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Abstract

We analyze a symmetric n-firm Cournot oligopoly with a heterogeneous population of

optimizers and imitators. Imitators mimic the output decision of the most successful firms

of the previous round à la Vega-Redondo (1997). Optimizers play a myopic best response

to the opponents’ previous output. Firms make mistakes and deviate from their decision

rules with a small probability. Applying stochastic stability analysis, we find that the long

run distribution converges to a recurrent set of states in which imitators are better off than

are optimizers.
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“Men nearly always follow the tracks made by others and proceed in their affairs by

imitation, even though they cannot entirely keep to the tracks of others or emulate

the prowess of their models. So a prudent man should always follow in the footsteps

of great men and imitate those who have been outstanding.” Niccolò Machiavelli

1 Introduction

One of the most fundamental assumptions in economics is that firms maximize absolute profits.

However, already Alchian (1950) suggested that firms may maximize relative profits in the

long run rather than absolute profits. In contrast, Friedman (1953) argued that evolutionary

selection forces favor absolute profit maximization. In particular, he postulated that, although

firms may not know their profit functions, we can assume that they behave as if they maximize

profits because otherwise they would be driven out of the market by firms that do behave as

if they maximize profits. Koopmans (1957), p. 140, remarked that if selection does lead to

profit maximization then such an evolutionary process should be part of economic modeling.

Following Koopmans’ suggestion, this paper shows that there is an interesting class of counter-

examples to Friedman’s conjecture.

The present paper was inspired by Vega-Redondo (1997).1 He shows that in a quantity

setting symmetric n-firm Cournot oligopoly with imitators, the long run outcome converges to

the competitive output if small mistakes are allowed. Imitators mimic the output of the most

successful firms in the previous round. His result is in sharp contrast to optimizers, whose

outputs are known to converge under certain conditions in the Cournot tatonnement to the

Cournot Nash equilibrium. It seems natural to wonder what happens if imitators and optimizers

are mixed together in a heterogeneous population. According to Friedman, we should find that

optimizers are better off than are imitators, and that consequently optimizers drive out imitators

in any payoff monotone selection dynamics. However, we find that imitators are strictly better

off than are optimizers, which is at first glance a rather surprising result given that imitators are

less sophisticated than optimizers. In a sense, this result is reminiscent of Stackelberg behavior.

That’s why we name the support of the long run distribution the set of Pseudo-Stackelberg

1See also Schaffer (1989), Corchon (1990), Rhode and Stegeman (2001), Alós-Ferrer (2004) and Thijssen

(2005).
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states. Imitators and optimizers play roles analogous to those of the “independent” and the

“dependent” firms respectively in von Stackelberg’s (1934) work.2 Optimizers are “dependent”

since by definition they play a best response. Imitators are “independent” because they do not

perceive any influence on the price. Analogous to the profits of von Stackelberg’s independent

and dependent firms, every imitator is better off than every optimizer.

In the proofs of our results, we rely on the quasisubmodularity of payoff functions (see Top-

kis, 1998, pp. 43, Milgrom and Shannon, 1994). The intuition for quasisubmodularity in our

context is that if a firm prefers a larger quantity to a lower quantity for a given total market

quantity, then it prefers also the larger quantity to the lower quantity for a lower total market

quantity. The Cournot oligopoly satisfies this property by definition (see Lemma 1). A similar

version of this property, in which the total market quantity is replaced by the opponents’ quan-

tity, is used in modern oligopoly theory (e.g. Vives 2000, Amir, 1996, Amir and Lambson, 2000).

Vega-Redondo’s (1997) result has been generalized to the class of aggregative quasisubmodular

games by Schipper (2003) and Alós-Ferrer and Ania (2005). Latter show more generally the

close relationship between optimal aggregate taking strategy (Possajennikov, 2003) and finite

population evolutionary stable strategy (Schaffer, 1989) in aggregative games. The results in

this paper are likely to generalize as well to aggregative quasisubmodular games such as some

rent seeking games, some common pool resource games etc. For instance, consider a repeated

Nash demand game and suppose that the imitator demands a share larger than 50% of the pie.

What can an optimizer do? It can optimize by demanding the highest share compatible to the

claim of the imitator. If the optimizer demands less then it forgoes profits. If the optimizer

demands more then both make zero profits. Assuming that the imitator mimics itself in such

situation we can conclude that the optimizer can not manipulate the decision of the imitator in

its favor. Hence it appears that also in this repeated Nash demand game the imitator is better

off than is the optimizer.

The dynamic analysis in this paper uses the concept of stochastic stability. The general

idea is that mutations select among absorbing sets of the decision process such that only the

most robust absorbing sets remain in the support of the limiting invariant distribution. We

interpret these mutations as bounded rationality of the firms. That is, there is always a small

2It is interesting to note that von Stackelberg himself never used the word “leader” in his book but spoke of

the “independent” and the “dependent” firm.
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positive probability of making mistakes in output decisions. A necessary condition for a state

to be contained in the support of the unique invariant limiting distribution is that this state

is contained in the minimal set of absorbing sets that is robust to a single mutation. Such

a set is called a recurrent set (see Samuelson, 1997). In our main result we show that the

symmetric Cournot Nash equilibrium, the only absorbing state in which optimizers are as well

off as imitators, is not the unique stochastically stable state. Moreover, we also show in an

example that there are parameters of the game such that the entire set of Pseudo-Stackelberg

states is the unique recurrent set. In any case, the support of the unique limiting invariant

distribution implies that imitators are strictly better off than are optimizers.

The paper is organized as follows: Section 2 introduces the model and the decision rules.

It is followed in section 3 by a discussion of candidates for solutions. Section 4 presents the

results, which are subsequently discussed in the concluding section 5. All proofs are contained

in the appendix.

2 Model

Consider a symmetric Cournot model with N = {1, 2, ..., n} firms that produce a homogeneous

good. The cost function of each firm i is c(qi), where qi ∈ R is the output of firm i and the

inverse demand function is p(Q), where Q :=
∑

i∈N qi is the total output over all firms. It will

be convenient to write profits as a function of the individual quantity and the total quantity,

πi(qi, Q) := qip(Q)− c(qi), for all i ∈ N. (1)

We restrict our analysis to a symmetric oligopoly since imitation is more reasonable if firms

face similar conditions of production.3

We assume that firms choose output from a common finite grid Γ = {0, δ, 2δ, ..., νδ} where

both δ > 0 and ν ∈ N are such that all prominent quantities discussed in the next section are

elements of the grid. The assumption of a finite grid turns the strategic situation into a finite

game and allows us to focus on finite Markov chains later in the dynamic analysis.

Our proofs rely heavily on the following property:

3Our model could be extended to asymmetric settings, in which each firm may imitate opponents that are

most similar to her in terms of the payoff function.
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Definition 1 (Quasisubmodularity) πi is strictly quasisubmodular in (qi, Q) on Γ×{0, δ, 2δ, ..., nνδ}

if for all q′′i > q′i, Q
′′ > Q′,

πi(q′′i , Q
′′) ≥ πi(q′i, Q′′) =⇒ πi(q′′i , Q

′) > πi(q′i, Q
′), (2)

πi(q′i, Q
′) ≥ πi(q′′i , Q′) =⇒ πi(q′i, Q

′′) > πi(q′′i , Q
′′). (3)

Assumption 1 (Strictly Decreasing Demand) For all Q,Q′ ∈ {0, δ, 2δ, ..., nνδ}, if Q′ >

Q then p(Q′) < p(Q).

Lemma 1 If Assumption 1 holds, then for any i ∈ N , πi is strictly quasisubmodular in (qi, Q)

on Γ× {0, δ, 2δ, ..., nνδ}.

The property allows us to compare profits of firms operating with different quantities in the

same market. Note that this property follows directly from the structure of the Cournot game.

No additional assumptions on costs have to be imposed.

The dynamics of the system is assumed to proceed in discrete time, t = 0, 1, 2, .... At each t

the state of the system is identified by the current output schedule ω(t) = (q1(t), q2(t), ..., qn(t)).

The state space of the system is identical to Γn. Associated with any such state ω(t) ∈ Γn is

the induced profit profile π(t) = (π1(t), π2(t), ..., πn(t)) at t, defined by πi(t) := qi(t)p(Q(t)) −

c(qi(t)), for all i ∈ N .

At every time t = 1, 2, ..., each firm i ∈ N has regardless of history an i.i.d. probability of

being able to revise her former output qi(t − 1). We assume that this probability is bounded

away from zero and one, hence the process has inertia. That is, not every period all firms adjust

their output. The idea is that it may be too costly to always adjust output.

The finite population of firms N is partitioned into two subpopulations of imitators and

optimizers respectively. Let I be the subset of N that contains all imitators. The fraction of

imitators in the population is denoted by θ = ]I
]N . The firms in the two subpopulations are

characterized by different decision rules.

Definition 2 (Imitator) An imitator i ∈ I chooses with full support from the set

DI(t− 1) := {q ∈ Γ : ∃j ∈ N s.t. q = qj(t− 1) and ∀k ∈ N, πj(t− 1) ≥ πk(t− 1)}. (4)
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That is, every period there exists a firm j that had the highest profit in the previous period.

An imitator imitates the previous period’s quantity of firm j. It is the same imitation rule as

in Vega-Redondo (1997).

Definition 3 (Optimizer) An optimizer i ∈ N\I chooses from the set

DO(t− 1) := {q ∈ Γ : q ∈ b(q−i(t− 1))}, (5)

with q−i :=
∑

j∈N\{i} qj and b : {0, δ, 2δ, ..., (n − 1)νδ} −→ Γ is the firm’s best response corre-

spondence defined by

b(q−i) := {q′i ∈ Γ : q′ip(q−i + q′i)− c(q′i) ≥ qip(q−i + qi)− c(qi), ∀qi ∈ Γ}. (6)

Definition 3 means that an optimizer sets an output level that is a best response to the oppo-

nents’ total output in the previous period.

It is assumed that initially in t = 0 every firm starts with an arbitrary output in Γ. The

process induced by the decision rules is a n-vector discrete time finite Markov chain with

stationary transition probabilities.

At every output revision opportunity t, each firm follows her decision rule with probability

(1 − ε), ε ∈ (0, a], a < 1, and with probability ε she randomizes with full support Γ. As a

matter of convention, we call a firm mutating at t if she randomizes with full support at t. The

noise has a convenient technical property: Let P (ε) be the Markov matrix P perturbed with

the level of noise ε. P (ε) is regularly perturbed (Young, 1993, p. 70), i.e., it is an ergodic and

irreducible Markov chain on Γn. This implies that there exists a unique invariant distribution

ϕ(ε) on Γn (for standard results on Markov processes see for example Masaaki, 1997). To put it

more intuitively, the noise makes any state accessible from any other state in finite time. This

is sufficient for the existence of the unique invariant distribution.

The following analysis focuses on the unique limiting invariant distribution ϕ∗ of P defined

by ϕ(ε)P (ε) = ϕ(ε), ϕ∗ := limε→0 ϕ(ε) and ϕ∗P = ϕ∗. In particular, the focus is on how

to characterize this probability vector since it provides a description of the long run output

behavior of the market when the noise goes to zero. This long run distribution describes the

average proportion of time spent in each state in the long run, or expressed differently, the

relative frequency of a state’s appearance as the time goes to infinity (see Samuelson, 1997).
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3 Candidates for Solutions

By standard results (e.g. see Samuelson, 1997, Proposition 7.4) we know that the support of

the long run distribution can only contain states that are elements of absorbing sets of the

unperturbed process. Therefore we consider first the case of no noise, ε = 0, and define an

absorbing set A ⊆ Γn in the standard way by

(i) for all ω ∈ A and for all ω′ /∈ A, the transition probability from ω to ω′ is pωω′ = 0; and

(ii) for all ω, ω′ ∈ A, there exists a finite m ∈ N s.t. p(m)
ωω′ > 0, p(m)

ωω′ being the m-step transition

probability from ω to ω′.

Vega-Redondo (1997) showed that a homogeneous population of imitators converges to

the competitive solution ω∗ = (q∗1, ..., q
∗
n) ∈ Γn defined by for all i ∈ N , q∗i p(Q

∗) − c(q∗i ) ≥

qip(Q∗) − c(qi), for all qi ∈ Γ, with Q∗ :=
∑

i∈N q
∗
i . Can the competitive solution be an

absorbing state given a heterogeneous population of imitators and optimizers? Since n is finite,

each optimizers’ share of the competitive output is larger than the best response. Hence they

will deviate to the best response leading to a state different from the competitive solution. It

follows that the competitive solution is not an absorbing state.

Consider now a state where every firm sets its symmetric Cournot Nash equilibrium output.

Definition 4 (Cournot Nash Equilibrium) A state ωC = (qC1 , q
C
2 , ..., q

C
n ) ∈ Γn is a Cournot

Nash equilibrium if for all i ∈ N ,

qCi p(Q
C)− c(qCi ) ≥ qip(QC − qCi + qi)− c(qi), for all qi ∈ Γ. (7)

In a heterogeneous population, imitators do not deviate since all firms set identical outputs and

earn identical profits. Optimizers do not deviate too since they set their best response quantities

anyway. Thus the symmetric Cournot Nash equilibrium is an absorbing state. However, is it

the unique absorbing state? Consider the following state:

Definition 5 (Pseudo-Stackelberg Solution) The Pseudo-Stackelberg solution

ωS = (q1, ..., qθn, qθn+1, ..., qn) ∈ Γn is defined by:4

4Assumption 3 and a sufficiently fine grid ensure that the best responses are unique (see Lemma 2 in the

appendix).
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(i) for all i ∈ I, qi = qS s.t.

qSp(θnqS + (1− θ)nqO)− c(qS) > qp(θnqS + (1− θ)nqO)− c(q), for all q 6= qS , (8)

(ii) for all i ∈ N\I, qi = qO,

qO = b(θnqS + ((1− θ)n− 1)qO). (9)

In the Pseudo-Stackelberg solution all imitators set identical outputs. This output maximizes

profits of imitators given that they do not perceive any influence on the price and the op-

timizers set identical best responses. This outcome has features of the competitive solution

(for imitators) and the Cournot Nash equilibrium (for optimizers). If θ = 1, then it is iden-

tical to the competitive solution since Inequality (9) becomes vacuous. If θ = 0, then it is

identical to the Cournot Nash equilibrium since Inequality (8) becomes vacuous. We call this

outcome the Pseudo-Stackelberg Solution because of its similarity to the Stackelberg solution

in the literature. Analogous to the profits of von Stackelberg’s (1934) independent and de-

pendent firms, every imitator is strictly better off than is every optimizer since Inequality (8)

holds for all q ∈ Γ, q 6= qS , hence also for qO 6= qS . I.e., it follows that if qO 6= qS then5

πi(qS , qO, n, θ) > πj(qS , qO, n, θ), for all i ∈ I and for all j ∈ N\I. Every imitator is strictly

better off than every optimizer.

Why is the Pseudo-Stackelberg solution an absorbing state? All imitators set identical

outputs and each of them is strictly better off than is any optimizer. Hence an imitator has no

reason to deviate from her output. Optimizers do not deviate too from their output since each

of them plays the best response. Thus the Pseudo-Stackelberg solution is an absorbing state.

We assume that the Pseudo-Stackelberg solution exists in Γn. The existence of Pseudo-

Stackelberg solution is analogous to the existence of competitive solution in Vega-Redondo

(1997) and the existence of Cournot Nash equilibrium. Standard assumptions on costs, i.e.,

strictly increasing marginal costs and small fixed costs, and Assumption 3 in the next section

suffice.

Previous arguments suggest already that the Cournot Nash equilibrium and the Pseudo-

Stackelberg solution may not be the only candidates for solutions. To facilitate the analysis we

5For notational convenience we write πi(q, q
′, n, θ) for πi(q, θnq+(1−θ)nq′) if i ∈ I, or for πi(q

′, θnq+(1−θ)nq′)

if i ∈ N\I.
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define the following set of states:

Definition 6 (Pseudo-Stackelberg States) The set of Pseudo-Stackelberg states H consists

of all states ω = (q1, ..., qθn, qθn+1, ..., qn) ∈ Γn satisfying the following properties:6

(i) qi = qI , for all i ∈ I and some qI ∈ Γ,

(ii) qi = qO, for all i ∈ N\I, qO = b(θnqI + ((1− θ)n− 1)qO),

(iii) πi(qI , qO, n, θ) ≥ πj(qI , qO, n, θ), for all i ∈ I and all j ∈ N \ I,

(iv) πi(qI , qO, n, θ) = πj(qI , qO, n, θ) for all i ∈ I and all j ∈ N \ I, iff qI = qO.

Each Pseudo-Stackelberg state is an absorbing state. If condition (i) is not satisfied, then

an imitator may mimic a different output decision from another imitator if the latter happens

to have higher profits. If condition (ii) is not satisfied, all optimizers that don’t play a best

response will have an incentive to deviate. If condition (iii) is not satisfied, imitators will mimic

optimizers. To understand the motivation of (iv) note that by symmetry, qI = qO implies

πi(qO, qI , n, θ) = πj(qO, qI , n, θ) for all i ∈ I and all j ∈ N \ I. To see the purpose of the other

direction note that if πi(qO, qI , n, θ) = πj(qO, qI , n, θ) for some i ∈ I and some j ∈ N \ I, and

qI 6= qO then some imitators would be indifferent between qI and qO, thus adding a source of

instability.

In each Pseudo-Stackelberg state, imitators are weakly better off than are optimizers. In

fact, imitators are strictly better off in any Pseudo-Stackelberg state except the Cournot Nash

equilibrium, the only state where optimizers are as well off as imitators.

It is clear that the set of Pseudo-Stackelberg states is nonempty since the Cournot Nash

equilibrium - assume that it exists - belongs to it. Moreover, it is easy to see that the competitive

solution is not a Pseudo-Stackelberg state since optimizers do not set a best response in the

competitive solution (unless n→∞ or θ = 1). Finally, if marginal costs are strictly increasing

then the Pseudo-Stackelberg solution is a Pseudo-Stackelberg state.

Can there be other absorbing sets like cycles? Following example shows that there are cases

where we can answer this question in the affirmative.

6Again, Assumption 3 and a sufficiently find grid ensure that the best responses are unique (see Lemma 2 in

the appendix).
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Example 1 (Cycle) Consider two imitators and one optimizer who face a linear demand

p(Q) = 10 − Q, and a cost function c(qi) = 25
2 for any qi > 0 and zero otherwise, and let

Γ = {0, 5}. It is straightforward to verify that the monopoly output is 5 and the monopoly profit

is 25
2 . If two firms choose 5 (and the third chooses zero output) then each of the two gets a

profit of −25
2 . Suppose that the two imitators choose 0 while the optimizer chooses 5. Since the

optimizer gets a profit of 25
2 while the imitators make a 0 profit each, the imitators will have

an incentive to mimic the optimizer who will in turn have to adjust his own output. Thus in

a new state, each imitator chooses 5 and earns −25
2 while the optimizer chooses 0 and makes

a 0 profit. Again, the imitators have an incentive to mimic the optimizer. After the optimizer

adjusts, we reach again the case where the optimizer chooses 5 and the imitators choose 0.

Example 1 appears to be contrived by the restricted action space. But even with a finer

grid there could be cycles. The following two assumptions together with inertia are sufficient

to rule out absorbing cycles.

Assumption 2 θ ≤ 1
2 .

While restricting the fraction of imitators to be not larger than 1
2 of the population, As-

sumption 2 allows for instance for Cournot duopoly with one imitator and one optimizer that

has been studied exclusively in the related literature (see Hehenkamp and Kaarbøe, 2008).

Assumption 3 For q′−i < q−i, q′ ∈ b(q′−i), q ∈ b(q−i), we have

0 >
q′ − q

q′−i − q−i
> −1. (10)

Assumption 3 states that the slopes of the best response correspondence are strictly lower

than 0 and strictly larger than −1. Former implies by Dubey, Haimanko, and Zapechelnyuk

(2006) that the game is a (finite) pseudo-potential game and has a Cournot Nash equilibrium.

Hence there exists a finite improvement path such that sequential best response converges to the

Cournot Nash equilibrium. The Cournot games in the literature are mostly pseudo-potential

games.

We also assume that the output grid is sufficiently fine so that the assumption that the

slopes of the best response correspondence are strictly larger than −1 implies that a best
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response is unique. Vives (2000, Theorem 2.8) shows in a simple proof that if a Cournot Nash

equilibrium exists and the above assumption holds, then it must be unique. Since we have a

symmetric game, the uniqueness condition implies that the unique Cournot Nash equilibrium

is symmetric (Vives, 2000, Remark 17) and that the best response correspondence is in fact a

function (see Vives, 2000, p. 43). Assumption 3 is standard in Cournot games (see Amir, 1996,

Amir and Lambson, 2000, and Vives, 2000, section 4.1 and exercise 4.5, for sufficient conditions

on demand and costs implying Assumption 3).

4 Results

We are finally ready to state our results. Let Z be the collection of all absorbing sets in Γn.

Recall that H is the set of all Pseudo-Stackelberg states (Definition 6).

Proposition 1 If ε = 0, all previous assumptions hold, and Γ is sufficiently fine, then Z =

{{ω} : ω ∈ H}.

In the previous section, we have argued already that each Pseudo-Stackelberg state must be

an absorbing set. To show that every absorbing set is a Pseudo-Stackelberg state, we use

Assumptions 2 and 3 to show that there aren’t any cycles and any adjustment process converges

to a Pseudo-Stackelberg state.

Let S denote the support of the long run distribution ϕ∗. By standard results, Proposition 1

implies that S ⊆ H.

Corollary 1 Under all previous assumptions, the imitators’ long run average per period payoff

is weakly larger than the optimizers’ long run average per period payoff.

The question we answer next is whether the noise selects among absorbing sets.

Proposition 2 If θ > 0, Assumptions 1 and 3 hold, and Γ is sufficiently fine, then for any

absorbing set A 6= {ωS} we have S 6= A. In particular, S 6= {ωC}.

Since we do not impose Assumption 2 in Proposition 2, we allow for cycles if any. We

show in the appendix, Lemma 4, that the Pseudo-Stackelberg solution can be reached from
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any absorbing set by just one suitable mutation (and the unperturbed adjustment process).

This is so because an imitator when switching to the output of the Pseudo-Stackelberg solution

may decrease her own payoff but decreases the payoffs of any other players even more. By

Lemma 3 (see appendix) the instability against a single mutation is sufficient to conclude that

any absorbing set A 6= {ωS} can never be the unique long run outcome. Since the Cournot

Nash equilibrium is the only Pseudo-Stackelberg state in which optimizers are as well off as are

imitators, it is worth to put following implication on record:

Corollary 2 If Assumptions 1, 2 and 3 hold and Γ is sufficiently fine, then the imitators’ long

run average per period payoff is strictly higher than the optimizers’ long run average per period

payoff.

Proposition 2 does not exclude any absorbing sets from the support of the long run dis-

tribution. Since in Lemma 4, which is used to prove Proposition 2, the Pseudo-Stackelberg

solution figures prominently, one may conjecture that the Pseudo-Stackelberg solution is the

unique long run outcome. This would be analogous to Vega-Redondo’s (1997) competitive so-

lution as long run outcome in a homogeneous population of imitators. It turns out that this

conjecture is false. We show in Example 2 that the support may comprise of the entire set of

Pseudo-Stackelberg states.

Example 2 also shows that Assumption 2 is not necessary for our results. In particular,

θ > 1
2 is not sufficient for cyclic behavior.7

Example 2 Consider a Cournot oligopoly with p(Q) = 10−Q, c(q) = 1
2q

2, n = 3, and θ = 2
3 .

It is straight forward to compute the monopoly output qM = 10
3 , any imitator’s quantity in

Pseudo-Stackelberg solution qS = 20
7 , the optimizer’s quantity in the Pseudo-Stackelberg so-

lution qO = 10
7 , and the Cournot Nash equilibrium output qC = 2. To simplify matters, let

Γ = {0, qO, qC , qS , qM}. If we assume for simplicity that both imitators adjust always simulta-

neously8, then we can consider the following payoff matrix, in which the row player refers to the

optimizer and the column refers to both imitators. The second payoff in each cell is the payoff

7I thank the Editor for raising this question.

8This suffices for showing that there are no absorbing cycles.
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to each imitator.

Optimizer’s

quantities

Imitators’ quantities

qM , qM qS , qS qC , qC qO, qO 0, 0

qM −5.56,−5.56 −2.38,−1.36 3.33, 3.33 7.14, 4.42 16.67, 0

qS −2.72,−3, 97 0, 0 4.90, 4.29 8.16, 5.10 16.33, 0

qC 0.67,−1.11 2.57, 2.45 6, 6 8.29, 6.33 14, 0

qO 1.70, 0.79 3.06, 4.08 5.51, 7.14 7.14, 7.14 11.22, 0

0 0, 5.56 0, 8.16 0, 10 0, 9.18 0, 0

It is relatively easy to check that from any initial state, the adjustment dynamics leads to

the Cournot Nash equilibrium or the Pseudo-Stackelberg solution in a few steps. E.g., if the

optimizer plays initially qM and the imitators both play 0, then the imitators may mimic the

optimizer in the next period, reaching (qM , qM , qM ). Then the optimizer may adjusts to qO

after which she is imitated by the imitators reaching the state (qO, qO, qO). The optimizer has

an incentive to deviate to qC , which may subsequently be mimicked by the imitators leading

to the absorbing state (qC , qC , qC). There are no absorbing sets other that the Cournot Nash

equilibrium and the Pseudo-Stackelberg solution. Note that one mutation is required to get

out of any absorbing state. In the Pseudo-Stackelberg solution, if the optimizer mutates to

the Cournot Nash equilibrium output, the imitators follow. In the Cournot Nash equilibrium,

if the optimizer mutates to qS, the imitators follow after which the optimizer may adjust to

qO reaching the Pseudo-Stackelberg solution.9 Hence by Lemma 3 in the appendix, both states

constitute the support of the long run distribution.

5 Discussion

Conlisk (1980) also analyzes a dynamic model with imitators and optimizers. However, he

takes the cost of optimizing into account, and this cost is a key for obtaining his results. Our

result appears to be stronger since in our work imitators are better off than are optimizers even

without any optimizers’ cost of sophistication. Droste, Hommes and Tuinstra (2002) consider

a large population of firms matched randomly into a Cournot duopoly. A fraction of firms

9It is not necessary to assume that only the optimizer mutates. We could consider alternatively mutations of

one imitator in order to show how to leave absorbing states by single mutations.
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play a best response to the average output in the previous period whereas others perfectly

forecast the output of either decision rule, play a best response to the forecast but bear an

extra information cost. They show that in an evolutionary dynamics with noise both decision

rules survive in the long run with fluctuating fractions. Gale and Rosenthal (1999) study

“imitators” and experimenters but their “imitators” differ from ours as they adjust towards

the average action adopted by opponents instead imitate the action of the most successful

player. Roughly they find that the population converges to the Nash equilibrium in various

games with a unique equilibrium. Juang (2002) studies a population of imitators and myopic

optimizers in which at each period all players are randomly paired to play a 2x2 coordination

game with a risk-dominant and Pareto-dominant equilibrium. His imitators differ slightly from

ours as they imitate the action that yielded the highest payoff on average (over all matched

pairs). He shows that equilibrium selection depends on the relative frequency of agents using

the two rules. Kaarbøe and Tieman (1999) study imitators and myopic optimizers in strict

supermodular games and find among others that the set of absorbing sets corresponds to the

set of Nash equilibria. This is in contrast with the strict submodular game studied in our paper,

for which there are also other absorbing states than the Nash equilibrium. Hehenkamp and

Kaarbøe (2008) study one imitator and one myopic optimizer in a rapidly changing environment

with strategic substitutes. If the optimizer can adjust decisions as fast as some parameters of

the game change (like the demand), then it is possible that the optimizer is better off than

the imitator if strategic substitutes are sufficiently weak. Thijssen (2005) studies firms that

imitate successful conjectures in Cournot oligopoly. He shows that the competitive outcome is

stochastically stable.10

The methods of Thijssen (2005) allow more generally for analyzing stochastic stability in

models with evolution at two levels. We believe that eventually they could be employed to

study what happens in our model if the factions of imitators and optimizers vary over time

based on their past performance.11 If changes of the decision rules are relatively infrequent

compared changes in quantities, then we would expect the fraction of imitators to grow since

10See Hommes (2006) for an extensive survey of models with heterogeneous decision rules in economics and

finance.

11In this case, Assumption 2 must be replaced with further assumptions on payoffs and costs in order to make

the problem tractable for any fraction of imitators.
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imitators obtain a higher long run average per period payoff. Once imitators have taken over

the population, Vega-Redondo’s (1997) result should emerge.

Our results rely on a sufficiently fine grid for obtaining unique best responses. We first let

δ become sufficiently small and then take ε to the zero. This raises the question whether our

results are robust with respect to a change in the order of these limits.12 We believe that our

results would obtain even with a “coarse” grid or with a change in the order of the limits as long

as we assume a tie-breaking rule for alternative best responses and that prominent outcomes

like the Pseudo-Stackelberg solution and Cournot Nash equilibrium quantities are in the grid.

Our results highlight the ambiguous semantics of profit maximization in Cournot oligopoly.

The optimizers are absolute profit maximizers in regard to their objective but not in terms of

the result. Aiming to maximize absolute profit may not be the way to actually achieving the

highest relative profit. We show that the standard text book understanding of profit maximizing

firms can not be supported by evolutionary arguments in Cournot oligopoly. A related point

was raised by Fershtman and Judd (1987) who showed that if firms are modelled by a principle-

agent relationship in Cournot oligopoly, then profit maximizing owners may not want managers

to maximize profits.

Earlier experimental studies of Cournot oligopoly by Sauermann and Selten (1959) found

some support for the convergence to Cournot Nash equilibrium. Recent studies by Huck, Nor-

mann, and Oechssler (1999) found support for imitative behavior. Whereas in former subjects

had profit tables for an easy calculation of the best response available, in later studies subjects

received feedback about the competitors’ profits and output levels. The informational frame-

work of these experimental designs corresponds closely to the information required by each of

the two decision rules (see also Offerman, Potters, and Sonnemans, 2002). Since both, imitation

behavior as well as best response, is supported by experimental findings in Cournot markets,

it would be natural to explore our results experimentally by providing different information to

different firms. This shall be left to further research. Yet, experimental results by Dürsch et

al. (2009) on Cournot duopoly show already that subjects earn on average higher profits when

playing against computers programmed to best response but do much worse against computers

programmed to imitation.

12I thank a referee for raising this question.
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A Proofs

Proof of Lemma 1.

Let q′′ > q′ and Q′′ > Q′. Since by Assumption 1, p is strictly decreasing

p(Q′) > p(Q′′)

p(Q′)(q′′ − q′) > p(Q′′)(q′′ − q′)

p(Q′)(q′′ − q′)− c(q′′) + c(q′) > p(Q′′)(q′′ − q′)− c(q′′) + c(q′)

π(q′′, Q′)− π(q′, Q′) > π(q′′, Q′′)− π(q′, Q′′)

A function satisfying last inequality is called strictly submodular. Strict quasisubmodularity is an

immediate implication. �

For the proofs of the following results are useful:

Lemma 2 If Assumptions 1 and 3 hold and Γ is sufficiently fine, then we conclude the following:

(i) For any fixed quantities by imitators, the game in which the set of optimizers is the set of players

has a Nash equilibrium.

(ii) Sequential best response converges to such Nash equilibrium in finite time.

(iii) Any optimizer’s best response is unique, and in above Nash equilibrium best responses are sym-

metric.13

(iv) Given θ ∈ (0, 1], let x′, x be total outputs of all imitators. If x′ < x, then x′ + (1 − θ)nqO′
<

x+ (1− θ)nqO, with qO = b(x+ ((1− θ)n− 1)qO) and qO
′

= b(x′ + ((1− θ)n− 1)qO
′
).

(v) If ωS exists, then it is unique.

Proof. For any fixed quantities by imitators, the game in which the set of players is the set of optimizers

satisfies Assumptions 1 and 3. Hence, (i) and (ii) are implied by Dubey, Haimanko, and Zapechelnyuk

(2006), and (iii) is implied by Vives (2000, p. 43) for sufficiently small δ > 0.

(iv) For θ = 1, the result follows trivially. Consider now θ ∈ (0, 1). Suppose to the contrary that

x′ < x and x′+(1−θ)nqO′ ≥ x+(1−θ)nqO. Last inequality is equivalent to x′−x ≥ (1−θ)n(qO−qO′
).

Since by assumption 0 > x′ − x we conclude that 0 > (1 − θ)n(qO − qO′
). Since θ ∈ (0, 1) and n ≥ 1,

the last equality is satisfied if and only if 0 > qO − qO
′
. Define q′−i := x′ + ((1 − θ)n − 1)qO

′
and

analogously for q−i. Suppose q′−i ≥ q−i, then by Assumption 3 (strictly decreasing best responses)

13This implies that the Cournot Nash equilibrium is unique and symmetric.
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qO
′ ≤ qO (with equality if q′−i = q−i), a contradiction to above. Suppose now that we have q′−i < q−i.

Then by Assumption 3, q′−i+qO
′
< q−i+qO, a contradiction to x′+(1−θ)nqO′ ≥ x+(1−θ)nqO above.

(v) Let ωS
′

and ωS
′′

be two Pseudo-Stackelberg solutions with ωS
′ 6= ωS

′′
. Denote by QS

′
=

θnqS
′

+ (1 − θ)nqO
′
, QS

′′
= θnqS

′′
+ (1 − θ)nqO

′′
, qO

′
= b(θnqS

′
+ ((1 − θ)n − 1)qO

′
), and qO

′′
=

b(θnqS
′′

+ ((1 − θ)n − 1)qO
′′
). Inequality (8) implies πi(qS

′
, QS

′
) > πi(qS

′′
, QS

′
) and πi(qS

′′
, QS

′′
) >

πi(qS
′
, QS

′′
). If qS

′′
> qS

′
then QS

′′
> QS

′
by (iv). By Assumption 1 (Lemma 1, Formula (2))

πi(qS
′′
, QS

′′
) > πi(qS

′
, QS

′′
) implies πi(qS

′′
, QS

′
) > πi(qS

′
, QS

′
), a contradiction. Likewise for qS

′′
< qS

′

(using Formula (3)). �

Proof of Proposition 1.

Recall that Z is the collection of all absorbing sets for ε = 0. We need to show that Assumptions 1

to 2 imply Z = {{ω} : ω ∈ H}.

First, we show that every {ω} with ω ∈ H is an absorbing state. Since in ω ∈ H it follows by

Definition 6 (i), (iii), and (iv) that no imitator i ∈ I wants to deviate form its output in ω ∈ H. Since

ω ∈ H, it follows by aforesaid Definition 6 (ii) that no optimizer i ∈ N \ I wants to deviate from its best

response in ω ∈ H, which by Lemma 2 is uniquely defined. Since both types of firms do not deviate in

ω ∈ H, no firm i ∈ N deviates in any of the following periods. Hence {ω} is an absorbing state.

Second, we show that there are no other absorbing sets other than {{ω} : ω ∈ H}. Consider any

state ω′ /∈ H. At least one condition of (i) to (iv) of Definition 6 is violated. From any ω′ /∈ H

there is an unperturbed adjustment path based on the decision rules leading in the subsequent periods

to a state ω̃ = (qI , θn..., qI , qO, (1−θ)n... , qO) in which (a) all imitators play identical quantities qI and (b)

all optimizers play identical best responses qO = b(θnqI + ((1 − θ)n − 1)qO). (a) follows from the

imitators’ decision rule (Definition 2) since by inertia there is positive probably that in the next period

all imitators adjust to the same quantity. (b) follows by Assumption 3 (Lemma 2), since each optimizer

can reach in finite time the symmetric best response given that imitators play θnqI . Note that ω̃

satisfies condition (i) and (ii) of Definition 6. If (iii) or (iv) are satisfied too, then ω̃ ∈ H. Otherwise, if

πi(qI , θnqI + (1 − θ)nqO) ≤ πi(qO, θnqI + (1 − θ)nqO) and qI 6= qO, then by previous arguments there

exists an unperturbed adjustment path based on the decision rules leading in the subsequent periods to a

state ω̃′ = (qO, θn..., qO, qO
′
, (1−θ)n... , qO

′
) with qO

′
= b(θnqO + ((1− θ)n− 1)qO

′
). Again, ω̃′ satisfies (i) and

(ii) but may not satisfy (iii) and (iv) of Definition 6. More generally, for t = 0, 1, ..., define inductively

states ω̃(t) = (qt, θn..., qt, qt+1, (1−θ)n... , qt+1) by q0 = qI and qt+1 = b(θnqt + ((1− θ)n− 1)qt+1). We need

to show that there exists a finite t̄ such that ω̃(t̄) ∈ H.

Claim: qt ≤ qC ≤ qt+1 or qt+1 ≤ qC ≤ qt. Assume qt, qt+1 < qC . Since θnqt + ((1− θ)n− 1)qt+1 <

(n− 1)qC it follows from Assumption 3 that qt+1 > qC , a contradiction. The case qt, qt+1 > qC yields a
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contradiction by analogous arguments.

W.l.o.g. assume qt+2 < qC < qt+1. We distinguish the cases in Table 1:

Table 1: Cases

Case If then Assumption 3 implies

1 qt+1 > qt+3 > qt+5 θnqt + ((1− θ)n− 1)qt+1 < θnqt+2 + ((1− θ)n− 1)qt+3 < θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 > qt+4 > qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 < θnqt+3 + ((1− θ)n− 1)qt+4 < θnqt+5 + ((1− θ)n− 1)qt+6

2 qt+1 < qt+3 < qt+5 θnqt + ((1− θ)n− 1)qt+1 > θnqt+2 + ((1− θ)n− 1)qt+3 > θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 < qt+4 < qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 > θnqt+3 + ((1− θ)n− 1)qt+4 > θnqt+5 + ((1− θ)n− 1)qt+6

3 qt+1 > qt+3 < qt+5 θnqt + ((1− θ)n− 1)qt+1 < θnqt+2 + ((1− θ)n− 1)qt+3 > θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 < qt+4 > qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 > θnqt+3 + ((1− θ)n− 1)qt+4 < θnqt+5 + ((1− θ)n− 1)qt+6

4 qt+1 < qt+3 > qt+5 θnqt + ((1− θ)n− 1)qt+1 > θnqt+2 + ((1− θ)n− 1)qt+3 < θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 > qt+4 < qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 < θnqt+3 + ((1− θ)n− 1)qt+4 > θnqt+5 + ((1− θ)n− 1)qt+6

5 qt+1 > qt+3 > qt+5 θnqt + ((1− θ)n− 1)qt+1 < θnqt+2 + ((1− θ)n− 1)qt+3 < θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 < qt+4 < qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 > θnqt+3 + ((1− θ)n− 1)qt+4 > θnqt+5 + ((1− θ)n− 1)qt+6

6 qt+1 < qt+3 < qt+5 θnqt + ((1− θ)n− 1)qt+1 > θnqt+2 + ((1− θ)n− 1)qt+3 > θnqt+4 + ((1− θ)n− 1)qt+5

qt+2 > qt+4 > qt+6 θnqt+1 + ((1− θ)n− 1)qt+2 < θnqt+3 + ((1− θ)n− 1)qt+4 < θnqt+5 + ((1− θ)n− 1)qt+6

Case 1 yields a contradiction since qt+2 > qt+4 and qt+3 > qt+5 must imply θnqt+2 + ((1 − θ)n −

1)qt+3 > θnqt+4 + ((1 − θ)n − 1)qt+5. Exactly the same argument applies to case 4. An analogous

argument applies to cases 2 and 3. We are just left with cases 5 and 6. Together with above Claim,

it implies that along a sequence of states ω̃(t), ω̃(t + 1), ..., the quantities’ distances to qC either only

(weakly) increase or only (weakly) decrease. In either case, since Γ is finite we must eventually reach a

2-cycle (cycles with higher periodicity are ruled out by the monotonicity of cases 5 and 6) or a state in

H. In a 2-cycle, ω̃(t) = ω̃(t+ 2k) for some t and k = 1, 2, .... In such a cycle we must have

πi(qt+1, θnqt + (1− θ)nqt+1) ≥ πi(qt, θnqt + (1− θ)nqt+1) (11)

πi(qt, θnqt+1 + (1− θ)nqt) ≥ πi(qt+1, θnqt+1 + (1− θ)nqt) (12)

W.l.o.g. assume qt+1 > qt. From Assumption 3 follows θnqt+((1−θ)n−1)qt+1 < θnqt+1+((1−θ)n−1)qt.

Applying Assumption 3 again yields

qt − qt+1 > θnqt + ((1− θ)n− 1)qt+1 − θnqt+1 − ((1− θ)n− 1)qt (13)

θ >
1
2

(14)

a contradiction to Assumption 2. This completes the proof of Proposition 1. �
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In order to characterize the support of the unique limiting invariant distribution, we consider small

perturbations, ε > 0. We call states ω and ω′ adjacent if exactly one mutation can change the state from

ω to ω′ (and vice versa), i.e., if exactly one firm’s change of output changes the state ω to the state ω′.

The set of all states adjacent to the state ω is the single mutation neighborhood of ω denoted by M(ω).

The basin of attraction of an absorbing set A is the set B(A) = {ω ∈ Γn|∃m ∈ N,∃ω′ ∈ A s.t. p(m)
ωω′ > 0}.

A recurrent set R is a minimal collection of absorbing sets with the property that there do not exist

absorbing sets A ∈ R and A′ /∈ R such that there exists an ω ∈ A, M(ω) ∩B(A′) 6= ∅.

Lemma 3 Given a regularly perturbed finite Markov chain, then at least one recurrent set exists. Re-

current sets are disjoint. Let the state ω be contained in the support of the unique limiting invariant

distribution ϕ∗. Then ω ∈ R, R being a recurrent set. Moreover, for all ω′ ∈ R, ϕ∗(ω′) > 0.

See Samuelson (1997), Lemma 7.1 and Proposition 7.7., proof pp. 236-238, for a proof.

Proof of Proposition 2.

Lemma 4 Let Assumptions 1 and 3 hold and Γ be sufficiently fine. If ωS ∈ H then for any absorbing

set A 6= {ωS} there exist ω ∈ A such that M(ω) ∩B({ωS}) 6= ∅.

Proof of Lemma. Assume ωS ∈ H. In the proof of Proposition 1 we showed that any absorbing

set (no matter whether it is a singleton or not) contains a state such that for some q ∈ Γ, ω̃ = (q, θn...

, q, qO, (1−θ)n... , qO) with qO = b(θnq+ ((1− θ)n− 1)qO). It is sufficient to show that for any q ∈ Γ \ {qS},

k ∈ N, 0 < k ≤ θn,

qSp((θn− k)q + kqS + (1− θ)nqO)− c(qS) > qp((θn− k)q + kqS + (1− θ)nqO)− c(q), (15)

with qO = b((θn− k)q + kqS + ((1− θ)n− 1)qO).

By Assumption 1, Lemma 1, πi is strictly quasisubmodular (Formulas (2) and (3)) in (q,Q) on

Γ×{0, δ, 2δ, ..., nνδ}. Set q′′ ≡ qS , q′ ≡ q, Q′ = (θn−k)q+kqS+(1−θ)nqO′
and Q′′ = θnqS+(1−θ)nqO′′

with qO
′ ≡ qO and qO

′′ ≡ b(θnqS + ((1 − θ)n − 1)qO
′′
) being uniquely defined by Lemma 2. If q′′ > q′

then θnq′′ > (θn − k)q′ + kq′′. By Lemma 2 (iv), we conclude that Q′′ > Q′. If q′′ < q′ then

θnq′′ < (θn−k)q′+kq′′. By Lemma 2 (iv), we conclude that Q′′ < Q′. It follows that if qS > q then the

left hand side of “=⇒” in Formula (2) is given by Inequality (8) of Definition 6 of the Pseudo-Stackelberg

solution (i). In this case the right hand side of “=⇒” in Formula (2) yields above Inequality (15). If

qS < q then the left hand side of “=⇒” in Formula (3) is given by Inequality (8) of Definition 6 of the

Pseudo-Stackelberg solution (i). In this case the right hand side of “=⇒” in Formula (3) yields above

Inequality (15). Finally, set k = 1 to see that one suitable mutation only is required to connect every
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absorbing set to ωS ∈ H. �

Since Lemma 4 holds for any absorbing set except the Pseudo-Stackelberg solution, it holds also for

the Cournot Nash equilibrium ωC . From Lemma 3 follows that Lemma 4 implies Proposition 2. �
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