelty) For all T ≥ 1 and πT , π̃T ∈ ΠT ,

1[|πT+1(·)(T+1)|=1]0 ∼πT z if and only if 1[|π̃T+1(·)(T+1)|=1]0 ∼π̃T z

for some z ∈ R.

Like Property 4, this property pertains to the evaluation of sampling novelty. Recall that
when |πT+1(T + 1)| = 1, then the partition cell containing sampling time T + 1 is a singleton.
It must be the case that at T + 1 an object is sampled that has never been sampled before.
Yet, while Property 4 depends on the number of partition cells, Property 5 is independent of
it. The number of partition cells of a partition represents the number of times novel objects
have been sampled. Thus, Property 5 says that the evaluation of a novel object is independent
of how often a novelty has occurred in the past and just depends on the sampling time.

The following theorem characterizes the prediction rule associated with the famous one
parameter model known as the Ewens’ sampling formula. The representation is a special case
of the representation in Theorem 1 for α = 0.

Theorem 2 Let {⪰πT }πT∈ΠT ,T≥1 satisfy Assumption 1 and denote by
(
µ
(
· |

[
πT

]))
πT∈ΠT ,T≥1

the partition-conditional probability measures of the representation. The collection of partition-
dependent preferences {⪰πT }πT∈ΠT ,T≥1 satisfy Properties 1 to 3 and 5 if and only if for any

T ≥ 1, πT ∈ ΠT , and j,

µ
([

|πT+1
j (·)| = |πT

j (·)|+ 1
]
|
[
πT

])
=

|πT
j |

T + θ
(8)

µ
([
|πT+1(·)| = |πT (·)|+ 1

]
|
[
πT

])
=

θ

T + θ
. (9)

for θ > 0. Moreover, let z ∈ R be defined by the choice behavior 1[{{1},{2}}]0 ∼{{1}} z. If u is
normalized such that u(0) = 0, then

θ =
u(z)

u(1)− u(z)
. (10)
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The proof follows by arguments analogous to the proof of Theorem 1. Instead of Property 4
we use Property 5. The derived partition-conditional probability of a novel object depends only
on the sample size T . By Zabell (1997, Corollary p. 268), this implies the prediction rule of
the one-parameter model. The converse is straightforward like in the proof of Theorem 1. The
parameter θ can be identified from choices. This follows from arguments similar to the ones in
the last part of the proof of Theorem 1. Equation (8) is the predictive probability of sampling
a known object and equation (9) is the predictive probability of sampling a novel object.

The major difference between beliefs of Theorems 1 and 2 is the beliefs about becoming
aware of a novel object depend on awareness of objects (i.e., the number of objects) in Theorem 1
but are independent of awareness of objects in Theorem 2. For the one-parameter model of
Theorem 2, we can think of the decision maker as keeping a “mental” urn in which the black
ball has initial weight θ. Whenever a colored ball is drawn, it is returned to the urn together
with another ball of the same color. Whenever a black ball is drawn, it is returned to the urn
together with a ball of a new color.

Theorem 2, Ewens (1972), and Hoppe (1984) imply now immediately

Corollary 2 Let µ be the subjective probability measure of the representation of the collection
of partition-dependent preferences {⪰πT }πT∈ΠT ,T≥1 satisfying Assumption 1, Properties 1 to 3,
and Property 5. Then for any T ≥ 1,

(i) and πT = (πT
1 , ...,π

T
k ) ∈ ΠT (some k < T ) we have the Ewens’ sampling formula

µ
([
πT

])
=

θk

(θ)T↑1

k∏
j=1

(|πT
j | − 1)! (11)

(ii) Probability of k novelties up to sampling time T :

µ
([
|πT (·)| = k

])
=

θk

(θ)T↑1
sT,k (12)

where sT,k is the (T, k)-Stirling number of the first kind.

(iii) Expected number of novelties by sampling time T :

E
[
|πT (·)|

]
=

T∑
i=1

θ

θ + i− 1
(13)

with θ is given by equation (10).

Part (i) follows from Theorem 2 and Ewens (1972). Theorem 2 implies part (ii), see for
instance Crane (2016, p. 2). Part (iii) follows from Theorem 2 and Pitman (2006, p. 66).
Again, the closed form expressions should prove to be useful in applications.

A special case of the one-parameter prediction rule of Theorem 2 with θ = 1 is the De
Morgan prediction rule, probably the oldest prediction rule for sampling with novelties (De
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Morgan, 1838, 1845). See Zabell (1997, 1992) for discussions. It is given by for any T ≥ 1,
πT ∈ ΠT , and j,

µ
([

|πT+1
j (·)| = |πT

j (·)|+ 1
]
|
[
πT

])
=

|πT
j |

T + 1
(14)

µ
([
|πT+1(·)| = |πT (·)|+ 1

]
|
[
πT

])
=

1

T + 1
. (15)

Equation (14) is the predictive probability of sampling a known object and equation (15) is the
predictive probability of sampling a novel object. This prediction rule can be interpreted as the
decision maker keeping a “mental” urn in which there is initially one black ball. If a colored
ball it drawn, it is returned to the urn together with a ball of the same color. If the black ball
is drawn, it is returned together with a ball of a new color. The De Morgan model arises under
Assumption 1 when choices of the decision maker satisfy Properties 1 to 3 and Property 5 and
u(z)
u(1) =

1
2 where z ∈ R defined by 1[{{1},{2}}]0 ∼{{1}} z.

In choice experiments, stakes are often small and researchers may be willing to assume risk
neutrality as an additional convenient identifying assumption. Risk neutrality implies that the
utility function u is linear. Under risk neutrality, there are particular straightforward behavioral
implications of the three models. Denote by T[•]0 the act that pays T when a novel object is
drawn in period T and zero otherwise. Similar, denote by T[j]0 the act that pays T when the
jth known object is encountered in period T and zero otherwise.

Proposition 2 Assume risk neutrality, i.e., u is linear. Under the previous assumptions,
respectively, the decision maker’s subjective beliefs follow

1. the De Morgan prediction rule (i.e., Theorem 2 with θ = 1) if

(T + 1)[•]0 ∼πT 1

(T + 1)[j]0 ∼πT |πT
j |

2. the prediction rule of the Ewens model (i.e., Theorem 2) if for some θ > 0,

(T + θ)[•]0 ∼πT θ

(T + θ)[j]0 ∼πT |πT
j |

3. the prediction rule of the two-parameter model of Pitman (1995) and Zabell (1997) (i.e.,
Theorem 1) if for some α ∈ [0, 1) and θ > −α,

(T + θ)[•]0 ∼πT (α|πT |+ θ)

(T + θ)[j]0 ∼πT (|πT
j | − α)

for any πT ∈ ΠT and T ≥ 1.

The proof is contained in Appendix A.

15



4 “Reverse” Bayesianism

Karni and Vierø (2013) and Hayashi (2012) characterized decision theoretically changes of
beliefs when becoming aware à la “reverse” Bayesianism. Translated to our setting, “reverse”
Bayesianism implies that upon sampling and hence becoming aware of a novel object, relative
likelihoods for previously sampled objects remain unchanged. Karni and Vierø (2013) and
Hayashi (2012) did not consider awareness of unawareness, i.e., beliefs about becoming aware.
However, Karni and Vierø (2017) and Vierø (2021, 2023) extended the approach to awareness
of unawareness. Yet, they consider the case of becoming aware of another outcome while we
consider the case of becoming aware of a state/object.

For T ≥ 1 and i ≤ T , define events[
T ∈ πT

i (·)
]
:=

{
ω ∈ Ω : T ∈ πT

i (ω)
}
∈ ΣΩ.

This is the event that the object sampled in period T is the same as sampled at times in the
ith partition cell (in the order of appearance) of some partition up to sampling time T .

Property 6 (Consistency Upon Sampling Novelty) {⪰πT }πT∈ΠT ,T=1,... satisfy consistency

upon sampling novelty if for any T , πT ∈ ΠT , and i, j ≤ |πT |, there are x, y ∈ R such that

x[T+1∈πT+1
i (·)]0 ∼πT y[T+1∈πT+1

j (·)]0 iff x[T+2∈πT+2
i (·)]0 ∼πT+1 y[T+2∈πT+2

j (·)]0 (16)

for πT+1 = πT ∪ {T + 1}.

In words, this property means that the decision maker’s evaluation of sampling one known
object versus another known object remains unchanged upon sampling of a novel object. Here
πT+1 = πT ∪{T +1} means that partition πT+1 is the same as πT up to sampling time T and
then appended by an additional partition cell {T +1}, which means a novel object is drawn in
period T + 1. The requirement i, j ≤ |πT | implies that partition cells πT+1

i and πT+1
j are not

partition cells newly added in period T + 1. That is, condition (16) is about betting on that
known objects are sampled in periods T + 1 and T + 2 rather than a novel object.

The next property pertains to the invariance of the evaluation of sampling a known object
versus another known object upon sampling a different third known object.

Property 7 (Consistency Upon Sampling Known Objects) {⪰πT }πT∈ΠT ,T=1,... satisfy

consistency upon sampling known objects if for any T , πT ∈ ΠT , and i, j ≤ |πT |, there are
x, y ∈ R such that Condition (16) holds for all πT+1 for which there exists k ≤ |πT | with
i ̸= k ̸= j and πT+1(T + 1) ∩ {1, ..., T} = πT

k .

The condition that there exist k ≤ |πT | with i ̸= k ̸= j and πT+1(T + 1) ∩ {1, ..., T} = πT
k

means that there is a known object that (a) is sampled previously at periods in πT
k , (b) is not

the object sampled previously at periods in πT
i or πT

j but (c) is sampled again in period T +1.

Both, Property 6 and Property 7, pertain to the evaluation of known objects upon sampling
of either a novel or another known object, respectively. Yet, the decision maker may also re-
evaluate consistently novelty upon sampling of a known object.
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Property 8 (Sampling Consistency for Novelty) {⪰πT }πT∈ΠT ,T=1,... satisfy sampling con-

sistency for novelty if for any T , πT ∈ ΠT , and i ≤ |πT |, there are x, y ∈ R such that

x[|πT+1(T+1)|=1]0 ∼πT y[T+1∈πT+1
i (·)]0 iff x[|πT+2(T+2)|=1]0 ∼πT+1 y[T+2∈πT+2

i (·)]0 (17)

for all πT+1 for which there exist j ≤ |πT | with i ̸= j and πT+1(T + 1) ∩ {1, ..., T} = πT
j .

To understand the condition, recall that
[
|πT+1(T + 1)| = 1

]
is the event that a new par-

tition cell is added in period T + 1, i.e., a novel object is sampled in T + 1. Similarly,[
|πT+2(T + 2)| = 1

]
is the event that a novel object is sampled in period T +2. The required of

πT+1 for which there exist j ≤ |πT | with i ̸= j and πT+1(T + 1) ∩ {1, ..., T} = πT
j means that

a known object different from the known object sampled at periods in πT
i is actually sampled

in period T + 1. Thus, Property 8 says that how sampling of novelty is evaluated relative to
sampling of a known object is invariant to actually sampling a different known object.

Proposition 3 Let {⪰πT }πT∈ΠT ,T≥1 satisfy Assumption 1 and Property 2, and denote by(
µ
(
· |

[
πT

]))
πT∈ΠT ,T≥1

the associated partition-conditional probability measures.

(i) The collection of partition-dependent preferences {⪰πT }πT∈ΠT ,T≥1 satisfy Property 6 if

and only if
(
µ
(
· |

[
πT

]))
πT∈ΠT ,T≥1

satisfy “reverse” Bayesianism, i.e., for any T , πT ∈
ΠT , and i, j ≤ |πT |,

µ
([

T + 1 ∈ πT+1
i (·)

]
|
[
πT

])
µ
([

T + 1 ∈ πT+1
j (·)

]
| [πT ]

) =
µ
([

T + 2 ∈ πT+2
i (·)

]
|
[
πT+1

])
µ
([

T + 2 ∈ πT+2
j (·)

]
| [πT+1]

) (18)

for πT+1 = πT ∪ {T + 1}.

(ii) They satisfy Property 7 if and only if
(
µ
(
· |

[
πT

]))
πT∈ΠT ,T≥1

satisfy Bayesianism, i.e.,

for any T , πT ∈ ΠT , and i, j ≤ |πT |, equation (18) holds for all πT+1 for which there
exists k ≤ |πT | with i ̸= k ̸= j and πT+1(T + 1) ∩ {1, ..., T} = πT

k .

(iii) They satisfy Property 8 if and only if
(
µ
(
· |

[
πT

]))
πT∈ΠT ,T≥1

satisfy “extended” Bayesian-

ism, i.e., for any T , πT ∈ ΠT , and i ≤ |πT |,

µ
([
|πT+1(T + 1)| = 1

]
|
[
πT

])
µ
([

T + 1 ∈ πT+1
i (·)

]
| [πT ]

) =
µ
([
|πT+2(T + 2)| = 1

]
|
[
πT+1

])
µ
([

T + 2 ∈ πT+2
i (·)

]
| [πT+1]

) (19)

for all πT+1 for which there exist j ≤ |πT | with i ̸= j and πT+1(T +1)∩ {1, ..., T} = πT
j .

“Reverse” Bayesianism means that relative likelihood ratios for known objects are preserved
upon sampling novel objects. Bayesianism means that the likelihood ratios for any two known
alternatives are preserved upon sampling another third known object. Extended Bayesianism
refers to the preservation of the relatively likelihood ratios for novelty and a known object upon
sampling another known object. Property 6 plays the same role as “Awareness consistency”
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in the literature on “reverse” Bayesianism, e.g., Karni and Vierø (2013, 2017), Dominiak and
Tserenjigmid (2018), and Dominiak (2022).

Proposition 3 does not impose partition exchangeability or partition symmetry (Property 1).
We can show that not all prediction rules consistent with partition exchangeable beliefs may
satisfy “reverse” Bayesianism or “extended” Bayesianism. To see this, consider Figure 2. It is a
snapshot from Figure 1 in the introduction focusing on the transition from partition {{1}, {2}}
in T = 2 to partition {{1}, {2, 3}} in T = 3 via sampling again the second object. How does

the ratio of probabilities of objects that are not sampled evolve? We have µ([1.]|{{1},{2}})
µ([•]|{{1},{2}}) = p

1−2p

and µ([1.]|{{1},{2,3}})
µ([•]|{{1},{2,3}}) = q2

1−q1−q2
. “Extended” Bayesianism requires that these ratios are equal.

But partition exchangeability does not force these ratios to be equal unless further structure is
imposed.

Figure 2: Partition Exchangeability Does Not Imply “Extended” Bayesianism

Figure 2 does suggest though that exchangeability might at least satisfy “reverse” Bayesian-
ism. Observe that the ratio of probabilities for objects 1. and 2. remains the same upon
sampling novelty “•”. Yet, this turns out to be an artifact of considering only the first couple
of periods. Consider instead the snapshot in Figure 3 showing the evolution from partition
{{1}, {2, 3}}. Again, we indicate the object drawn above each edge. Moreover, all partitions of
the same color (except black) have the same probability as implied by partition exchangeability.
Focus on the relative likelihoods for drawing objects 1. versus 2. at partition {{1}, {2, 3}} and
after novelty has been drawn (i.e., “•”) at partition {{1}, {2, 3}, {4}}. For convenience, we
circled the relevant draws. Unless further conditions are imposed, partition exchangeability per
se does not require that these relatively likelihoods must be the same.

Partition exchangeability satisfies though a very weak version of “reverse” Bayesianism.
Namely, consider the special sample path along which in each period a novelty is drawn. Now,
along this path it must be true that the predictive probabilities for known objects associated
with partition exchangeable beliefs maintain the same ratio. In fact, at each stage along such

18



Figure 3: Partition Exchangeability Does Not Imply “Reverse” Bayesianism

special sample path the probabilities over known objects are uniform.

The De Morgan rule, the one-parameter prediction rule associated with the Ewens’ sampling
formula, and the two-parameter rule of Pitman (1995) and Zabell (1997) are three examples of
partition exchangeable belief updating rules that satisfy “reverse” Bayesianism, Bayesianism,
and “extended” Bayesianism. In particular, while in general there can be many “reverse”
Bayesian updates, the aforementioned prediction rules pin down a “reverse” Bayesian update.
Theorems 1 and 2 imply immediately the following:

Corollary 3 The collection of partition-dependent preferences {⪰πT }πT∈ΠT ,T≥1 associated with
the two-parameter model of Theorem 1, the one-parameter model of Theorem 2, and the De
Morgan model of Theorem 2 with θ = 1 all satisfy “reverse” Bayesianism, Bayesianism, and
“extended” Bayesianism.

It follows that together Properties 3 and 4 imply Properties 6 to 8 given Assumption 1 and
Properties 1 and 2.

Kuipers (1973) proposed a prediction rule for novel objects that, as Zabell (1997, p. 260-
261) remarks, is not consistent with partition exchangeable beliefs. Kuipers”s prediction rule
states that

Cond. prob. of a novel object in T + 1 =
Number of known objects + δ

2

T + δ
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and

Cond. prob. of known objectj in T + 1 =
T −Number of known objects + δ

2

T + δ

×
Number of object jth occurrences + λ

Number of known objects

T + λ
Number of known objects

for λ, δ ∈ R++. The ratio of probabilities for distinct known objects i and j is

Number of object ith occurrences + λ
Number of known objects

Number of object jth occurrences + λ
Number of known objects

This ratio is increasing in the number of known objects (i.e., upon discoveries of novel objects)
if and only if

Number of object ith occurrences > Number of object jth occurrences.

Although the occurrence of novel objects does not preserve the ratio of probabilities for known
objects, its change is monotone in the occurrence of novel objects.

It is interesting that Kuipers proposes a prediction rule that does not satisfy “reverse”
Bayesianism. It is intuitive that a violation of “reverse” Bayesianism may be embraced when
the decision maker becomes aware of events that also shatter the interpretation of events that
the decision maker has been previously aware of like when having transformative experiences
of which one was previously unaware of (i.e., Paul, 2014). It can also be violated in strategic
settings when being made aware of some types by some opponent allows the player to learn
about the types of opponents that she has been previously been aware of. However, these
features are absent in the sampling problem. Notable, Kuipers’ rule does not satisfy partition
exchangeability. It may hint at the fact that Kuipers did not have sampling in “similar”
circumstances in mind and this lack of symmetry may have also motivated lack of “reverse”
Bayesianism.

5 Application to Unawareness Structures

The “delabeled” subjective expected utility allowed us to capture partition exchangeability and
the two-parameter prediction rule in terms of properties on preferences of the decision maker
and thus allowed for a subjective interpretation of the probabilities. However, the approach
is somewhat artificial when viewed at the interim basis when some objects have already been
sampled. At that point, the decision maker is able to reason about all previously sampled
objects in addition to the occurrence of novelty. That’s is, to model the subjective perspectives
of the decision maker, it would be conceptually desirable to have a hybrid approach that starts at
a completely “delabeled” description and then adds labels steps-by-step as the process evolves.
We can use unawareness structures for this purpose (Heifetz, Meier, and Schipper, 2006, 2008,
2013, Schipper, 2013). The primitive of unawareness structures is a lattice of spaces ordered
by their richness together with projections from richer to poorer spaces. When focusing on the
predictive probabilities, in our context it is natural to think of each spaces as a distinct subset
of objects together with novelty, “•”.
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Figure 4: Example of an Unawareness Structure with Predictive Probabilities Implied by the
Two-Parameter Model

More formally, for any T and sequence of drawn objects sT = (s1, ..., sT ), let the associated
subjective state space be S(sT ) = {st}Tt=1∪{•}, where {st}Tt=1 denotes the set of objects drawn
till period T . These are the only objects in addition to novelty that a decision maker can form
beliefs over conditional on sT . Clearly, when considering sequences of sampled objects, the
possible subjective state spaces that may arise are partially ordered by set inclusion. In fact,
they form a complete lattice. For any two spaces S and S′ with S ⊆ S′, the projection is defined
such that all objects in S′ that are also contained in S are mapped one-to-one and any other
objects contained in S′ \ S are mapped to •. Also, • is mapped to •.

As a simple example, consider the lattice of four spaces in Figure 4. Projections are indicated
by gray dashed lines. The smallest space contains only •. This is the initial space at T = 0.
Suppose there is a red ball r and a blue ball b of which the decision maker is initially unaware.
Depending on which ball is drawn at T = 1, the state space after T = 1 is either the left or
the right space given by {r, •} and {b, •}, respectively. Suppose that r is drawn as indicated
by the red arrow. Then the predictive probabilities after T = 1 of the two-parameter model
are as written above the states in the left space. If b is drawn in T = 2 as indicated by the
blue arrow, then the predictive probabilities of the two-parameter model are as written above
the states in the upmost space. Ex post (e.g., after T = 2) the decision maker may also be
able to reason about what would have been her predictive probabilities at the end of T = 1 if
initially the blue ball had been drawn. These counterfactual considerations may not be relevant
in a single-person decision problem but may become important for strategic reasoning in game
theoretic models. In any case, the example demonstrates how the models discussed in this
paper can give rise to subjective probabilities in unawareness structures when the lattice of
spaces is interpreted as arising from a dynamic process of sampling objects.
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6 Discussion

Sampling is naturally a domain in which frequencies and objective stochastic processes play
an obvious role. Yet, as the discussion of de Finetti’s Theorem by Kreps (1988, pp. 145)
illustrates, it is also a domain of subjective beliefs. What does it mean to an analyst that she
believes that partitions of sampling times are exchangeable? What does it mean that she beliefs
a novelty occurs in the next period? Choices can reveal such beliefs even if we cannot anticipate
particular novelties, their characteristics etc. And such beliefs may be entertained when the
underlying probability process is unknown to the analyst and she is a subjective expected utility
maximizer.

De Finetti famously questioned the doxiastic existence of objective probabilities. The central
result in the theory of exchangeable random partitions is Kingman’s characterization as a
mixture of paint-ball processes. That is, beliefs over infinite exchangeable random partitions
can be captured by a mixture of distributions that have atomistic parts, corresponding to
objects that occur frequently, and a continuous part, corresponding to objects that occur only
once. This is a version of de Finetti’s Theorem (see Aldous, 1985, for a proof essentially
using de Finetti’s Theorem). Like de Finetti’s theorem, Kingman’s Theorem can be viewed
as infinite exchangeable random partitions giving rise to a subjective belief, the mixture over
what is called paint-ball processes. In this paper, we are less interested in limit beliefs as the
sampling periods go to infinity. More relevant to decision making, we consider beliefs at any
finite sampling period although limit beliefs can be easily stated for the models we consider.
See for instance, Pitman (1995) for the two-parameter model.

There might be extensions that allow for a closer connection between objective innovation
processes and subjective beliefs. Similar to De Castro and Al-Najjar (2014) for the case of
exchangeable sequences, it should be possible to consider parametric representations of prefer-
ences in our setting. Or it might be possible to incorporate objective information into subjective
expected utility analogous to the approach by Cerreia-Vioglio et al. (2013). We leave these
considerations to future work.

In situations under awareness of unawareness, the degree of uncertainty is rather substantial.
Thus, it might make sense to consider ambiguous subjective beliefs rather than subjective
probability measures. Walley (1996) studies sampling of novel objects in a statistical approach
involving imprecise probabilities. Although he does not consider partitions of sampling times,
he argues that in the face of awareness of unawareness, the analysis cannot depend on the sample
space. Perhaps an “ambiguous” version of Kingman’s Theorem can be proved analogous to the
ambiguous version of de Finetti’s theorem by Epstein and Seo (2010). Again, this must be left
to future work.

We were made aware of the discovery of species problem by the discussion of novelty by Witt
(2009). He criticizes Zabell (1992) as just pertaining to novelties of minimal degree. According
to Witt (2009), “the ex ante degree of novelty is minimal ... if the generative operation is
known and the interpretative operation is trivial in the sense that the meaning of all its possible
outcomes is known beforehand.” Generative operation means the process of producing novelty.
Interpretative operation refers to the integration of the phenomenon into emerging or existing
concepts. Witt (2009) claims that in Zabell’s work “all possible outcomes of the generative
operation can be anticipated”. This is clearly not the case. In fact, by delabeling outcomes and
just considering partitions of sampling times instead, the approach avoids specifying beforehand
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particular outcomes. In other words, in the approach there is no attempt to specify the sample
space or its outcomes before. What can be anticipated is the event that either a previously
sampled outcome is re-sampled or a novel outcome is sampled. But the space of partitions of
sampling times should not be confused with the underlying sample space of objects. What is
implicitly known in the discovery of species problem though is the objective stochastic process
of sampling novelty. In our approach, this is replaced by subjective beliefs. Witt (2009) further
notes that “the interpretative operation is trivial.” But this is not due to knowledge of all
possible outcomes beforehand. Rather by delabeling outcomes, the approach gives up entirely
on the interpretative operation and simply remains silent on it. The approach is not a theory
of novelties but rather a theory of the occurrences of novelty.

Using the discovery of species problem as a model of sampling novelties can be criticized
though from different angles. The underlying assumption is partition exchangeability. It models
the assumption that novelties are sampled in “similar” circumstances. This is clearly a matter
of perspective. Every successful inventor will rightfully claim the special circumstances of her
unique invention or discovery. Moreover, there could be discoveries of radical novelties after
which the world is not the same anymore. Yet, from the perspective of a grant making agency
or administration of academic research, institutes, labs, researchers etc. are treated “similar”.
And even an inventor will have to admit that there is a daily routine in day-to-day research
activities that occasionally lead to discoveries. Thus from such perspectives, the assumption of
exchangeable partitions may be justified.

Another critique is that the model forces the decision maker to be aware that she is unaware.
The model does not allow for initial unawareness of unawareness and awareness of unawareness
only upon a first occurrence of novelty. The decision maker anticipates from the very beginning
the occurrence novelty. On top of it, she must believe from the very beginning that in the limit,
novelty will have occurred an infinite number of times. Such a state of mind is a rather special
case of awareness of unawareness. For general epistemic models of awareness of unawareness,
see Schipper (2021a), Halpern and Rego (2013), Board and Chung (2021), and Sillari (2008).

A Proofs

Proof of Proposition 1

By Assumption 1 for any T > 1, πT ∈ ΠT , we have for some zπT ∈ R that

1[πT ]0 ∼ zπT

if and only if ∫
Ω
u(1[πT ]0)dµ =

∫
Ω
u(zπT )dµ∫

[πT ]
u(1)dµ+

∫
Ω\[πT ]

u(0)dµ = u(zπT )µ(Ω)

u(1)µ([πT ]) + u(0)µ(Ω \ [πT ]) = u(zπT )

µ([πT ]) =
u(zπT )

u(1)
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where the last line uses the fact that by Assumption 1 we can normalize u such that u(0) = 0
and we have by u being strictly increasing on R that u(1) ̸= 0.

By similar arguments, for π̃T ∈ ΠT ,

µ([π̃T ]) =
u(zπ̃T )

u(1)

For “⇒”, assume Property 1 and let aT (πT ) = aT (π̃T ). Observe that above arguments
imply u(zπT ) = u(zπ̃T ). The conclusion now follows. For “⇐”, assume aT (πT ) = aT (π̃T ) and
observe that above arguments imply Property 1.

This proves Proposition 1 (i). For (ii), apply analogous arguments to the partition condi-
tional preferences. □

Proof of Theorem 1

We start with some preliminaries. For any T ≥ 1, let pT ∈ ∆(ΠT ) be a probability measure
on ΠT . For any T, T ′ ≥ 1 with T ′ ≤ T , define the surjective projection ρTT ′ : ΠT −→ ΠT ′

by
ρTT ′(πT ) = πT

|T ′ and ρTT the identity on ΠT . A collection of probability measures (pT )T=1,... is

consistent if pT ◦ (ρTT ′)−1 = pT
′
for any T, T ′ ≥ 1 with T ′ ≤ T .

Let Π∞ the space of all infinite partitions π∞ of N+ generated by consistent collections
of partitions (πT )T≥1 with πT

|T ′ = πT ′
for all T > T ′ ≥ 1. By the Kolmogorov extension

theorem (Aliprantis and Border, 2006, Chapter 15.6), there exists a unique countable additive
probability measure p∞ ∈ ∆(Π∞) with marginals pT for any T ≥ 1.

We say that (pT )T≥1 is partition exchangeable if for any T ≥ 1, aT (πT ) = aT (π̃T ) implies
pT (πT ) = pT (π̃T ). We say that p∞ is infinite partition exchangeable if it is the extension of
partition exchangeable consistent probability measures (pT )T≥1.

Consider p∞ with marginals (pT )T≥1 and the following conditions:

(A) p∞ infinite partition exchangeable.

(B) For T ≥ 1, πT ∈ ΠT ,

pT (πT ) > 0. (20)

(C) For T ≥ ℓ ≥ 1, πT = {πT
1 , ...,π

T
ℓ } ∈ ΠT , and j = 1, ..., ℓ,

pT+1
(
πT+1
j = πT

j ∪ {T + 1} | πT
)

= f(|πT
j |, T ). (21)

(D) For T ≥ 1 and πT ∈ ΠT ,

pT+1
(
πT+1(T + 1) = {T + 1} | πT

)
= g(|πT |, T ). (22)

Lemma 1 (Zabell, 1997) Conditions (A) to (D) imply that there exist α and θ with α ∈ [0, 1)
and θ > −α such that

f(|πT
j |, T ) =

|πT
j | − α

T + θ
(23)

g(|πT |, T ) =
α|πT |+ θ

T + θ
. (24)
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We continue with the proof of Theorem 1. First, we consider direction “⇒”. We verify
conditions (A) to (D).

Condition (A): By Assumption 1, ⪰ has a countable additive subjective expected utility
representation. Denote by µ the associated probability measure. For any T and πT ∈ ΠT , let
pT (πT ) := µ([πT ]). This defines a probability in ∆(ΠT ). We claim that for all T and T ′ ≤ T ,
πT ′ ∈ ΠT ′

,

µ
([

(ρTT ′)−1(πT ′
)
])

= µ
([

πT ′
])

.

Note that
[
(ρTT ′)−1(πT ′

)
]
is measurable because it is a finite union of measurable events, i.e.,[

(ρTT ′)−1(πT ′
)
]
=

⋃
πT∈(ρT

T ′ )
−1(πT ′ )

[
πT

]
.

We will show
[
(ρTT ′)−1(πT ′

)
]
=

[
πT ′

]
.

Consider the case “⊇”: For any ω ∈
[
πT ′

]
, πT ′

(ω) = πT ′
. By the partition functions

(πT )T=1,2,... satisfy consistency, we have πT (ω)|T ′ = πT ′
(ω). Since πT is a function with

codomain ΠT , there exist πT ∈ ΠT such that πT (ω) = πT . This is the case if and only if ω ∈
[πT ]. Consistency of (πT )T=1,2,... implies that πT ∈ (ρTT ′)−1(πT ′

). Thus, ω ∈
[
(ρTT ′)−1(πT ′

)
]
.

Next consider the case “⊆”: Let ω ∈
[
(ρTT ′)−1(πT ′

)
]
implies ω ∈

[
πT

]
for some πT ∈

(ρTT ′)−1(πT ′
). Observe that ω ∈

[
πT

]
if and only if πT (ω) = πT . Since partition functions

(πT )T=1,2,... satisfy consistency, πT (ω)|T ′ = πT ′
(ω). Since πT ∈ (ρTT ′)−1(πT ′

), πT ′
(ω) = πT ′

.

Thus, ω ∈
[
πT ′

]
.

It follows now that the collection of probability measures (pT )T≥1 is consistent. By Prop-
erty 1 and Proposition 1, for T ≥ 1, pT is partition exchangeable. By above arguments, there
exists a unique extension p∞ that is infinite partition exchangeable. This verifies Condition
(A).

Condition (B): Using Assumption 1, Property 2 implies Condition (B).

Condition (C): By Assumption 1, in the following we can conveniently normalize u w.l.o.g.
such that u(0) = 0.

By Assumption 1, arguments analogous to the proof of Proposition 1 imply by Property 3
for all T ≥ 1, k ∈ {1, ...T}, πT , π̃T ∈ ΠT,k,

µ
([
|πT+1(·)(T + 1)| = k + 1

]
| [πT ]

)
= µ

([
|πT+1(·)(T + 1)| = k + 1

]
| [π̃T ]

)
.

Note that since πT ∈ ΠT,k, it must be that
[
|πT+1(·)(T + 1)| = k + 1

]
∩ [πT ] =[

|πT+1
j (·)| = |πT

j (·)|+ 1
]
∩ [πT ] =

[
πT+1
j (·) = πT

j (·) ∪ {T + 1}
]
∩
[
πT

]
for some j ≤ T with

|πT
j | = k. Since this holds for any partition πT ∈ ΠT,k, we must have that

µ
([

|πT+1
j (·)| = |πT

j (·)|+ 1
]
| [πT ]

)
= f(k, T )

for some function f of k and T . This verifies Condition (C).

For Condition (D), note that by Assumption 1 and arguments analogous to the proof of
Proposition 1 we have by Property 4 that for T ≥ 1 and πT , π̃T ∈ ΠT with |πT | = |π̃T |,

µ
([
|πT+1(·)(T + 1)| = 1

]
| [πT ]

)
= µ

([
|πT+1(·)(T + 1)| = 1

]
| [π̃T ]

)
.
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Observe that
[
|πT+1(·)(T + 1)| = 1

]
∩
[
πT

]
=

[
|πT+1(·)| = |πT (·)|+ 1

]
∩
[
πT

]
=

[
πT+1(·)(T + 1) = {T + 1}

]
∩
[
πT

]
. Since this holds for any partition πT , π̃T ∈ ΠT with

|πT | = |π̃T |, it must be that

µ
([
|πT+1(·)| = |πT (·)|+ 1

]
|
[
πT

])
= g(|πT |, T )

for some function g of the cardinality of partition πT and T . This verifies Condition (D).

It now follows from Lemma 1 that the partition-conditional subjective expected utility
representation follows the prediction rule of Theorem 1.

Now consider direction “⇐”. For any T ≥ 1 and πT ∈ ΠT , define µ(· | [πT ]) := pT+1(· | πT ).
By Assumption 1 there exist a collection of partition conditional preferences {⪰πT }πT∈ΠT ,T≥1.

Pitman (1995, Proposition 9) shows that the prediction rule implies equation (5). Assump-
tion 1 implies now Property 1.

Property 2 is implied from the range of parameters of the prediction rule of Theorem 1 and
Assumption 1. In particular, conditional on any partition, any previously encountered object
has strict positive probability. A novel object has strict positive probability as well. Thus, ex
ante no partition is ruled.

Reversing the arguments in the proof of Conditions (C) and (D) of the part “⇒” above
proves the necessity of Properties 3 and 4, respectively.

Finally, we show how to calibrate the parameters of the prediction rule from choices. Let
z ∈ R be defined by the choice behavior 1[{{1},{2,3},{4}}]0 ∼{{1},{2,3}} z and k ∈ R be defined by
choice behavior 1[{{1,4},{2,3}}]0 ∼{{1},{2,3}} k. We continue to assume that u is normalized such
that u(0) = 0. By arguments similar to the proof of Proposition 1 we obtain

µ({{1}, {2, 3}, {4}} | {{1}, {2, 3}}) =
u(z)

u(1)

and

µ({{1, 4}, {2, 3}} | {{1}, {2, 3}}) =
u(k)

u(1)

Using the prediction rules of equations (1) and (2), respectively, we obtain

u(k)

u(1)
=

1− α

3 + θ
(25)

u(z)

u(1)
=

2α+ θ

3 + θ
(26)

Solving these two equations for α and θ yields the expressions in equations (3) and (4), respec-
tively. □

Proof of Proposition 2

We prove just the case for the two-parameter model. The other cases are direct corollaries.
Since ⪰πT has a subjective expected utility representation, choice

(T + θ)[•]0 ∼πT (α|πT |+ θ)
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is equivalent to ∫
Ω
u
(
(T + θ)[•]0

)
dµ(· | πT ) =

∫
Ω
u
(
(α|πT |+ θ)

)
dµ(· | πT ).

Under risk neutrality we can chose u(x) = x. Thus, we obtain∫
Ω
(T + θ)[•]0dµ(· | πT ) =

∫
Ω
(α|πT |+ θ)dµ(· | πT )

(T + θ)µ([•] | πT ) = (α|πT |+ θ)

µ([•] | πT ) =
α|πT |+ θ

T + θ
.

The case
(T + θ)[j]0 ∼πT (|πT

j | − α)

follows by analogous arguments. □

Proof of Proposition 3

We prove part (i): Let {⪰πT }πT∈ΠT ,T≥1 satisfy Assumption 1. Recall Property 6: for any T

and πT ∈ ΠT and i, j ≤ |πT |, there are x, y ∈ R such that

x[T+1∈πT+1
i (·)]0 ∼πT y[T+1∈πT+1

j (·)]0 iff x[T+2∈πT+2
i (·)]0 ∼πT+1 y[T+2∈πT+2

j (·)]0

for πT+1 = πT ∪ {T + 1}. By Assumption 1, the left-hand side is equivalent to∫
Ω
u
(
x[T+1∈πT+1

i (·)]0
)
dµ

(
· |

[
πT

])
=

∫
Ω
u
(
y[T+1∈πT+1

j (·)]0
)
dµ

(
· |

[
πT

])
u(x)µ

([
T + 1 ∈ πT+1

i (·)
]
|
[
πT

])
= u(y)µ

([
T + 1 ∈ πT+1

j (·)
]
|
[
πT

])
By Property 2 and Assumption 1, probabilities must be nonzero. Thus, we can rewrite the
equation as

µ
([

T + 1 ∈ πT+1
i (·)

]
|
[
πT

])
µ
([

T + 1 ∈ πT+1
j (·)

]
| [πT ]

) =
u(y)

u(x)

By analogous arguments, the r.h.s. is equivalent to

µ
([

T + 2 ∈ πT+2
i (·)

]
|
[
πT+1

])
µ
([

T + 2 ∈ πT+2
j (·)

]
| [πT+1]

) =
u(y)

u(x)

“Reverse” Bayesianism now follows.

Parts (ii) and (iii) follow analogously by replacing Property 6 in above arguments with
Property 7 or 8, respectively. □
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B SEU Representation

We the sake of completeness, we state the properties and theorem characterizing Assumption 1.
We find it convenient to make use of Wakker (1989, Chapter V.5). Let C be a nonempty
connected separable topological space of outcomes or consequences endowed with the Borel
σ-algebra ΣC . For any outcomes x, y ∈ C, we let x ⋎ y = x if x ⪰ y and x ⋎ y = y otherwise.
Similarly, x ⋏ y = x if x ⪯ y and x ⋏ y = y otherwise. For any act f and consequence x,
the above truncation is the act f ⋎ x defined by (f ⋎ x)(ω) = f(ω) ⋎ x for all ω ∈ Ω. Define
analogously the below truncation. A set of acts is truncation closed w.r.t. ⪰ if for every act in
that set and every consequence also the above truncation and below truncation is contained in
that set. We say that an act f is bounded w.r.t. ⪰ if there exist consequences x, y ∈ C such
that x ⪰ f ⪰ y.

We say that ⟨⟨Ω,ΣΩ⟩, ⟨C,ΣC⟩,F ,⪰⟩ is an abstract choice frame if F is the set of all mea-
surable acts f : Ω −→ C that include the simple acts, are truncation closed w.r.t. ⪰, and are
bounded w.r.t. ⪰. In the following we fix an abstract choice frame.

Property 9 (Weak order) ⪰ is a weak order, i.e., complete and transitive.

Property 10 (Pointwise monotonicity) ⪰ is pointwise monotone, i.e., for any f, g ∈ F ,
f(ω) ⪰ g(ω) for all ω ∈ Ω implies f ⪰ g.

For event E ∈ ΣΩ and consequences x, y, z, w ∈ C, we write

xy ⊵E zw

if there exist simple acts f, g ∈ F such that xEf ⪰ yEg and zEf ⪯ wEg. We write

xy ▷E zw

if there exist simple acts f, g ∈ F such that xEf ⪰ yEg and zEf ̸⪰ wEg.

Property 11 (Event Tradeoff Consistency) There do not exist simple ⪰-non-null events
E,F ∈ ΣΩ and consequences x, y, z, w ∈ C such that xy ⊵E zw and zw ▷F xy.

For any partition {Ei}mi=1 of Ω and consequences x1, ..., xm ∈ C, denote by x1E1
x2E2

...xmEm

the composite act defined by x1E1
x2E2

...xmEm
(ω) = xℓ if ω ∈ Eℓ.

Property 12 (Simple-continuity) ⪰ is simple-continuous if for any partition {Ei}mi=1 of Ω
and simple act f measurable w.r.t. {Ei}mi=1, the better set {(x1, ..., xm) ∈ Cm : x1E1

x2E2
...xmEm

⪰
f} and worse set {(x1, ..., xm) ∈ Cm : x1E1

x2E2
...xmEm

⪯ f} are close w.r.t. the product topology
on Cm.

Property 13 (Constant-continuity) ⪰ is constant-continuous if for all f ∈ F , the better
set {x ∈ C : x ⪰ f} and the worse set {x ∈ C : x ⪯ f} are closed.

Property 14 (Truncation-continuity) ⪰ is truncation-continuous if for every f, g ∈ F with
f ≻ g, there exists x, y ∈ C such that f ⋏ x ≻ g and f ≻ g ⋎ y.
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A set of acts is uniformly strongly bounded if there exist x, y ∈ C such that x ⪰ f(ω) ⪰ y
for all ω ∈ Ω and acts f in the set.

Property 15 (Bounded-strict-continuity) ⪰ is boundedly strictly continuous if for any
uniformly bounded sequence of acts (f i)∞i=1 in F and any pair of acts g, h ∈ F for which
f i ⪰ h (resp., f i ⪯ h) for all i and limi→∞ f i(ω) = g(ω) for all ω ∈ Ω, we have g ⪰ h (resp.,
g ⪯ h).

Definition 1 (Countable-Additive Subjective Expected Utility) The preference relation
⪰ admits a countable-additive Subjective Expected Utility representation if for all f, g ∈ F ,

f ⪰ g

if and only if ∫
Ω
u(f)dµ ≥

∫
Ω
u(g)dµ.

for a continuous utility function u : C −→ R and a countable-additive probability measure
µ ∈ ∆(Ω).

If Ω is simple ⪰-null, then µ is arbitrary and u is constant.

If Ω is simple ⪰-non-null but no two disjoint simple ⪰-non-null events exist in ΣΩ, then µ
assigns probability 1 to every simple ⪰-non-null event and probability 0 to every simple ⪰-null
event, and u is unique up to continuous strictly increasing transformations.

Otherwise, the utility function is unique up to positive affine transformations and µ is
uniquely determined.

Theorem 3 (Wakker, 1989) Properties 9 to 15 hold if and only if ⪰ admits a countable
additive subjective expected representation.

See Wakker (1989, Chapter V.5), in particular Theorems V.4.6, V.5.2, and Observation
V.3.4’. An even stronger result could be obtained using Wakker (1993).

Kopylov (2010) provides a nice alternative characterization for countable additive subjective
expected utility. However, he obtains just non-atomistic probability measures, which does not
fit our framework.

Note that by Theorem 3, the Sure Thing Principle must hold: For any event E ∈ ΣΩ and
any f, g, h, h′ ∈ F ,

fEh ⪰ gEh if and only if fEh
′ ⪰ gEh

′.

Thus, we can define for each nonempty E ∈ ΣΩ, a conditional preference relation ⪰E on F by
for f, g ∈ F ,

f ⪰E g if and only if fEh ⪰ gEh

for some h ∈ F .

Definition 2 We say that ⪰E for nonempty E ∈ ΣΩ admits a E-conditional countable additive
subjective expected utility representation when ⪰ in Definition 1 is replaced by ⪰E, µ is replaced
by the conditional probability measure µ(· | E), and u is replaced by uE.
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For event E ∈ ΣΩ and consequences x, y, z, w ∈ C, write

xy ⊵E zw

(i.e., subscript E) if there exists an event F ∈ ΣΩ and simple acts f, g ∈ F such that xF f ⪰E yF g
and zF f ⪯E wF g.

Property 16 (Risk Invariance) For any events E,F ∈ ΣΩ, ⊵E = ⊵F .

Note that above exposition allows C = R. In such a case, it is handy to also consider a very
strict notion monotonicity:

Property 17 (Strict monotonicity) Let C = R. ⪰ is strictly monotone if x, y ∈ F , x > y
if and only if x ≻ y.

Corollary 4 Let C = R. For any nonempty E ∈ ΣΩ, ⪰E Properties 9 to 15 if and only if it
admits the E-conditional countable additive subjective expected representation. Moreover, uE
can be chosen such that uE = u if and only if ⪰E satisfies Property 16. Finally, u is strictly
monotone if and only if ⪰E satisfies strict monotonicity.
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