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Abstract

Neuroeconomics focuses on brain imaging studies mapping neural responses to choice
behavior. Economic theory is concerned with choice behavior but it is silent on neural
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The nervous system constrains information processing functions and behavioral functions.
By reinterpreting results from evolutionary game theory (Germano, 2007), we suggest that
nervous systems can develop to “function well” in exogenously changing strategic environ-
ments. We present an example indicating that an analogous conclusion fails if players can
influence endogenously their environment.
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1 Introduction

Neuroeconomics mainly focused on economic experiments using methods of brain imaging (for
surveys see Glimcher and Rustichini, 2004, Camerer, Lowenstein and Prelec, 2005, and McCabe,
2008). Since neural activity is not explicitly modeled in economic theories, such theories may be
of limited use for generating hypotheses that guide neuroeconomic experiments in an insightful
way. To fill the gap, neuroeconomic theories are required that are more explicit on the biological
constraints that the nervous system imposes on behavior. In developing such theories, the
formal tools of game theory may be a useful language for modeling complex phenomena of
interaction within and between brains as it was similarly useful in the development of modern
economic theory. The aim of this note is to outline how existing tools of evolutionary game
theory and learning in games may be reinterpreted to shed some light on the development of
“brain” functions in a changing environment. No claim of originality is made: The main result
has been developed elsewhere in the abstract context of evolution and learning in games by
Germano (2007).

We consider a finite set of players who play repeatedly different strategic games selected
randomly according to some exogenously given probability distribution on a finite set of games.
The players are endowed with a “nervous system”. This is a suggestive interpretation of a
simple network-like structure with “neurons” as nodes and “synapses” as binary relation on
neurons. The structure constrains the player’s perception of the environment and her behavioral
response - similar to incomplete information in games. The “richer” the nervous system, the
better it can detect the variability of the environment and the more variability of behavior
it can generate. We ask the following question: Can such nervous system be designed by
evolution, development and learning to “function well” in the player’s interaction with other
players and the environment? Intuitively, a “well functioning” brain should be adapted to its
environment in the sense of generating appropriate behavioral responses that enable the survival
of the population of “brain-carriers”. In this paper, we assume that “function well” means the
brain’s ability to play strategies that are not strictly dominated in the respective games and in
the “average” game over the player’s life-time. Reinterpreting a result by Germano (2007), we
answer this question affirmatively. Yet, a simple example shows that if players can endogenously
affect the change of the environment (like in non-trivial stochastic games), then this conclusion
may not hold anymore.

At first glance, the evolutionary approach sketched in this note seems to be orthogonal to
“mainstream” neuroeconomics today but we argue that it is relevant for the foundations of
neuroeconomics. While economics studies optimal decision making, a typical neuroeconomic
experiment will produce brain images of subjects when confronted with an economic decision
task. These data are then interpreted with constructs that play a role in economic theories
such as utility, expected utility, multiple selves etc. despite the fact that economic theory
treats those as abstract constructs and optimizing behavior “as if”. So the implicit assumption
in neuroeconomics is that the brain is the very machine that could produce in principle optimal
or constrained optimal behavior. More generally, the assumption behind functional magnetic
resonance imagining (fMRI) is that different subsets of the brain are activated to fulfill different
functions or goals. Glimcher (2003, Chapters 6 to 8) traced this assumption back to Marr, who
according to Glimcher (2003, p. 142) suggested that “(i)n order to understand the relationship

1



between behavior and brain, one had to begin by understanding the goals or functions of a
behavior. Then one could begin to ask how the brain accomplishes a specific goal.” Further he
writes (p. 167)1 that “(t)he goal of the nervous system is to maximize the inclusive fitness of the
organism.” The question that we raise in this paper is whether or not evolution, development
and learning can produce a nervous system that is capable of doing that. This answer seems to
be not obvious to neuroscientists. According to Glimcher (2003, p. 166) a “major criticism that
Marr’s approach has faced is that it has been unclear whether evolution can be conceived of as
a process that structures nervous systems to accomplish goals with enough efficiency to make
the computational goal a useful starting point for neurobiological analysis.”2 This note may be
seen as a very preliminary attempt to provide an answer to this criticism of the foundations of
neuroeconomics with some tools of evolutionary game theory.

We are not the first to sketch some neuroeconomic theory. Others realized that hypotheses
on how the brain constrains economic behavior should be ideally grounded on models that
integrate microeconomic theory with a theory of the brain. Recent papers by Benhabib and
Bisin (2005), Bernheim and Rangel (2004), Brocas and Carrillo (2008a, 2008b), and Fudenberg
and Levine (2006) build models with “multiple selves” motivated by the modularity of the
brain but do not really attempt to represent physiological elements of the brain.3 Hence, they
are of limited use for generating hypotheses on neural data observable with modern technology
(while being capable of generating hypotheses on economic behavior).4 Our approach here is
different in that (besides taking an evolutionary approach) we seek to complement standard
game theoretic models with a (crude) model representing physiological elements of the brain
such as neurons and synapses. The hope is that an enhanced version could generate hypotheses
that are eventually useful for empirical neuroeconomics.

1Similarly, Glimcher (2003, p. 155) writes “(t)he other possibility, and the one implicitly advocated by
Marr’s approach, is to assume that the system was evolved to achieve a specifiable, and theoretically defined,
mathematical goal so as to maximize the fitness of the organism.”

2This criticism may be rooted in the first sentence of the following quote in Darwin (1859, p. 171-172.):“To
suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting
different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed
by natural selection, seems, I freely confess, absurd in the highest degree. When it was first said that the sun
stood still and the world turned round, the common sense of mankind declared the doctrine false; but the old
saying of Vox populi, vox Dei, as every philosopher knows, cannot be trusted in science. Reason tells me, that
if numerous gradations from a simple and imperfect eye to one complex and perfect can be shown to exist, each
grade being useful to its possessor, as is certainly the case; if further, the eye ever varies and the variations be
inherited, as is likewise certainly the case; and if such variations should be useful to any animal under changing
conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural
selection, though insuperable by our imagination, should not be considered as subversive of the theory. How a
nerve comes to be sensitive to light, hardly concerns us more than how life itself originated; but I may remark
that, as some of the lowest organisms in which nerves cannot be detected, are capable of perceiving light, it does
not seem impossible that certain sensitive elements in their sarcode should become aggregated and developed
into nerves, endowed with this special sensibility.” (The first sentence only is quoted in Glimcher, 2003, p. 152.)

3Brocas and Carrillo (2008b) write “The objective in this research is not to model the physiological elements
involved in a brain process (neurons, synapses, neurotransmitters) but, instead, to capture the fundamental
properties of those processes. The models are still ‘as-if’ representations of reality ...”

4An exception is Chaplin and Dean (2008) who provide an axiomatic characterization of the dopamine reward
prediction error hypothesis. (Dopamine is a neurotransmitter.)
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2 Basic Building Blocks

2.1 Environment

Let Ω be a potentially large but finite space of states of nature. These states provide some
description of the environment such as which game is to be played. The states of nature are
drawn randomly and independently according to some probability distribution µ ∈ ∆(Ω), where
∆(Ω) denotes the set of probability measures on Ω.

There is a finite game defined by a finite set of players I = {1, ...,m}, for each player i a
finite set of actions Ai, and for each player i a fitness function ui : ×i∈I∆(Ai)×Ω −→ R, where
∆(Ai) denotes the set of probability distributions on Ai (i.e. mixed actions). Let denote ai ∈ Ai

an action of player i and a−i ∈ A−i := ×j∈I\{i}Aj a profile of actions of player i’s opponents.
Similarly, let αi ∈ ∆(Ai) denote a mixed action of player i and α−i ∈ ×j∈I\{i}∆(Aj) a profile of
mixed actions of player i’s opponents. We restrict the analysis to symmetric games, i.e. Ai = A
for all i ∈ I and for all ω ∈ Ω, ui(αi, α−i, ω) = uf(i)(αf(i), α−f(i), ω) for all bijections f : I −→ I.

The framework is interpreted as follows: In each period, a state ω ∈ Ω is drawn according to
the probability distribution µ on Ω. The state ω determines a symmetric finite strategic game
G(ω) := 〈I,A, (ui(ω))i∈I〉. That is, we assume that players may not just play one game in
their life but at each period games are selected according to some exogenously fixed probability
distribution µ.5 We call (Ω, µ) the environment. We say a game G(ω) is relevant if µ({ω}) > 0.

2.2 Nervous System

Each player i ∈ I has a potentially large but finite set of neurons, Ni = {1, ..., ni}. Let Ci be a
binary relation defined on Ni for player i called “synapse”. We interpret j Ci j′ as “for player
i neuron j projects to neuron j′”, j, j′ ∈ Ni. Since such a synapse is directed, we let Ci be
irreflexive (but it may not be transitive or complete). If j Ci j′, then we call j the presynaptic
neuron and j′ the postsynaptic neuron for player i. Clearly, our model of the neuron abstracts
from many interesting features (see Gazzaniga et al., 2002, Chapter 2).

There are special neurons called receptors used to obtain signals from the environment.
Examples are the photoreceptor cells of the retina (see Gazzaniga et al., 2002, Chapter 5).
Perhaps one way of featuring receptors in Ni would be to require that if j ∈ Ni is a receptor
then there is no j′ ∈ Ni such that j′ Ci j. That is, a receptor is a neuron which may project to
other neurons but to which no other neuron projects to. Yet, this feature will not play a role
in this note.

A neuron sequence for player i is j0, j1, ...j l̄ with jl Ci jl+1 for l ∈ {0, 1, ..., l̄ − 1}. There
can be loops. We call Ni = 〈Ni,Ci〉 the anatomy of player i’s nervous system or bluntly player
i’s “brain”. One may imagine it as a directed graph or network. The conception of the nervous
system as a network has a long tradition in neuroscience that can be traced back at least to
Exner (1894) and more recently to artificial neural networks. We will not use a neural networks
approach here but just stick to primitive features of networks.

5In section 6.3 we relax this assumption and allow players to influence the probabilities with which states are
drawn.
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A sensory correspondence si : Ω −→ 2Ni for player i maps states of nature to neuronal
responses thought of as neural “firing” or activation of a subset of neurons. We may want to
impose conditions reflecting the constraints of the neural activity by the anatomy of the nervous
system. To this extend, define for a brain Ni, a particular set of subsets denoted Si ⊆ 2Ni by
N ′ ∈ Si if for all j ∈ N ′ there exists a neuron sequence j0, ..., j ∈ N ′ with j0 being a receptor.
We explicitly let ∅ ∈ Si. We may think of an element of Si as a subset of neurons that is
accessible by a receptor, i.e. a “module” (Glimcher, 2003, p. 150) or “neural circuit” accessible
by a receptor. We let the sensory correspondence si be constrained by the anatomy of the brain
by imposing the condition si(ω) ∈ Si for all ω ∈ Ω. If for ω ∈ Ω the subset of neurons si(ω)
is nonempty, then it must contain a receptor. Hence it can be activated by an environmental
stimulus. If si(ω) = ∅ for some ω ∈ Ω, then the stimulus ω does not activate any neurons.

To complete the model, we introduce a behavioral function bi : 2Ni −→ 4(A) for player i that
maps neural activity to mixtures over actions. An example is the activation of motor structures
inducing responses of what are called effectors such as arms, hands etc. (see Gazzaniga et al.,
2002, Chapter 11). Note that since ∅ ∈ 2Ni , bi defines a default behavior if no neurons are
activated. Note further that since bi maps neural responses to mixtures of actions, we allow
for randomness of behavior. For instance, trichoplax adhaerens, a tiny marine animal, has no
neurons (Schierwater, 2005). Hence, its behavior is not controlled by a brain. Still it displays
variability in behavior that we may view here as random.

3 A Digression: Neuroeconomics vs. Economics

Functional neuroimaging may be viewed as mainly occupied with the description of si and bi.
That is, a subject i is exposed to some stimulus ω ∈ Ω, observations of brain activity si(ω) are
made through MEG, EGG, PET, or fMRI (for a discussion of those methods see Gazzaniga
et al., 2002, Chapter 4) and a response in behavior bi(si(ω)) is recorded. The implementation
of such experiments is not as straightforward as it sounds here. To appreciate the difficulties
involved, one needs to consider that the equipment requires large fixed costs. Moreover, the
small sample sizes used in neuroeconomic experiments seem to suggest that the variable costs
of experiments must be extremely high too. The experimental designs must meet additional
challenges from potential confounding effects involved with brain scanners. Finally, typical
neuroeconomic papers reveal that the data transformations and statistical analysis including
their underlying assumptions are apparently difficult to report in a transparent manner.

Imaging studies of the brain yielded some empirical restrictions on si. E.g., let Ni = 〈Ni,Ci〉
be a brain. The condition si(ω) 6= Ni for all ω ∈ Ω would capture a weak version of the
Principle of Functional Segregation: No functions of the brain are performed by the brain as
a whole. Similarly, the condition if si(ω) = E 6= ∅ then E = F ′ ∪ F ′′ with F ′ 6= F ′′ and
nonempty F ′, F ′′ ∈ Si would capture a weak version of the Principle of Functional Integration:
No function is performed by a single “module” of the brain alone. For a discussion of those
principles, see Cohen and Tong (2001).

Economics essentially follows a traditional behavioral paradigm and focuses in our game
theoretic context on the optimality of strategies under complete or incomplete information.
Complete information refers to the case where the player can perfectly observe the state of
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nature. In our framework, it would correspond to si being one-to-one or injective: for any
ω, ω′ ∈ Ω, ω 6= ω′ implies si(ω) 6= si(ω′). Incomplete information refers to the case where a
player can not discriminate between some states of nature. That is, we do not rule out that for
some ω, ω′ ∈ Ω with ω 6= ω′ we have si(ω) = si(ω′).

Under complete information, a strategy is simply a map σi : Ω −→ 4(A). It assigns to
each state of nature a mixture of actions. Under incomplete information, we need to restrict
explicitly the strategies to private information. In our context it means that we need to constrain
it by values of the sensory correspondence (analogous to the constraining strategies to types
in games with incomplete information). That is, a strategy under incomplete information is a
map σi : Ω −→ 4(A) subject to for any ω, ω′ ∈ Ω with si(ω) = si(ω′) implies σi(ω) = σi(ω′).

The name “strategy” may be misleading here because it suggests that σi is the object of
conscious choice by player i. Since we assume a large number of states and at each period a
random selection of states according to some probability distribution, such interpretation may
not be appropriate in a descriptive sense. Rather, we may view a player as “programmed”
to a heuristic or a rule (see Gigerenzer et al., 2000) that is then calibrated by an evolutionary
learning process as outlined in section 6. While this “programming” perspective may not be the
standard interpretation in economics, it is familiar to the economists from evolutionary game
theory (see Weibull, 1995).

Note that we allow for framing: Let ω, ω′ ∈ Ω be such that ω 6= ω′ and G(ω) = G(ω′). That
is, games at ω and ω′ are formally identical but they may differ in their “color” or “smell”.
Yet, we allow the values of the feasible strategy to differ between the states. E.g., we allow that
administering subjects oxytocin before playing trust games as in Kosfeld et al. (2005) or Zak
et al. (2005) may alter the actions of the subjects as compared to a placebo.6

No matter whether we focus on complete or incomplete information, in our context we may
view a strategy as a composition of the sensory correspondence and the behavioral function,
σi = bi ◦ si. So an analogy between neuroeconomics and economics should become clear:
When economics studies informational constraints on choice behavior, neuroeconomics studies
neurobiological constraints on choice behavior by adding the focus on how the nervous system
constraints information processing. Which approach one should take depends largely on the
type of question one wishes to ask. If one wants to study for instance the impact of brain
lesions on behavior (a question taken up in section 5), the standard economic approach does
not suffice but a model on how the nervous system constraints information processing has to
be added.

4 “Well Functioning” Brains

Glimcher (2003, p. 167) writes “(t)he goal of the nervous system is to maximize the inclusive
fitness of the organism.” If a nervous system would play a strategy that is strictly dominated
in the “average game of life”, then clearly it would not maximize its fitness. Therefore we
assume that in our context “functioning well” shall mean to play strategies that are not strictly

6It is actually not clear whether oxytocin does not change the game (e.g. the fitness) as well since we are not
specific here on what we mean by fitness.
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dominated in the “average game of life.” In experiments we usually judge a player’s performance
only in one isolated controlled game at a time but do not observe the player’s performance in
the “average game of life.” Hence, we consider as a second criterion that “functioning well”
refers to the ability of choosing in all relevant situations actions that are not strictly dominated.

More formally, an action ai ∈ A is strictly dominated in the game G(ω) if there is a mixed
action αi ∈ ∆(A) such that7 ui(ai, a−i, ω) < ui(αi, a−i, ω) for all a−i ∈ A−i.

For ω ∈ Ω, let Dω be the set of actions that are not strictly dominated in the game G(ω).
Define for Ω′ ⊆ Ω, a set DΩ′ ⊆ A by (i) for all ω ∈ Ω′ there exists ai ∈ DΩ′ with ai ∈ Dω, and
(ii) there is no D $ DΩ′ for which (i) holds. Condition (i) ensures that for each state ω ∈ Ω′

there exists an action ai in DΩ′ that is not strictly dominated in G(ω). Condition (ii) requires
that DΩ′ is “minimal” in the sense that there is no smaller set of actions satisfying condition
(i). That is, DΩ′ is a smallest set of actions in A with the property that for each state ω ∈ Ω′

there is exactly one action in DΩ′ that is not strictly dominated in G(ω). |DΩ′ ∩Dω| = 1 for
all ω ∈ Ω′. Note that DΩ′ may not be unique.8 For Ω′ ⊆ Ω, let DΩ′ denote the set of all sets
of actions satisfying (i) and (ii). Note further that since Ω is finite, we must have that every
D ∈ DΩ′ is finite for every Ω′ ⊆ Ω. In fact |D| ≤ |Ω′| for all D ∈ DΩ′ and all Ω′ ⊆ Ω.

We define the variability of the environment (Ω, µ) by ε(Ω, µ) := minD∈Dsupp µ |D|, where
supp µ := {ω ∈ Ω : µ({ω}) > 0} is the support of µ. Intuitively, ε(Ω, µ) is the minimal number
of actions required that enables the play of an action that is not strictly dominated in any
relevant state. By definition, ε(Ω, µ) ≤ |Ω|. That is, the number of states of the environment
provide an upper bound on the variability of the environment. Note that the definition of the
variability of the environment depends on the choice of the solution concept (here actions that
are not strictly dominated) and hence on the fitness “goal”.

Let Si(Ω,Ni) be the set of all sensory correspondences from Ω to Si. Similarly, let Bi(Ni, A)
be the set of all behavioral functions from 2Ni to 4(A). A strategy σi : Ω −→ 4(A) is feasible
for the brain Ni if σi = bi ◦ si with si ∈ Si(Ω,Ni) and bi ∈ Bi(Ni, A). As mentioned in section
3, we don’t view here a strategy as an object of conscious choice by the brain but rather as a
heuristic or rule to which a player is “programmed”.

We define the size of the brain by β(Ni) := |Si|. Note that the size is not necessarily in-
creasing in the number of neurons but such increase requires also appropriate synapses and the
connectivity to receptors and effectors. The larger the size of the brain, the more variability in
behavior it may generate and the better it can gather information about the environment. The
following example is used to motivate above definition:

Example 1 Consider the brain Ni = {1}. Si = {∅, {1}}. Hence β(Ni) = 2. The environment
is given by Ω = {ω1, ω2, ω3}, µ({ω}) > 0 for all ω ∈ Ω and a single person game as follows:

State si Activation bi Action Fitness
ω1 −→ ∅ −→ a1 ui(a1, ω1) > ui(a2, ω1) > ui(a3, ω1)
ω2 ↗ ui(a2, ω2) > ui(a3, ω2) > ui(a1, ω2)
ω3 −→ {1} −→ a3 ui(a3, ω3) > ui(a1, ω3) > ui(a2, ω3)

7We abuse notation when writing ui both as a function of pure actions and mixed actions.
8An example is easily constructed: Let Ω = {ω1, ω2, ω3}. Moreover, let Dω1 = {a1, a2}, Dω2 = {a2, a3}, and

Dω3 = {a4}. Then both {a1, a3, a4} and {a2, a4} satisfy the definition for D{ω1,ω2,ω3}.
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The table shows also one possible assignment of the sensory correspondence si and behavioral
function bi. There are no possible assignments of si and bi that would allow the individual to
choose her most preferred action in each state. The reason is simply that the size of the brain
is not large enough given the variability of the environment, ε(Ω, µ) = 3. One more neuron
would be sufficient to solve the problem. �

This observation can be generalized to characterize brains that “function well” in all relevant
situations.

Remark 1 The size of the brain Ni is strictly lower than the variability of the environment
(Ω, µ) if and only if for any feasible strategy σi of the brain Ni there exists a relevant game
G(ω) for which σi prescribes a strictly dominated action.

Proof. “⇒”: Suppose to the contrary that there exists a strategy σi feasible for Ni such that
σi(ω) is not strictly dominated for all ω ∈ Ω with µ({ω}) > 0. Then |range σi| ≥ ε(Ω, µ). Since
σi is feasible, σi = bi ◦ si with si ∈ Si(Ω,Ni) and bi ∈ Bi(Ni, A). Thus |range σi| = |range bi| ≤
β(Ni), a contradiction to β(Ni) < ε(Ω, µ).

“⇐”: Suppose to the contrary that β(Ni) ≥ ε(Ω, µ). Then construct a strategy σi such
that for each ω ∈ Ω with µ({ω}) > 0, σi(ω) is not strictly dominated in G(ω). Such strategy is
feasible for Ni, a contradiction. �

We denote by Σ(Ni) a finite set of strategies feasible for the brain Ni. Moreover, in light of
Remark 1 we assume that if the size of the brain Ni is at least as large as the variability of the
environment (Ω, µ) then Σ(Ni) contains a strategy prescribing for each relevant game G(ω) an
action that is not strictly dominated. Finally, we assume that if Ni = Nj then Σ(Ni) = Σ(Nj).

A brain may be well adapted to its environment in the sense of not playing a strictly
dominated action in any relevant situation. Yet, such strategy may be strictly dominated by
another strategy in the overall “average game of life”. Let Ui(σ) :=

∑
ω∈Ω µ({ω}) ui(σ(ω), ω)

denote the expected fitness of player i from playing strategy σi when opponents play σ−i (i.e.,
expected over the entire life for a fixed strategy profile). This is the payoff function in the
“average game of life” denoted by Γ defined for a given environment (Ω, µ), the set of players
I, a given profile of brains (Ni)i∈I and for each player i/brain Ni a set of feasible strategies
Σ(Ni).

A feasible strategy σi ∈ Σ(Ni) is strictly dominated by a mixture of feasible strategies
ρi ∈ ∆(Σ(Ni)) in Γ if9 Ui(σi, σ−i) < Ui(ρi, σ−i) for all σ−i ∈ ×j∈I\{i}Σ(Nj). Note that
according to this definition, a strategy of player i may become strictly dominated if player i’s
size of the brain increases or the sizes of her opponents’ brains increase. That is, a player with a
previously “well functioning” brain may find it impossible to adapt herself well after opponents
evolve more sophisticated brains.

Remark 2 Suppose that for every player i ∈ I the size of her brain Ni is weakly larger than
the variability of the environment. If σi ∈ Σ(Ni) is not strictly dominated in the average game

9Again, we abuse notation when writing Ui both as a function of strategies and mixtures of strategies.
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of life Γ by some other strategy feasible for Ni, then σi(ω) is not strictly dominated in G(ω) for
all ω ∈ Ω with µ({ω}) > 0.

Proof. Suppose by contradiction that σi ∈ Σ(Ni) is not strictly dominated in Γ but that
there exist a state ω ∈ Ω such that σi(ω) is strictly dominated in G(ω). Construct a new
strategy σ∗i that agrees with σi on all games G(ω′) with µ({ω′}) > 0 where σi(ω′) is not strictly
dominated in G(ω′). In any other games G(ω′′) with µ({ω′′}) > 0 where σi(ω′′) is strictly
dominated in G(ω′′) let σ∗i (ω

′′) strictly dominate σi(ω′′). Since β(Ni) > ε(Ω, µ), such strategy
is feasible for Ni and by assumption such strategy is contained in Σ(Ni). Note that σ∗i strictly
dominates σ in Γ, a contradiction. �

The converse is not true. A counter example can be constructed similarly to Germano
(2007, Example 2).

5 Brain Lesions

The motivation for this section is twofold: First, in neuroscience, lesion studies are common. A
lesion is a damage of brain tissue possibly separating projections between neurons or destroying
neurons altogether. The effect of such lesions is then studied in patients. While some brain
functions are lost due to lesions, patients are often quite well calibrated to the environment. For
instance, the patient N.R. who suffered from the Balint’s syndrome caused by a right pariental
lesion due to a stroke can not see two object shown to him at the same time but only sees one
object at a time while speech and comprehension are normal (see Gazzaniga et al., 2002, p.
245, 292). The second purpose of this section is to define a “set of brains” that we will use in
the next section on the evolution of brains.

Given a brain Ni = 〈Ni,Ci〉, define a brain N′
i = 〈Ni,C′

i〉 by N ′
i ⊆ Ni and for j, j′ ∈ N ′

i ,
j C′

i j′ implies j Ci j′ (but not necessarily vice versa). We can view N′
i as a brain obtained

from Ni by a lesion. By definition, β(N′
i) ≤ β(Ni). That is, the size of the brain without

the lesion is weakly higher than the size of the brain with the lesion. Naturally, we assume
Σ(N′

i) ⊆ Σ(Ni). A brain with a lesion has a lower number of feasible strategies available than
the brain without the lesion.

Let Ni denote the (partially ordered) set of all brains that can be obtained from Ni by
lesions. We call Ni the set of brains derived from Ni. In the next section, we do not necessarily
interpret a brain N′

i ∈ N as a brain obtained from N by a lesion. Rather, Ni is just a set of
brains with weakly lower size than the size of brain Ni.10

Do lesions always matter? The following example illustrates that this depends on the kind
of lesion of the player’s brain and the environment.

Example 2 Consider a brain given by Ni = {1, 2, 3} with 1 Ci 2, 1 Ci 3 and 2 Ci 3. Thus
Si = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}} and β(Ni) = 5. Consider now a lesion that severs the
synapse between 2 and 3. Note that Si and β(Ni) remains unchanged. Hence such lesion won’t

10Note that there may be several different brains in Ni with an identical size.
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affect information processing and behavior no matter how rich the environment is. Consider
now a lesion that severs the synapse between 1 and 2. The size of the brain is now reduced
to 3 even though no neuron was removed. Despite this “brain damage”, the player still can
“function well” in below environment Ω = {ω1, ω2, ω3} with µ({ω}) > 0 for all ω ∈ Ω because
it is feasible for her to be programmed to si and bi given in below table:

State si Activation bi Action Fitness
ω1 −→ ∅ −→ a1 ui(a1, ω1) > ui(a2, ω1) > ui(a3, ω1)
ω2 −→ {1} −→ a2 ui(a2, ω2) > ui(a3, ω2) > ui(a1, ω2)
ω3 −→ {1, 3} −→ a3 ui(a3, ω3) > ui(a1, ω3) > ui(a2, ω3)

For such an environment, the lesion won’t effect her ability to play actions that are not strictly
dominated in each state. This holds true even if the lesion would remove either neuron 2 or 3
altogether. �

Lesions may have an externality on other players (as care takers of patients sometimes note).

Example 3 Let the environment consist of two states, Ω = {ω1, ω2}, with µ({ω}) = 1
2 for all

ω ∈ Ω. The game at each state is given by the following payoff matrices:

ω1 ω2(
10, 10 1, 9
9, 1 0, 0

) (
0, 0 9, 1
1, 9 10, 10

)
Let both players brains be given by N1 = N2 = {1}. Such a brain enables each player to play
a feasible strategy given by

σ1(ω) =
{

up if ω = ω1

down if ω = ω2
σ2(ω) =

{
left if ω = ω1

right if ω = ω2

that selects the strict dominant action and the Pareto efficient outcome in each game. I.e., for
player 1 we let s1(ω1) = ∅, b1(∅) = up, s1(ω2) = {1}, b1({1}) = down and analogously for
player 2. Suppose now that player 1 suffers a brain lesion such that her brain with the lesion is
N ′

1 = ∅. The above strategy is not feasible anymore for player 1 with the brain damage. Only
constant strategies are feasible that prescribe either up or down or a constant mixture thereof
at both states. Since player 2 sticks to his dominant strategy, in expectations any constant
strategy yields a fitness of 91

2 to player 1. Yet, player 2 incurs a much bigger fitness loss since
she receives in expectations only 51

2 . While player 1 suffered the brain damage, the healthy
player 2 incurs most of the costs.11 �

6 Development and Evolution of Brain Functions

We are not born with a fully developed brain. For instance, in newborns the optic nerves are
not developed completely but reach typical adult patterns only at the age of about 2 years. But

11Similarly, one can find examples in which the value of a brain damage is strictly positive because the brain
damage works like a commitment device.
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even the nervous systems of adults maintain some neural plasticity as indicated by learning of
new skills or the development of phantom sensation of amputees (see Gazzaniga et al., 2002,
Chapter 15). More generally, if the nervous system regulates the interaction of the organism
with other organisms and the complex changing environment, there should be an evolutionary
selection of nervous systems. First, we will try to analyze the question whether “successful”
brain functions si and bi can develop among interacting brains in a changing environment.
Second, we focus on the evolution of brains.

6.1 Development

Starting from an initial distribution of feasible strategies ρ̄ = (ρi, ρ−i) ∈ ×j∈I4 (Σ(Nj)) among
brains, we assume that brains develop feasible strategies according to a discrete-time stochastic
aggregate log-monotone dynamics defined by

ρt+1
i (σi) =

ρt
i(σi)eλi(ρ̄

t)(ui(σi(ω
t),ρt

−i,ω
t)−ui(ρ̄

t,ωt))∑
σ′i∈Σ(Ni)

ρt
i(σ

′
i)e

λi(ρ̄t)(ui(σ′i(ω
t),ρt

−i,ω
t)−ui(ρ̄t,ωt))

(1)

where λi : ×j∈I 4 (Σ(Nj)) −→ R+ is a positive continuous function bounded away from zero.
This dynamics is just one learning dynamics reflecting the “law of effect”: The probability of
playing a certain strategy increases in the relative performance of the strategy in randomly
drawn games among brains. Note that the propensity to use a certain strategy is updated with
respect to randomly drawn games (instead of the average game of life). This dynamics has
be studied by Cabrales and Sobel (1992) in a standard evolutionary game setting and for our
stochastic environments by Germano (2007).

Proposition 1 Fix an environment (Ω, µ) and a profile of brains (Nj)j∈I . Let σi ∈ Σ(Ni) be
a feasible strategy of the brain Ni for some player i, which is strictly dominated in the average
game Γ. If for every player j ∈ I there is initially positive probability that Nj uses any feasible
strategy in Σ(Nj), then the brain Ni develops to use σi with zero probability almost surely.

Suppose further that for every player i ∈ I the size of the brain Ni is weakly larger than the
variability of the environment (Ω, µ). If for some player i ∈ I, σi ∈ Σ(Ni) is a feasible strategy
for Ni that prescribes a strictly dominated action in some relevant game and for every player
j ∈ I there is initially positive probability that Nj uses any feasible strategy in Σ(Nj), then the
brain Ni develops to use σi with zero probability almost surely.

Proof. The first conclusion is a reinterpretation of Germano (2007, Proposition 1). The
second conclusion follows from the first conclusion using Remark 2. �

Since the statement is for fixed profile of brains, the interpretation is restricted to learning
and development of brains. In light of Proposition 1 it would be interesting to study the
correlation between behavioral changes and the development of nervous systems in children. For
instance, Harbaugh, Krause and Berry (2001) examine to which extent consumption choices by
7 and 11-year-old children and college undergraduates satisfy the axioms of revealed preference.
They find that choices by even the 7-year-olds are considerably more likely to obey revealed
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preference axioms than would be true if they were choosing randomly. 11-year-olds do better
still, while college students do no better than 11-year-old children. They argue that this evidence
suggests that the ability to choose rationally is not innate, but that it does develop quickly.

6.2 Evolution

Now we turn our attention to the evolution of brains. Consider a sufficiently large population
of players. Each player is endowed with a brain N ∈ N̄ , where N̄ is a set of brains derived
from some brain N̄ as discussed in section 5. We assume that the size of N̄ is weakly larger
then the variability of a fixed environment (Ω, µ), β(N̄) ≥ ε(Ω, µ). We denote by η ∈ ∆(N̄ ) the
distribution of brains within the population. E.g., η(N) denotes the fraction of the population
endowed with the brain N ∈ N̄ .

At each period t players are randomly and anonymously matched to play the game at ωt.
If a player’s brain is N ∈ N̄ , then he is programmed to some feasible strategy σ ∈ Σ(N). Let
ρN ∈ ∆(Σ(N)) be the distribution of strategies in the population of players endowed with brain
N. E.g., ρN(σ) is the fraction of players programmed to σ ∈ ∆(Σ(N)) among all players in the
population with brain N. (If η(N) = 0, then ρN can be arbitrary.) We define ρ ∈ ∆(Σ(N̄)) by
ρ(σ) =

∑
N∈N̄ η(N)ρN(σ). This is the fraction of the entire population programmed to σ.

We assume that the evolutionary selection of strategies within the entire population follows
equation (1), i.e.

ρt+1(σ) =
ρt(σ)eλ(ρ̄t)(ui(σ(ωt),

m−1

ρt,...,ρt,ωt)−ui(ρ̄
t,ωt))∑

σ′∈Σ(N) ρt(σ′)eλ(ρ̄t)(ui(σ′(ωt),
m−1

ρt,...,ρt,ωt)−ui(ρ̄t,ωt))

.

This equation may be viewed as a discrete-time version of the replicator dynamics used in stan-
dard evolutionary game theory (see Cabrales and Sobel, 1992). By Remark 1, the evolutionary
selection of strategies has implications on the evolution of brains:12 If ρ(σ) = 0 for all feasible
strategies σ ∈ Σ(N) of the brain N, then η(N) = 0.

Corollary 1 Given the environment (Ω, µ), consider the set of brains N̄ derived from a brain
N̄ whose size is weakly larger than the variability of the environment. If initially there is a
completely mixed distribution of brains η ∈ ∆(N̄ ) in the population of players and for each brain
any feasible strategy has initially strict positive probability in the population, then evolution lets
the fraction of players with a brain of strictly smaller size than then variability of environment
go to zero almost surely.

Proof. For all brains N with β(N) < ε(Ω, µ) it follows from Remark 1 that any feasible
strategy σ ∈ Σ(N) must prescribe a strictly dominated action σ(ω) for some game G(ω) with
µ({ω}) > 0. Then the result follows from Proposition 1. That is, the result is just a reinterpre-
tation of Germano (2007, Proposition 1). �

12So the evolution of brains is “indirect” in the spirit of the indirect evolution of utility functions in an approach
pioneered by Güth and Yaari (1992).
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Empirically, there is quite some variation of the number of neurons (a proxy for our measure
of brain size) in organisms. For instance, trichoplax adhaerens, a tiny marine animal, has no
neurons at all (Schierwater, 2005) whereas human beings are estimated to have about 95 billion
neurons and about 100 trillion synapses. While humans do not have the largest brain both in
terms of relative or absolute volume or weight or the total number of neurons, they have the
highest number of cortical neurons (for a survey see Roth and Dicke, 2005). The cerebral cortex
is often associated with “thinking”, “perceiving”, “producing” and “understanding” language
but it is also involved in more basic functions such as vision, hearing, touch, movement, and
smell (Gazzaniga et al., 2002, pp. 70). It is the most recent structure in the history of brain
evolution. The following table provides a comparison of numbers of cortical neurons in some
mammals (see Haug, 1987, and Roth and Dicke, 2005):

Animal taxa Number of cortical neurons
Man 11 500 000 000
African elephant 11 000 000 000
False killer whale 10 500 000 000
Chimpanzee 6 500 000 000
Bottlenose dolphin 5 800 000 000
Gorilla 4 300 000 000
Horse 1 200 000 000
White-fronted capuchin 610 000 000
Rhesus monkey 480 000 000
Squirrel monkey 480 000 000
Cat 300 000 000
Dog 160 000 000
Opossum 27 000 000
Hedgehog 24 000 000
Rat 15 000 000
Mouse 4 000 000

In light of Corollary 1, it would be an interesting empirical exercise to investigate beside the
brain sizes of organisms also a measure of the variability of their environment, and check for a
correlation. Note however that this does not provide a test for the result because it could well
be that organisms 1 and 2 are such that the brain size of 1 is smaller than the brain size of 2
and the variability of 1’s environment is higher than the variability of 2’s environment but both
organisms’ brain sizes are larger than their respective environment’s variability.

6.3 Endogenous Changes of Environments

Today there are signs that human behavior changes the environment more and more. For
instance, the industrial revolution may cause global warming. Even in more primitive societies,
actions today impact the environment tomorrow such as hunters need to move on once animals
are hunted, nomads need to move depending on the grazing activity of their livestock, war
destroy potentials of future production etc. Do the conclusions of the previous section remain
intact in such a more realistic setting?
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More formally, in contrast to section 2.1 suppose now that at each period players can influ-
ence interactively through their actions the probability with which the next state is drawn. In
particular, we assume that µ(ωt+1|ωt, a) is the transition probability that the state is ωt+1 in pe-
riod t+1 given that the state in t is ωt and the players’ profile of actions at t is a = (a1, ..., am).
Essentially, these transition probabilities together with games {G(ω)}ω∈Ω render the environ-
ment into a stochastic game. Analogous to the theory of stochastic games, we call player i’s
strategy σi Markov if at any period of time it just depends on the current state.

Example 4 (apokalupsis eschaton) There are two players. Their environment consists of
two states Ω = {ω1, ω2}. In any of those states, either player can take either of two actions. The
payoffs in each state are given by the payoff matrices. The transition probabilities associated
with each state and each profile of actions are given below the payoff matrices. (Each component
of the matrix corresponds to the state and action profiles above, assigning the probability of
transiting to ω1 and ω2 respectively. We let ε > 0.)

ω1 ω2(
3, 3 0, 4
4, 0 2, 2

) (
−10,−10 −10,−10
−10,−10 −10,−10

)
(

(1, 0) (1− ε, ε)
(1− ε, ε) (1− ε, ε)

) (
(0, 1) (0, 1)
(0, 1) (0, 1)

)
G(ω1) is a standard Prisoner’s dilemma with down and right being strictly dominant. In G(ω2)
any action is not strictly dominated.

We assume that the initial state is ω1. No matter whether players have a brain or not,
the dynamics in equation (1) should lead players to play the strictly dominant action in G(ω1)
starting from a completely mixed action profile. Such play leads at some point to the absorbing
game G(ω2) with very low fitness to both players. Yet, playing the strictly dominated action in
G(ω1) is part of the strategy that is strictly dominant in the average game. So there is no way in
which brains as modeled in this note can develop to “function well” in the “average game of life”
with the dynamics in equation (1) because “functioning well” would mean to avoid the “bad
life” in game G(ω2) altogether. Note that we could slightly perturb the payoffs and transition
probabilities and the same conclusion would obtain. Thus such class of games is not negligible.�

What to make of it? On one hand, we can dismiss adaptive play given by equation (1) as
extremely mechanistic and backward looking and our model of the “brain” as a meaningless
caricature. What would a model of a brain need to look like that is able to generate foresight
required to “function well” in problems like Example 4? What enables the imagination of
consequences without having to experience similar consequences beforehand? On the other
hand, stories like the one of Adam and Eve show that we may (even religiously) believe that
humans are created in such a way that they fail to envision consequences of their actions (despite
being told about them beforehand).

In the exogenously changing environments studied in the previous section, larger brains have
an evolutionary advantage in more complex environments. When the change of environment
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depends endogenously on the players’ actions, a larger brain can also generate more variability
in behavior and hence make the environment more variable as well. Therefore, it is not clear
anymore, whether larger brains maintain an evolutionary advantage over smaller brains in
endogenously changing environments. It is possible to build more sophisticated examples where
only the presence of a large brain in a population of “no-brainers” triggers the transition to
“bad” absorbing sets of games. It is also possible to construct examples, where large brains are
needed to enter relative small sets of absorbing sets of games and then once entered evolutionary
drift reduces the brain size in the population over time because the evolutionary selection
pressure is not present anymore in the small absorbing set of games.

7 Some Further Discussion

What is really the relevance of such an evolutionary model? It gives a preliminary answer
to the “major criticism that Marr’s approach has faced”. Namely, that “it has been unclear
whether evolution can be conceived of as a process that structures nervous systems to accom-
plish goals with enough efficiency to make the computational goal a useful starting point for
neurobiological analysis.” (Glimcher, 2003, p. 166.) It does shed some light on the dependence
of the appropriate brain size on the variability of the environment but such relationship is far
from surprising and the model falls short of generating a hypothesis that is really testable.
It does also question the ability of evolution and development to adapt appropriately to an
environment that can be changed by the players themselves. But given the crude model of the
nervous system and the evolutionary process, how seriously should it be taken?

One important aspect from an economic point of view - which is not considered here at all
- is that large brains in humans constitute large investments. This large investment does not
only come in form of bodily capital (the extreme rapid growth requires prenatally about 60% of
the metabolism, see Roth and Dicke, 2005, p. 254) but large brains also demand education and
hence further investment by society into human capital. Moreover, the “maintenance” of such
large brains consumes about 20% of the total metabolism while it constitutes only 2% of the
body weight (Roth and Dicke, 2005, p. 254). A more comprehensive theory of the development
and evolution of the brain needs to take into account the trade off between the higher costs of a
larger brain and the more sophisticated behavior it may generate. Robson and Kaplan (2003)
present such a “brain-capital” theory.

This note uses results by Germano (2007) and he may have anticipated such use when he
wrote (p. 324) “(I)t seems that some of the main challenges lie in the characterizing ‘good’
rules that ideally apply to a wide range of games and environments, and linking them to
actual cognitive (or genetic) behavior.” He also presents additional results such as on the
elimination of strategies that are not rationalizable, Nash equilibria in the average game of life
as limit points under convergence etc. It would be interesting to consider such strategically more
sophisticated solution concepts because Dunbar and Shultz (2007) suggest that the strategic
demand from living in complex societies selected for sophisticated brains whereas our focus on
actions/strategies that are not strictly dominated covers mainly the demands upon the brain
made by ecological variability.

Our model has nothing to say about internal mental conflicts modeled in recent papers on
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neuroeconomic theory by Benhabib and Bisin (2005), Bernheim and Rangel (2004), Brocas and
Carrillo (2008a, 2008b), and Fudenberg and Levine (2006). Our hope is that a more sophisti-
cated evolutionary approach could shed some light on the evolution of multiple selves. A first
attempt is presented by Livnat and Pippenger (2006) who show what computational constraints
give optimally rise to “multiple selves”. However, they do not model the evolutionary selection
of players with multiple selves in the spirit of evolutionary game theory.
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