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1 Introduction

The core idea of level-k thinking or iterated reasoning about other players is as old as

game theory and at the heart of strategic reasoning. Even before the seminal “Theory of

Games and Economic Behavior” had been published by von Neumann and Morgenstern

in 1944, Morgenstern (1928, p. 98) emphasized it in his work on predictions in social

situations:1

“Sherlock Holmes, pursued by his opponent, Moriarty, leaves for Dover. The

train stops at a station on the way, and he alights there rather than traveling

on to Dover. He has seen Moriarty at the railway station, recognizes that he is

very clever, and expects that Moriarty will take a special faster train in order

to catch him at Dover. Holmes’ anticipation turns out to be correct. But

what if Moriarty had been still more clever, had estimated Holmes’ mental

abilities better and had foreseen his actions accordingly? Then obviously

he would have traveled to the intermediate station. Holmes, again, would

have had to calculate that, and he himself would have decided to go on to

Dover. Whereupon Moriarty would have “reacted” differently. Because of so

much thinking, they might not have been able to act at all or the intellectually

weaker of the two would have surrendered to the other in the Victoria Station,

since the whole flight would have become unnecessary. Examples of this kind

can be drawn from everywhere.”

It has been studied in various different forms as sequential best response learning

(Cournot, 1838), hierarchies of beliefs (Harsanyi, 1967), iterated admissibility and it-

erated dominance (Farquharson, 1969, Brams, 1975, Moulin, 1979), rationalizability

(Spohn, 1982, Bernheim, 1984, Pearce, 1984), k-level mutual belief in rationality and vari-

ants thereof (Tan and Werlang, 1988, Battigalli and Siniscalchi, 2002, Brandenburger,

Friedenberg, and Keisler, 2008, Heifetz, Meier, and Schipper, 2019), level-k thinking

(Nagel, 1995), and cognitive hierarchies (Stahl and Wilson, 1994, 1995, Camerer, Ho, and

Chong, 1994). Latter work on level-k thinking was very much inspired by experiments

and has been applied to a wide variety of experimental games (see Crawford, Costa-

Gomez, and Iriberri, 2013, for a survey) and seen applications to auctions (Crawford

and Iriberri, 2007), mechanism design (Kneeland, 2022), financial market microstructure

1While the origin of level-k thinking is often traced back to the Beauty Contest described by Keynes
in 1936, we note that Morgenstern’s work predates Keynes.
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(Zhou, 2022), and even general equilibrium (Carvajal and Zhou, 2022). We learn from

the literature that details matter. In this paper, we focus on details that arise in games

in extensive form. We focus on level-k thinking as currently this is a dominant solu-

tion concept in experimental game theory thought to capture some notion of bounded

rationality.

Although level-k reasoning has been applied to games in extensive form (e.g., Stahl

and Haruvy, 2008, Kawagoe and Takizawa, 2005, 2009, 2012, Ho and Su, 2013, Garcia-

Pola, Iriberri, and Kovarik, 2020), it is mostly conceived of as a solution concept for

games in normal form. Players hold a first-level belief over opponents’ behavior (often

called level-0 types). A level-1 player best responds to such a first-level belief. A level-2

player best response to his belief that others are level-1 players. A level-3 player best

responds to level-2 players etc. The issue is that in games in extensive form, players may

learn about the opponents’ levels of thinking during the play because some information

sets cannot be reached when opponents use certain levels of thinking. Any level of

opponents’ reasoning that a player learns during play must be below her own level of

reasoning. Information about the opponents’ level of reasoning is useful for predicting

opponents’ future play.

In this paper, we present a dynamic version of level-k thinking for games in extensive

form titled “strong level-k” that allows for updating of beliefs over opponents’ levels of

thinking. We compare strong level-k thinking with level-k thinking in the normal form,

strong rationalizability/extensive-form rationalizability, strong ∆-rationalizability, iter-

ated admissibility, backward rationalizability, backward level-k thinking, and backward

induction. We focus on the comparison with these solution concepts because all of them

can be interpreted as some form of iterative reasoning. We show that for initial full-

support beliefs, strong level-k thinking refines level-k thinking outcomes in the normal

form. However, while level-k thinking in the normal form refines level-k rationalizabil-

ity in the normal form, strong level-k thinking does not refine (and is not refined by)

k-level strong rationalizability (also called k-level extensive-form rationalizability). We

also show that strong level-k thinking differs from k-level strong ∆-rationalizability and

from k-level iterative admissibility. Finally, we compare it to k-level backward rational-

izability, backward level-k thinking, and k-level backward induction.

Our goal in proposing a notion of strong level-k thinking is not to put up another

contender in a horse race of solution concepts that magically predict behavioral data

better than any other in games in extensive form. Rather, our hope is that by confronting

experimental data with various solution concepts such as strong level-k thinking, level-k
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thinking in the normal form, and k-level strong rationalizability etc., we are able to learn

about particular features of human strategic reasoning that are reflected in one solution

concept but not in another keeping other features fixed. For instance, by comparing the

fit of strong level-k thinking and level-k thinking in the normal form, we can learn about

the prevalence of forward induction given comparable levels of reasoning and assumptions

on level-1 beliefs/level-0 behavior. Or by comparing the fit of strong level-k thinking and

k-level strong rationalizability, we can learn about the impact of assumptions on level-1

beliefs/level-0 behavior given comparable levels of reasoning and the ability to do forward

induction. As a first proof of concept, we reanalyze data from versions of the battle-of-

the-sexes game with an outside option by Cooper et al. (1993), Balkenborg and Nagel

(2016), and Evdokimov and Rustichini (2016).

The closest papers to ours are Stahl and Haruvy (2008), Kawagoe and Takizawa

(2005, 2012), Ho and Su (2013), and Lin and Palfrey (2023). Ho and Su (2013) consider

repeated play of centipede games where the dynamic aspect concerns learning of levels

between centipede games. Within each centipede game, each player uses what we would

call backward level-k thinking (in analogy to backward rationalizability and backward

induction), namely level-k thinking applied to every subgame of the centipede game,

where the same level of thinking is applied to every subgame even if the subgame could

not have been reached with such a level of thinking. Ho and Su (2013) allow for updating

of levels only between runs of the centipede games. We believe that this type of learning

about levels from repeated play of the centipede game motivated their terminology of

“dynamic level-k model”.2 This is different from our approach, which is already dynamic

in the one-shot play of a stage game in extensive form. We allow for updating about

opponents’ levels of thinking within the play of a game in extensive form. That is, we do

not requiring the same level-k thinking in every subgame and thus we do not force players

to potentially ignore information during the play of the stage game that might contradict

their belief in their opponents’ level of thinking. Updated beliefs about opponents’ level

of thinking during the play of the stage game is useful for forward inducing opponents’

behavior in later subgames of the same stage game and act accordingly. With our notion

of strong level-k thinking, players are able to learn about opponents’ levels of reasoning

from opponents’ play throughout the game. Consequently, their own play may vary with

what they learned about opponents’ levels of reasoning earlier in the game. There is

quite some experimental evidence for the assumption that a player’s behavior depend

2Learning of level of reasoning between stage games has been studied in various settings by Gill and
Prowse (2016), Feng and Wang (2019), and Ho, Park, and Su (2021).
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on her belief about the levels of reasoning of opponents; see for instance Agranov et al.

(2012) and Alaoui, Janezic, and Penta (2020). The assumption is also consistent with the

idea that the levels of reasoning displayed by a player might be endogenous (Alaoui and

Penta, 2016). Concurrently with Ho and So (2013), backward level-k thinking was also

used by Kawagoe and Takizawa (2012) to analyze behavior in experiments on centipede

games. The behavior of level-0 types in Kawagoe and Takizawa (2012) is assumed to be

either uniform or altruistic. They also analyze a level-k model in the reduced normal-

form and a level-k model in agent normal-form. Both Ho and Su (2013) and Kawagoe

and Takizawa (2012) confine their analysis to centipede games while we are interested

in notions of level-k thinking applicable to any game in extensive form. Earlier, Stahl

and Haruvy (2008) presented an experimental study of backward level-k thinking in

two-player two-stage games.

After our paper was completed, we learned from Pierpaolo Battigalli about the ex-

tension of the cognitive hierarchy model to games in extensive form by Lin and Palfrey

(2023).3 Different from the “standard” model of level-k thinking, the cognitive hierarchy

model assumes that a player with level-k thinking has a non-degenerate belief about the

levels of opponents. That is, a level-k player assigns non-zero probability to the opponent

being level-ℓ for all ℓ between zero and k − 1. In their extension of cognitive hierarchy

to games in extensive form, Lin and Palfrey (2023) allow players to update their beliefs

about opponents’ levels throughout the play of the game. However, because players have

non-degenerate beliefs, their solution concept does not entail the best-rationalizability

principle (Battigalli, 1996) according to which at each information set the opponent is

attributed the highest level of rationality consistent with the information set, which is

in contrast to our notion of strong level-k thinking. We think that this should limit the

forward induction power of Lin and Palfrey’s (2023) extension of cognitive hierarchy to

games in extensive form. It is not a defect of their solution concept though. Quite to the

contrary, by comparing their extension of cognitive hierarchy to games in extensive form

and our notion of strong level-k thinking (which is an extension of the “standard” model

of level-k thinking), we are able to learn about the prevalence of forward induction in

experimental games and its interaction with levels of reasoning. So experimental game

theorists are now in the very fortunate situation of having extensions of both the “stan-

dard” model of level-k thinking and the cognitive hierarchy model to games in extensive

form available for analyzing experimental games. Since the non-degenerate beliefs over

3Battigalli (2023) shows that the extension of the cognitive hierarchy model to games in extensive
form by Lin and Palfrey (2023) is normal-form invariant while Lin and Palfrey (2023) show that it is
not reduced normal-form invariant.
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levels in the cognitive hierarchy model are interpreted in Lin and Palfrey (2023) as “trun-

cated rational expectations” and thus as an equilibrium feature, the cognitive hierarchy

may be more appropriate in contexts where such equilibrium features could have been

already learned while the strong level-k model may be more appropriate in unique or

novel contexts. Curiously, Lin and Palfrey (2023) argued that the fact that the “stan-

dard” level-k model features degenerate beliefs over opponents’ levels is a impediment

to its extension to games in extensive form. Our work demonstrates that this is not the

case.

The paper is organized as follows: The next section recalls level-k thinking in the

normal form and compares it to rationalizability. This sets the stage for Section 3 in

which we introduce the definition of strong level-k thinking, compare it to level-k think-

ing in the normal form, strong rationalizability/extensive-form rationalizability, strong

∆-rationalizability, iterated admissibility, backward rationalizability, backward level-k

thinking, and backward induction. In Section 4, we present a simply reanalysis of data

from prior experiments on Battle-of-the-sexes with an outside option. Proofs are rele-

gated to the appendix.

2 Level-k Thinking in the Normal Form

First, we review level-k thinking for games in normal form. This will turn out to be

useful when comparing it to strong level-k thinking in the extensive form. We consider

finite games in normal form ⟨N, (Ai)i∈N , (ui)i∈N⟩ that consist of a nonempty finite set of

players N = {1, ..., n} and for each player i ∈ N , a nonempty finite set of actions Ai and

a utility function ui : A −→ R with A := ×i∈NAi. As usual, for any player i ∈ N , we

denote by A−i := ×j∈N\{i}Aj the set of action profiles of player i’s opponents.4 Denote

by ∆(A−i) the set of probability measures on A−i. A belief of player i over opponents’

actions is denoted by βi ∈ ∆(A−i).

We say that player i’s action ai ∈ Ai is rational with βi if ai maximizes player i’s

expected utility with βi. With these definitions in place, we can define the by now stan-

dard solution concept of level-k thinking5 that has been widely applied in experimental

4We make use of the “−i” notational convention for any objects index by players. The index “−i”
refers to profiles of player i’s opponents’ objects.

5Although we use the established terminology, we must admit that we do not know how level-k
thinking is related to actual thought processes in the human brain. A better terminology would be
“level-k best response”.
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game theory.

Definition 1 (Level-k Thinking in the Normal Form) Fix a first level belief profile

β1 = (β1
i )i∈N with β1

i ∈ ∆(A−i) for each i ∈ N . Define inductively for each player i ∈ N ,

B1
i (β

1) = {β1
i }

L1
i (β

1) =
{
ai ∈ Ai : ai is rational for player i with belief β1

i

}
...

Bk
i (β

1) =
{
βi ∈ ∆(A−i) : βi(L

k−1
−i (β1)) = 1

}
Lk
i (β

1) =

{
ai ∈ Ai :

There exists βi ∈ Bk
i (β

1) such that ai
is rational for player i with belief βi.

}
.

For k ≥ 1, we call Lk
i (β

1) the set of (normal-form) level-k thinking actions of player i

anchored by the profile of first-level beliefs β1.

Several remarks are in order: First, the first-level belief β1 is often interpreted as

the behavior of level-0 players. Since it is also assumed that there are no actual level-0

players, we model level-0 players more appropriately as what they are, namely just beliefs

of level-1 players.

Second, level-k thinking is not one solution concept but a collection of solution con-

cepts, one for each first-level belief β1 / level-0 behavior and each level k. In applications,

the first-level belief is often fixed to the uniform measure (e.g., Nagel, 1995) although in

some applications other distributions are more natural (e.g., Arad and Rubinstein, 2012).

These assumptions seem to reflect either unpredictable behavior (i.e., in the spirit of the

principle of insufficient reason) or non-strategic level-0 behavior.

Third, when iterated best responses are unique, i.e., the sets Lk
i (β

1), k ≥ 1, are single-

ton, then also Bk+1
i (β1), k ≥ 1, are singleton. In such a case, it does not matter whether

or not we allow for correlated beliefs or, alteratively, would restrict to independent be-

liefs. Applications focus sometimes on games in which best responses are unique or a

best response is selected by some additional ad hoc assumption. In our general approach,

we allow for multiple best responses at any level k and allow for any k + 1-level belief

over those k-level best responses.

Fourth, to emphasize that the entire procedure with both beliefs and actions at higher

levels are anchored by the first-level belief β1, we explicitly write Bk
i (β

1) and Lk
i (β

1).
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2.1 Level-k Thinking versus Rationalizability

The idea of using iterated reasoning about opponents play in a solution concept featured

already in solution concepts developed earlier in game theory. In particular, rational-

izability introduced by Spohn (1982), Bernheim (1984), and Pearce (1984) is defined

inductively using player’s beliefs about rational actions of opponents.6

Definition 2 (Rationalizability) Define inductively for each player i ∈ N ,

B1
i = ∆(A−i)

R1
i =

{
ai ∈ Ai :

There exists βi ∈ B1
i such that ai

is rational for player i with belief βi.

}
...

Bk
i =

{
βi ∈ ∆(A−i) : βi(R

k−1
−i ) = 1

}
Rk

i =

{
ai ∈ Ai :

There exists βi ∈ Bk
i such that ai

is rational for player i with belief βi.

}
For any k ≥ 1, we call Rk

i the set of k-level rationalizable actions of player i. The set of

player i’s rationalizable actions is

R∞
i =

∞⋂
k=1

Rk
i

It is well-known that rationalizability is strategy-equivalent to iterated elimination

of strictly dominated actions (see Pearce, 1984). In fact, for any level k ≥ 1, level-k

rationalizability (i.e., rationalizability up to level k) is strategy-equivalent to k-iterated

elimination of strictly dominated actions. An action is strictly dominated if there exists

a possibly mixed action that yields a strictly higher expected utility no matter what

opponents play. Thus, rationalizability does not only provide a prediction in the limit

when k goes to infinity, but also for every finite level k. This has been previously used

in experiments to partially identify levels of beliefs (for an approach along these lines

see Li and Schipper, 2020). In our context, it is now natural to ask about how behavior

implied by level-k thinking is related to level-k rationalizable actions in games in normal

form. For any first-order belief (i.e., any level-0 behavior), the level-k behavior is k-level

rationalizable. That is, level-k thinking implies k-level rationalizability.

6Like most of the literature, we focus on correlated rationalizability; see Brandenburger and Dekel,
1987, and Tan and Werlang, 1988, for more details on rationalizability.
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Proposition 1 For any finite game in normal form, ⟨N, (Ai)i∈I , (ui)i∈I⟩, any profile of

first-level beliefs, β1, and level k ≥ 1, Lk(β1) ⊆ Rk.

While obvious at the first level, the proof by induction in the appendix reveals that

at any level k, the belief that a player with level-k thinking entertains about opponents’

play is a belief that k-level rationalizes her action. That is, the inclusion holds not only

for actions but also beliefs.

The most obvious difference between rationalizability and level-k thinking is that

rationalizability does not fix first-level beliefs. Initially, it allows for any first-level beliefs

over opponents’ actions. This is useful when there is no “natural” first-level belief and

when it is reasonable to assume that players could entertain any initial belief. Based

on Proposition 1, one may be tempted to claim that level-k reasoning yields sharper

predictions than rationalizability. Yet, level-k thinking does not explain the first-level

beliefs. That is, it does not provide a theory of first-level beliefs or level-0 behavior.

Rather, given a first-level belief of players / assumption of level-0 behavior of the analyst

that, while extremely useful, is necessarily ad hoc because it is outside the model of

level-k thinking, it yields a sharper prediction than if the analyst considers any first-level

belief as in level-k rationalizability.

In order to emphasize that (1) first-level beliefs of level-k thinking yield strong re-

finement power, and (2), that level-k thinking differs from rationalizability just in the

first-level belief, we state the following weaker converse to Proposition 1. For every ratio-

nalizable action there exists a first-level belief with which the action is rationalizable with

level-1 thinking. Note that this implies that we can find first-level beliefs that justify any

arbitrarily high k-level rationalizable action with level-1 thinking. Thus, ex ante tying

our hands to a particular first-level belief/assumption of level-0 behavior is crucial in

experiments if level-k thinking is to have predictive power beyond rationalizability and

the identification of levels is to be meaningful.

Proposition 2 For any finite game in normal form, ⟨N, (Ai)i∈I , (ui)i∈I⟩, every player

i ∈ N , and every ai ∈ R∞
i , there exists a first-level belief β1 ∈ ∆(A−i) such that ai ∈

L1
i (β

1).

While the observation might be obvious to some, we present a short proof in the

appendix.

It is also worth emphasizing another difference between level-k thinking and rational-

izability: Latter is a reduction procedure on beliefs that implies a reduction procedure
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on actions while for former this is not necessarily the case. This is demonstrated in the

following simple example:

Example 1 Consider the following the following variant of the matching pennies game:

U
D

L R(
2,−1 −1, 2
−1, 1 1,−1

)
Apply level-k thinking anchored with a uniform first-level belief for each player. Then the

sets of level-k thinking actions are derived subsequently by

Row player Column player
L1
i (β

1) {U} {R}
L2
i (β

1) {D} {R}
L3
i (β

1) {D} {L}
L4
i (β

1) {U} {L}
L5
i (β

1) {U} {R}
...

...
...

We note that level-k thinking results in a choice cycle. So clearly, it is not the case that

the set of level-k actions are refined level by level.

The fact that level-k thinking is not necessarily a reduction procedure is certainly

not desirable from both a strategic point of view and the epistemic point of view. Yet,

it matches curiously with the reasoning reflected in the quote from Morgenstern (1928)

that we stated in the introduction.

3 Level-k Thinking in the Extensive Form

Consider a finite game in extensive form with possibly imperfect information, perfect

recall, finite horizon, and possibly simultaneous moves ⟨N,H, P, (Ii)i∈N , (ui)i∈N⟩ defined
by

• A nonempty finite set of players N .

• A set H of finite sequences of action profiles (i.e., histories) such that

– ∅ ∈ H,

– If history (am)m=1,...,M ∈ H andM ′ < M , then also the subhistory (am)m=1,...,M ′ ∈
H.
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The set of terminal histories are histories with no successors. We denote them as

usual by Z.

• A player function P : H \ Z −→ 2N∪{c} \ {∅} that assigns to each nonterminal

history h ∈ H \ Z a nonempty subset of players P (h) ⊆ N ∪ {c} that may include

nature, c. That is, players are allowed to move simultaneously. Moreover, nature

is allowed to move any time and even simultaneously with other players.

With this notation, let Ai(h) be the nonempty set of actions of player i ∈ P (h) at

the non-terminal history h ∈ H\Z. Moreover, we let a ∈ ×i∈P (h)Ai(h) be the action

profile of players moving at history h. That is, h ∈ H \ Z and a ∈ ×i∈P (h)Ai(h),

then (h, a) ∈ H.

• For each player i ∈ N , a partition Ii of non-terminal histories in Hi = {h ∈ H \Z :

i ∈ P (h)} at which he moves. Elements of Ii are called information sets of player

i. As usual, we require that for any information set Ii ∈ Ii, Ai(h) = Ai(h
′) for

any h, h′ ∈ Ii. Thus, we can simply denote by Ai(Ii) the set of player i’s actions

at information set Ii. Each player’s information sets are required to satisfy perfect

recall.

• For each player i ∈ N , there is a von Neumann-Morgenstern utility function over

lotteries of terminal histories. We denote by ui : Z −→ R player i’s Bernoulli utility

index.

See for instance Osborne and Rubinstein (1995, Chapters 6.3.2 and 11.1.2) for further

details on games in extensive form including perfect recall. We allow for simultaneous

moves of players. We also allow for imperfect information and moves of nature at any

time during the game including simultaneously with other players. We do not have to

assume a prior probability measure over moves of nature but such an assumption can be

added whenever it is required.

For any player i ∈ N , a (pure) strategy of player i assigns to each of her information

sets an action available at that information set. Formally, a strategy si is a function

si : Ii −→
⋃

Ii∈Ii Ai(Ii) such that si(Ii) ∈ Ai(Ii) for all Ii ∈ Ii. Let Si denote the set of

player i’s strategies. Let Nc := N ∪ {c}. We treat nature like a player with information

sets that are singletons who is indifference among all terminal histories. Define S :=

×i∈NcSi if nature moves in the game. Otherwise, S := ×i∈NSi. Similarly, for any i ∈ N ,

S−i := ×j∈Nc\{i}Sj if natures moves in the game. Otherwise, S−i := ×j∈N\{i}Sj.
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For every player i ∈ N , we say a strategy si ∈ Si reaches an information set if there

exists a profile of opponents’ strategies s−i such that (si, s−i) reaches this information

set. Similarly, a profile of opponents’ strategies s−i reaches an information set if there

exists a strategy si of player i such that (si, s−i) reaches this information set.

A belief system of player i ∈ N ,

β̄i :=
(
β̄i(Ii)

)
Ii∈Ii

∈
∏
Ii∈Ii

∆(S−i),

is a profile of beliefs, a belief β̄i(Ii) ∈ ∆(S−i) about other players’ strategies for each

information set Ii ∈ Ii, with the following properties:

• β̄i(Ii) reaches Ii, i.e., β̄i(Ii) assigns probability 1 to the set of strategy profiles of

the other players that reaches Ii.

• If information set Ii precedes information set I ′i, then β̄i(I
′
i) is derived from β̄i(Ii)

by conditioning whenever possible.

Denote by B̄i the set of all belief systems of player i ∈ N .

For a player i and an information set Ii, a strategy s′i is a Ii-replacement of strategy

si if s
′
i agrees with si on all information sets strictly preceding Ii.

With a belief system β̄i, strategy si is rational for player i at the information set Ii if

si does not reach Ii or if si does reach Ii but there does not exist an Ii-replacement of si

which yields a strictly higher expected utility given β̄i(Ii) on S−i.

Definition 3 (Strong Level-k Thinking) Given a belief system of first-level beliefs,

β̄1 = (β̄1
i )i∈N with β̄1

i ∈ Bi, define inductively for all i ∈ N ,

B̄1
i (β̄

1) = {β̄1
i }

L̄1
i (β̄

1) =

{
si ∈ Si :

For every information set Ii ∈ Ii,
si is rational at Ii with respect to β̄1

i .

}
...

B̄k
i (β̄

1) =

β̄i ∈ B̄i :

For every information set Ii ∈ Ii, if there exists ℓ
with 1 ≤ ℓ < k for which there exists s−i ∈ L̄ℓ

−i(β̄
1)

such that s−i reaches Ii, let ℓ̄ be the largest such ℓ.

Then β̄i(Ii) assigns probability 1 to L̄ℓ̄
−i(β̄

1). Otherwise,
if there is no such ℓ, then let β̄i(Ii) = β̄1

i (Ii).


L̄k
i (β̄

1) =

{
si ∈ Si :

There exists β̄i ∈ B̄k
i (β̄

1) with which for every
information set Ii ∈ Ii, si is rational at Ii.

}
For any level k, we call L̄k

i (β̄i) player i’s set of strong level-k thinking strategies.

11



Several remarks are in order: First, a player’s assumption of opponents’ level-0 be-

havior is modeled as level-1 belief. However, we like to emphasize that since a player

may move at various information sets of the game, she forms possibly different beliefs

about opponents’ behavior at each of her information sets. According to the notion of

belief system, each such a belief must be consistent with having reached this informa-

tion set and derived by conditioning whenever possible. That is, different from level-k

thinking in the normal form, a player not only forms beliefs about opponents’ behavior

before playing the game but also at each of her information sets throughout the game.

The assumption of level-0 behavior of opponents is now a collection of assumptions, one

belief at each of her information sets.

Second, strong level-k thinking features the best rationalizability principle (Batti-

galli, 1996). At each of her information sets, a player following strong level-k thinking

assigns the highest possible level ℓ-thinking with ℓ < k to opponents that is consistent

with reaching the information set. Intuitively, a player does not easily label opponents’

behavior as a “mistake”. Rather a player tries to make sense of opponents’ behavior as

much as it possible within her own (limited) thinking. Such an approach makes quite

some sense when allowing for learning from opponents’ play. If opponents’ play is judged

easily as a mistake, then there is not much to learn from. Note that the best rational-

izability principle does not rule out that a sophisticated player mimics a strategy of a

player with a lower level of reasoning. For instance, if a strong level-k player learns at

some information set that his opponent is just strong level-ℓ with ℓ < k − 1, then such

player may mimic the strategy of a player who is just strong level ℓ+ 1 even though she

is capably of higher order reasoning and thus more sophisticated behavior.

Third, a player’s belief is updated to lower levels of opponents’ thinking along the

path of play whenever information sets are reached that cannot be reached with strategies

of opponents’ featuring higher levels of thinking. Of course, this depends on the player’s

own level of thinking since one defining feature of level-k thinking is a form of naiveté,

namely that a player with level k must believe opponents’ feature levels of thinking

strictly lower than level k.

Fourth, the phrasing of the definition of B̄k
i (β̄

1) appears somewhat awkward at the

first glance, since it involves an “if ... then ... Otherwise ...” clause. Partially, this

captures the best rationalizability principle above (i.e., the “then” statement). Yet, the

“if” and “Otherwise” clauses emphasize that an information set may not be reachable

with any strong level-ℓ thinking strategy, for ℓ < k. What shall a player believe in such

a case? We assume that in such a case, the player resorts nevertheless to his first-level

12



belief. Such an assumption is innocuous if the first-level belief is a full support belief like

for instance uniform belief as often assumed in the literature on level-k thinking.

Finally, we need to comment on the terminology. The name “strong level-k” is chosen

in analogy to “strong rationalizability”, which is also called more descriptively “extensive-

form rationalizability”, a notion of rationalizability for games in extensive form that

we will introduce later in the text. It is a somewhat unfortunate terminology because

“strong” is a rather generic adjective. However, it refers to the fact that it features a

notion of “strong” belief that is, certainty of an event at all information sets consistent

with the event.

In the following subsections, we explore strong level-k thinking by comparing it to

various other solution concepts.

3.1 Normal-Form versus Strong Level-k Thinking

The key difference between level-k thinking in the normal form and strong level-k thinking

is that a player with strong level-k thinking can update beliefs about opponents’ level-ℓ

thinking, for ℓ < k, conditional on information sets reached. At each information set

reached, player i with level-k thinking attributes the highest level-ℓ thinking, ℓ < k,

to opponents consistent with the information set. It embodies the best rationalization

principle (Battigalli, 1996). To what extent does the best rationalizability principle

matter? First, we show that, if β̄1 is a profile of full-support belief systems, then strong

level-1 strategies are equivalent to normal-form level-1 strategies.

Proposition 3 Consider any finite game in extensive form with perfect recall. Let β̄1

be a profile of full-support belief systems and β1 a profile of full-support beliefs in the

associated normal form consistent with β̄1. Then for any player i ∈ N , L̄1
i (β̄

1) = L1
i (β

1).

The observation implies in particular that if beliefs are uniform both in the game in

extensive form and the associated normal form (as frequently assumed in experimental

work), then level-1 thinking strategies coincide.

The observation does not extend to level-2 thinking strategies as the following example

demonstrates:

Example 2 (Strong level-k strategies refine level-k strategies in the normal

form for k ≥ 2) Consider a version of a game in Figure 1 due to Reny (1992) (which

is a variant of a centipede game). To the left, we print the game in extensive form;

13
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to the right the associated normal form.7 The strong level-k thinking strategies and the

Figure 1: Reny (1992) Game

level-k thinking strategies in the normal form are printed in Table 1 for any k ≥ 1. (We

let “∗” stand for any action.) We observe that at any level k ≥ 2, the strong level-k

strategies of player 2 are a subset of level-k thinking strategies in the normal form. For

k ≥ 3, this holds not only for strategies of player 2 but even outcomes. The reason is

that once player 2 gets to move (i.e., reaches her first information set), she is certain at

level 2 that player 1 does not use strong level-1 thinking since any strong level-1 thinking

strategy of player 1 prescribes O1 at the root of the tree. She must now think that player

1 behaves uniformly over her strategies and with such a belief her strategy (C2, o2) is

uniquely rational. In contrast, level-2 thinking in the normal form of player 2 presumes

level-1 thinking strategies of player 1, i.e., any strategy in {(O1, o1), (O1, c1)}. Thus,

player 2 is indifferent among all her strategies and hence any strategy in S2 is consistent

with level-2 thinking in the normal form.

Above example shows that at level 2, only strategies differ between strong level-k

thinking and level-k thinking in the normal form but not outcomes. One could argue

that this fact is behaviorally irrelevant at level 2 as only outcomes “should” matter. Note

though that strategies could be elicited via the strategy method (Selten, 1967) so that

not just outcomes of the game in extensive form are behaviorally relevant. Nevertheless,

even if one takes the view that only outcomes matter, it should be noted that in this

example outcomes differ at level k ≥ 3 as well. Moreover, the next example shows that

already at level 2, outcomes of strong level-k thinking can differ from level-k thinking in

the normal form.

7Ignore for the time being the red lines and blue boxes in the normal form of Figure 1. They pertain
to strong rationalizability and will be discussed later.
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Example 3 (Strong level-2 outcomes refine level-2 thinking outcomes in the

normal form) Consider the game in Figure 2 from Heifetz, Meier, and Schipper (2021)

(i.e., HMS game for short): The strong level-k thinking strategies and the level-k thinking

Figure 2: HMS Game

strategies in the normal form (both with uniform level-1 beliefs) are printed in Table 1

for any k ≥ 1. We observe that at level 2, the strong level-2 thinking strategies are

{(O1, ∗), (C1, c1)} and {(C2, ∗)} for players 1 and 2, respectively, while for level-2 thinking

in the normal form they are S1 and {(C2, ∗)} for players 1 and 2, respectively. (Again,

we let “∗” stand for any action.) In particular, level-2 thinking in the normal form

allows the outcome with payoffs (5,−10) to emerge while this is ruled out with strong

level-2 thinking. The reason is that under level-2 thinking in the normal form, player 1 is

indifferent among all strategies in the normal form since he believes that player 2 plays

O2. In contrast, in the extensive form, when player 1 reaches his second information set,

he is certain that player 2 does not follow strong level-1 thinking but must be “level-0”.

Consequently, at his second information set, he has uniform beliefs about the actions of

player 2 at the last information set, with which only c1 is rational.

Both examples beg the question of whether or not in general for any level k ≥ 1,

strong level-k thinking is a (weak) refinement (both in terms of strategies and outcomes)

of level-k thinking in the normal form. The examples suggest this to be the case. More

generally, we can show that for any full-support initial belief system β̄1 and level k, the

set of outcomes reached by strong level-k thinking refines the set of outcomes reached by

level-k thinking in the normal form.

To state this assertion more formally, we require the following definition. For any

strategy profile s ∈ S, let z(s) denote the terminal history reached by s. For any
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nonempty subset of strategy profiles S ′ ⊆ S, let Z(S ′) = {z ∈ Z : z = z(s), s ∈ S ′}.
Note that for any nonempty subsets S ′, S ′′ of S, S ′ ⊆ S ′′ implies Z(S ′) ⊆ Z(S ′′).

Proposition 4 (Strong level-k thinking refines outcomes of level-k thinking in

the normal form) Consider any finite game in extensive form with perfect recall. Let

β̄1 be a profile of full-support belief systems and β1 a profile of full-support beliefs in the

associated normal form consistent with β̄1. Then Z(L̄k(β̄1)) ⊆ Z(Lk(β1)) for all k ≥ 1.

The proof proceeds by induction. The result for the base-case, level-1, is implied by

Proposition 3. At any higher level-k, we focus on players whose information set is reached

along the path to the outcome noting that for other players we can simply select a strong

level-(k − 1) thinking strategy without affecting the outcome. For any player along the

path, we select the first information set, which is well-defined since the game as perfect

recall. The strong level-k rational strategy is also rational at this information set with a

belief that - as we show - we can confine to level-(k − 1) strategies of opponents in the

normal form. The result now follows.

The proposition implies in particular that, if initial beliefs are uniform, as often

assumed in applications, then for any level k, strong level-k thinking refines the set of

outcomes that can be reached by level-k thinking in the normal form.

We note that the games used in Subsections 4.1 and 4.2 show that for some games

the outcome-refinement of strong level-k thinking is strict at some levels.

3.2 Strong Level-k Thinking versus Strong Rationalizability

In Section 2.1 we observed that any level-k thinking strategy in the normal form is also

level-k rationalizable. In this section, we show that this is not necessarily the case any-

more when we consider strong level-k thinking and level-k strong rationalizable strategies.

It is not due to a defect in the definitions. Rather, it is due to different updates con-

ditional on information sets that may occur with and without restrictions on first-order

belief systems of strong level-k thinking.

The notion of strong rationalizability is also due to Pearce (1984), who called it ratio-

nalizability in the extensive form. In contrast to its well-known counterpart for games in

normal form, there is no treatment of strong rationalizability in standard textbooks on

game theory. Consequently, it is much less known although undeservingly so. We follow

Battigalli (1997) in allowing for correlated beliefs over opponents’ strategies and define

it as a reduction procedure on beliefs that subsequently implies a reduction procedure
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on strategies. The following definition is due to Battigalli (1997), who originally called

it extensive-form rationalizability and proved it to be equivalent to Pearce’s definition

allowing for correlated beliefs. In private communication, Pierpaolo Battigalli “strongly”

encouraged us to now change the terminology to “strong rationalizability”.

Definition 4 (Strong Rationalizability) Define inductively for every player i ∈ N ,

B̄1
i is the set of player i’s belief systems.

R̄1
i =

{
si ∈ Si :

There exists β̄i ∈ B̄1
i with which for every

information set Ii ∈ Ii, si is rational at Ii.

}
...

B̄k
i =

β̄i ∈ B̄k−1
i :

For every information set Ii, if there exists some profile of
other players’ strategies s−i ∈ R̄k−1

−i such that s−i reaches Ii,
then β̄i(Ii) assigns probability 1 to R̄k−1

−i .


R̄k

i =

{
si ∈ Si :

There exists β̄i ∈ B̄k
i with which for every

information set Ii ∈ Ii, si is rational at Ii.

}
The set of strong rationalizable strategies of player i is

R̄∞
i =

∞⋂
k=1

R̄k
i .

Battigalli and Siniscalchi (2002) characterize strong rationalizability by common strong

belief in rationality. Moreover, for every finite level-k, the k-level strong rationalizable

strategies are characterized by k-level mutual strong belief in rationality. Similar to

the equivalence between rationalizability and iterated elimination of strictly dominated

actions, strong rationalizability is level-by-level strategy-equivalent to iterated elimina-

tion of conditionally strictly dominated strategies (Shimoji and Watson, 1998). For each

information set of a player, consider the sub-space of strategy profiles that reach this

information set. This is a normal-form information set in the sense of Mailath, Samuel-

son, and Swinkels (1993). A strategy is conditionally strictly dominated if there exists

a possibly mixed strategy that conditional on such a normal-form information set yields

a strictly higher expected utility no matter what strategy profiles in the normal-form

information set are played by opponents.

In the figures, we indicate in the associated normal form the normal-form information

sets associated to information sets in the extensive form by blue boxes. We also indicate

the order of elimination of conditionally strictly dominated strategies (and hence the

order of elimination of non-rationalizable strategies) by red lines with numbers attached
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that represent the level at which the strategy is eliminated. These examples illustrate

already some findings. In the Reny game (Figure 1), strong level-k thinking strategies

refine level-k strong rationalizable strategies for k ≥ 1. In the HMS game (Figure 2), they

refine strong rationalizable strategies of player 2 at level 1 but otherwise yield the same

strategies at higher levels. For both games, the strong level-k thinking strategies (with

uniform level-1 belief systems) and k-level strong rationalizable strategies are printed

level-by-level in Table 1. (Again, we let “∗” stand for any action.)

Figure 3: Battle-of-the-sexes with an outside option I (BoS I)

Table 2: Solutions to Outside Option Games
BoS I Strong level-k k-level strong Backward k-level backward
game (uniform) rationalizability level-k (uniform) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {(Out, ∗)} {S} {(Out, ∗), (In,B)} {B, S} {(Out,B)} {S} {(Out, S), (In,B)} {B, S}
2 {(Out, ∗)} {S} {(Out, ∗), (In,B)} {B} {(Out,B)} {B} {(Out, S), (In,B)} {B, S}

3

.

.

.

.

.

. {(In,B)}
.
.
. {(In,B)} {B} {(Out, S), (In,B)} {B, S}

BoS II Strong level-k k-level strong Backward k-level backward
game (uniform) rationalizability level-k (uniform) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {(In,B)} {S} {(Out, ∗), (In,B)} {B, S} {(In,B)} {S} {(Out, S), (In,B)} {B, S}
2 {(Out, ∗)} {B} {(Out, ∗), (In,B)} {B} {(Out, S)} {B} {(Out, S), (In,B)} {B, S}

3 {(In,B)} {B} {(In,B)}
.
.
. {(In,B)} {S} {(Out, S), (In,B)} {B, S}

4

.

.

.

.

.

.

.

.

.

.

.

. Cycle Cycle

.

.

.

.

.

.

One of the most prominent examples to demonstrate the forward induction power of

strong rationalizability is the battle-of-the-sexes game with an outside option. We use

this example to discuss the relationship between strong level-k thinking and level-k strong

rationalizability. In particular, we show that in contrast to the analogous normal-form

solution concepts, strong level-k thinking does not refine level-k strong rationalizability.
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Example 4 (Battle-of-the-sexes with an outside option I) Consider the game in

Figure 3. Player 1 moves first, deciding between Out and In. When he chooses In, the

battle-of-the-sexes game is played. Both players can choose between B and S. Player 1

strictly prefers ((In,B), B) over ((Out, ∗), ∗) over ((In, S), S) and any other outcome.

While for levels k ≤ 2, strong level-k thinking with uniform initial beliefs refines level-k

strong rationalizable outcomes, at level 3 and higher the strong level-k thinking outcomes

are distinct from the level-k strong rationalizable outcomes, respectively (see Table 2,

upper part). For player 1 at level 1, (Out, ∗) is rational given a uniform belief over

player 2’s strategies.8 For strong rationalizability, also (In,B) is rational at level 1.

Consequently, if player 2’s information set is reached at level 2, she knows that player 1

continues with action B to which B is the unique best response by player 2. In contrast,

strong level-1 thinking strategies (with uniform initial belief systems) do not reach player

2’s information set. Hence, when she is called to play, she must believe that player 1

is level-0, i.e., playing uniformly. With such a belief, S is uniquely rational for player

2. At level 2, player 1 knows that player 2 would play S upon moving In. Given this

belief, (Out, ∗) continues to be rational at the level 2. That is, the prediction of strong

level-3 is (Out, ∗). In contrast, for strong rationalizability, player 1 understands at level

3 that once she moves In, player 2 will select B. Thus, playing B upon moving In

is the unique best response of player 1. To summarize, strong level-3 thinking strategies

with uniform initial belief yield ((Out, ∗), S) while 3-level strong rationalizability strategies
yield a different outcome, ((In,B), B). This example demonstrates that generally strong

level-k thinking with uniform belief systems is neither a refinement nor is refined by

k-level strong rationalizability.

The outcome of strong level-k thinking in the prior example is driven by the fact that

with player 1’s uniform belief over player 2’s actions, (Out, ∗) is rational, i.e., yielding a

utility of 3, which is larger than 2.5, the expected utility from playing (In,B) against an

uniformly mixing player 2. This observation illustrates that outcomes of strong level-k

thinking can be sensitive to misspecifications of utilities, which poses interesting issues in

experiments. Obviously, the non-robustness is problematic because we can only experi-

mentally control payoffs but not necessarily utilities. On the other hand, small changes in

the utility matter behaviorally in a way that is not picked up by k-level strong rational-

izability but is picked up by strong level-k thinking because of restrictions on first-level

belief systems. This yields testable predictions of strong level-k thinking if payoffs are

8Also Balkenborg and Nagel (2016, p. 398) present such an argument for moving Out at the beginning
of the game.
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taken at face value as utilities in experiments. The prediction of strong level-k thinking

can change radically when slightly changing player 1’s utility of the outside option in a

way that does not affect predictions of strong rationalizability. This is demonstrated in

the next example.

Figure 4: Battle-of-the-sexes with an outside option II

Example 5 (Battle-of-the-sexes with an outside option II) Consider the game

in Figure 4. This game is identical to the game in Figure 3 expect that the outside

option yields now a utility of 2 instead of 3 to player 1. The predictions of k-level strong

rationalizability remain unchanged and are level-by-level identical to the ones for the game

in Figure 3. Yet, strong level-k thinking strategies (with uniform initial belief systems)

of player 1 differ considerably from the ones in Figure 3 (see Table 2, lower part). For

player 1 at level 1, (In,B) is uniquely rational at both of player 1’s information sets to

uniform beliefs over player 2’s strategies. Player 2 plays optimally S against an uniformly

mixing player 1. At the second level, player 1 anticipates this and (Out, ∗) is uniquely

rational with such a belief. For player 2, B is the only rational action at level 2 because

she knows by now that once her information set is reached, player 1 continues to play B.

Anticipating this at level 3, player 1 selects (In,B). Player 2 continues with B at level

3 because strong level-2 thinking with uniform initial belief systems of player 1 prescribes

(Out, ∗). That is, her information set should not be reached with such a strategy. Upon

reaching the information set nevertheless, she must believe that player 1 is strong level-

1, i.e., playing (In,B), and consequently B is the unique best response. Thus, strong

level-k thinking yields the strong rationalizable outcome and strategies for k ≥ 3. The

point of the example is to demonstrate that changing the utility of the outside option to

player 1 from 3 to 2 alters dramatically strong level-k thinking strategies. More generally,
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given uniform initial beliefs of player 1, the prediction flips when player 1’s utility of the

outside option crosses 2.5. In contrast, this change does not affect the prediction of strong

rationalizability.

To sum up, strong level-k thinking with uniform initial belief systems and strong

rationalizability are unrelated solution concepts in terms of outcomes, which is in contrast

to their normal-form counterparts (see Section 2.1). This is due to how restrictions placed

on first-level belief systems (i.e., level-0 behavior) interact with conditional beliefs. It also

makes strong level-k thinking very sensitive to misspecifications of utilities.

3.3 Strong Level-k Thinking versus Strong ∆-Rationalizability

In the prior subsection, we argued that strong level-k thinking differs from strong ratio-

nalizability due to restrictions placed on first-level belief systems (aka level-0 behavior).

Yet, in the literature there are already versions of strong rationalizability that incorpo-

rate restrictions on first-level beliefs under the name of strong ∆-rationalizability (see

Battigalli, 2003, Battigalli and Siniscalchi, 2003, Battigalli and Prestipino, 2013) and

extensive-form best response sets (Battigalli and Friedenberg, 2012). Here we state the

definition of strong ∆-rationalizability in a form that facilitates the comparison with

strong rationalizability and strong level-k thinking.

Definition 5 (Strong ∆-Rationalizability) For each player i ∈ N , fix a nonempty

(measurable) set of restrictions on belief systems ∆i ⊆ B̄i. Let ∆ := (∆i)i∈N . Define

inductively for every player i ∈ N ,

B̄1
i (∆) is the set of player i’s restricted belief systems ∆i.

R̄1
i (∆) =

{
si ∈ Si :

There exists β̄i ∈ B̄1
i (∆) with which for every

information set Ii ∈ Ii, si is rational at Ii.

}
...

B̄k
i (∆) =

β̄i ∈ ∆i :
For every information set Ii, if there exists some profile of
other players’ strategies s−i ∈ R̄k−1

−i (∆) such that s−i reaches Ii,
then β̄i(Ii) assigns probability 1 to R̄k−1

−i (∆).


R̄k

i (∆) =

{
si ∈ R̄k−1

i (∆) :
There exists β̄i ∈ B̄k

i (∆) with which for every
information set Ii ∈ Ii, si is rational at Ii.

}
The set of strong ∆-rationalizable strategies of player i is

R̄∞
i (∆) =

∞⋂
k=1

R̄k
i (∆).
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First note that compared to strong level-k thinking, strong ∆-rationalizability is

a reduction procedure on strategies. Yet, it is also easy to see that the set of ∆-

rationalizability strategies may be empty. This is naturally the case when the restrictions

∆i clash with the requirement that beliefs must assign probability 1 to R̄k−1
−i (∆) when

latter set is not ruled out. That is, the crux is in the definition of B̄k
i (∆). We require

β̄i ∈ ∆i which might be inconsistent with β̄i(Ii)(R̄
k−1
−i (∆)) = 1 and the existence of a

strategy profile s−i ∈ R̄k−1
−i (∆) that reaches Ii. There are restrictions where the set of ∆-

rationalizable strategies is nonempty (see Battigalli, 2003, for non-trivial applications).

For instance, in the case of no restrictions, strong ∆-rationalizability is equivalent to

strong rationalizability and hence nonempty for every finite game. Most relevant for our

comparison with strong level-k, the set of strong ∆-rationalizable outcomes is typically

empty if ∆i is the set of full support belief systems or, even more special, the belief

system of uniform beliefs (as often assumed in the level-k literature). We illustrate this

in the next example.

Figure 5: Battle-of-the-sexes with an outside option III

Example 6 (Battle-of-the-sexes with an outside option III) Consider the game

in Figure 5, a version of a game used in experiments by Cooper et al. (1993). The

outside option yields now a payoff strictly lower than any pure equilibrium payoffs in the

battle-of-the-sexes game. Consider ∆ = (∆1,∆2) where ∆1 consists only of the uniform

belief system, i.e., player 1’s belief at the beginning of the game and after moving In

assigns assigns probability 1
2
to each action, B and S, of player 2. Similarly, ∆2 consist

of the uniform belief
(
1
2
, 1
2

)
of player 2 over player 1’s actions B and S after observing

In. The strong ∆-rationalizable strategies of the players 1 and 2 at level 1 are (In,B)

for player 1 and S for player 2. Now, at level 2, neither player can believe in the level-1

∆-rationalizable strategy of the opponent and have uniform beliefs. Thus, level-2 ∆-
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rationalizable strategies with ∆ being the uniform belief restriction must be empty and so

for k-level ∆-rationalizable strategies, for any k ≥ 2; see Table 3.9

Clearly, as the example illustrates, in the case of uniform belief restrictions, we need

to give up this restriction at level-2 and higher. This motivates a modification of strong

∆-rationalizablity in which we replace β̄i ∈ ∆i with β̄i ∈ B̄i in the specification of

B̄k
i (∆) of Definition 5. Returning to Example 6, we notice now that the “modified”

∆-rationalizable strategies are nonempty. In particular, they coincide with the first level

∆-rationalizable strategies, (In,B) and S for players 1 and 2, respectively. Yet, this is a

very strange “solution”. If player 1 realizes that player 2 plays S, why wouldn’t he best

respond with (In, S)? Similarly, if player 2 realizes that player 1 plays (In,B), why would

not she best respond with B. The reason is that we require nestedness of strategies in the

specification of Rk
i (∆) of Definition 5, i.e., Rk

i (∆) ⊆ Rk−1
i (∆), for k > 1. Giving up in

the modified definition of strong ∆-rationalizability this nestedness yields our definition

of strong level-k thinking. We derive the strong level-k thinking strategies with uniform

belief systems of Example 6 in Table 3. It illustrates that the non-nestedness of strong

level-k thinking may create cycles, similar to what we have already observed for normal-

form level-k thinking in Example 1. To sum up, we can interpret strong level-k thinking

as a version of strong k-level ∆-rationalizability, where first-level belief restrictions are

given up at higher levels together with nestedness of beliefs across levels. We expect that

this would cause problems for epistemic characterizations of the solution concept in some

games. Such lack of epistemic justification may just reflect the fact that in some games it

is difficult to resolve what to play with level-by-level thinking etc. as already suggested

in the quote by Morgenstern (1928) in the Introduction.

3.4 Strong Level-k Thinking versus Iterated Admissibility

In the battle-of-the-sexes games with an outside option of the previous section, k-level

strong rationalizability yields strategies that are equivalent to k-iterative elimination

of weakly dominated strategies. Since in the battle-of-the-sexes game with an outside

option I, strong level-k thinking with uniform initial beliefs is distinct from k-level strong

rationalizability, it demonstrated that strong level-k thinking is also distinct from k-

iterative admissibility even if we assume uniform initial belief. Yet, especially with the

assumption of initial full-support belief, it is intuitive that sometimes strong level-k

9The discussion treats strong ∆-rationalizability in a somewhat unfair way. We think the ∆-
restrictions where not intended to model uniform beliefs but rather some equilibrium conventions.
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Table 3: Solutions to the Battle-of-the-sexes game with an outside option III

Strong level-k & k-level strong & k-level ∆ rationalizability
Backward level-k k-level backward with the ∆-restriction being

(uniform) rationalizability the uniform belief system

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 (In,B) S (In, ∗) {B,S} (In,B) S
2 (In, S) B (In, ∗) {B,S} ∅ ∅
3 (In,B) S (In, ∗) {B,S} ∅ ∅
... Cycle Cycle

...
...

...
...

thinking retains some features of iterated admissibility because iterated admissibility can

be thought of as rationalizability with full-support beliefs. Both, strong level-k with

initial full support belief systems and iterated admissibility feature some form of caution.

This is indeed the case in the following example.

Figure 6: HMS2 Game

Example 7 Consider the game of Figure 6 that is a variant of a game discussed in

Heifetz, Meier, and Schipper (2021). Let’s call it the HMS2 game. In this game, strong

rationalizable strategies are disjoint from strategies remaining from iterated admissibility

although in terms of outcomes, iterated admissibility strictly refines the set of strong ratio-

nalizable outcomes. (See Table 4, upper part, or the eliminations in Figure 6 (for strong

rationalizability) and the associated normal form (for iterated admissibility)). Strong

level-k thinking (with uniform initial belief systems) coincides with k-iterated admissi-

bility and is disjoint from k-level strong rationalizability from k ≥ 3 onward (see the

upper part of Table 4). Yet, this is highly sensitive to the utilities. If, for instance, we

slightly change player 2’s utility of (b, e) from 2 to 3 (let’s call it the HMS3 game), then
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strong rationalizability and iterated admissibility remain unchanged at all levels but now

strong level-k thinking (again with uniform initial beliefs) coincides with k-level strong

rationalizability and is disjoint from k-iterated admissibility from k ≥ 3 onward. See the

lower part of Table 4. Again, this illustrates the sensitivity of predictions of strong level-

k thinking to small changes of utilities. It is due to the assumption of initial uniform

beliefs.

Table 4: Solutions to HMS2 and HMS3 Games

HMS2 Strong level-k k-level strong & k-level k-iterated admissibility Backward
game (uniform) backward rationalizability level-k (uniform)

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {b} {d} {a, b, c} {d, e} {a, b} {d, e} {b} {d}
2 {a} {d} {a, c} {d, e} {a, b} {d} {a} {d}
3 {a} {d} {a, c} {e} {a} {d} {a} {d, e}

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. {a, c} {d, e}

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. {a, c} {e}
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HMS3 Strong level-k k-level strong & k-level k-iterated admissibility Backward
game (uniform) backward rationalizability level-k (uniform)

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 {b} {d} {a, b, c} {d, e} {a, b} {d, e} {b} {d, e}
2 {a, c} {d} {a, c} {d, e} {a, b} {d} {a, c} {d}
3 {a, c} {e} {a, c} {e} {a} {d} {a} {e}

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. {a, c} {d, e}

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. {a, c} {e}
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Although iterated admissibility captures cautiousness, it is a solution concept for the

normal form. While Kohlberg and Mertens (1986) argue that the (associated) game

in normal-form should be sufficient for solutions to games, there is evidence that be-

haviorally the extensive-form versus normal-form representation of the games makes a

difference (e.g., Cooper and Van Huyck, 2003). It would therefore be desirable to also

have a strong rationalizability concept that captures cautiousness. Heifetz, Meier, and

Schipper (2021) put forward the following definition of prudent rationalizability.10

10It has been applied to partially identify cautious level-k reasoning in experiments by Li and Schipper
(2020). It also been applied to games with unawareness including disclosure games (Heifetz, Meier, and
Schipper, 2021; see Li and Schipper, 2019, for experiments), electoral campaigning (Schipper and Woo,
2019) and, with additional belief restrictions, to screening problems (Francetich and Schipper, 2022). In
Schipper and Woo (2019), the levels of reasoning embodied in prudent rationalizability have been used
to model the political reasoning capabilities of voters.
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Definition 6 (Prudent Rationalizability) For any i ∈ N , let R̂0
i = Si. For k ≥ 1,

define inductively

B̂k
i =

β̄i ∈ B̄i :

For every information set Ii, if there exists some profile

s−i ∈ R̂k−1
−i of the other players’ strategies such that s−i

reaches Ii, then the support of βi (Ii) is the set of strategy

profiles s−i ∈ R̂k−1
−i that reach Ii.



R̂k
i =

{
si ∈ R̂k−1

i :
There exists βi ∈ B̂k

i such that for all Ii ∈ Ii

player i with strategy si is rational at Ii.

}
The set of prudent rationalizable strategies of player i is

R̂∞
i =

∞⋂
k=1

R̂k
i .

Note that this solution concept features non-nested sets of beliefs but nested sets of

strategies. It is clear that a full-support belief on a smaller opponents’ strategy subspace

cannot be an element of the full-support beliefs on larger opponents’ strategy subspaces.

Thus, the set of k-level prudent belief systems cannot be a subset of the set of k− 1 level

prudent belief systems. Heifetz, Meier, and Schipper (2021) show that it is nonempty for

any finite game in extensive form (including games in extensive form with unawareness).

Meier and Schipper (2023) show that prudent rationalizability is level-by-level strat-

egy equivalent to iterated admissibility in the associated normal form including games

with unawareness (see Shimoji and Watson, 1998, and Brandenburger and Friedenberg,

2011, for related results). Thus, Example 7 demonstrates already how strong level-k

thinking with level-1 uniform belief systems differs from prudent rationalizability.

3.5 Strong Level-k Thinking versus Backward Rationalizability

For the following subsections, we assume that the games in extensive form are such that

there is a precedence relation on the information sets of the game. Consequently, for any

information sets I, I ′ ∈
⋃

i∈N Ii, we write I ⪯ I ′ if information set I precedes information

set I ′.

By the logic of backward induction or subgame perfection, players just care about

behavior in the continuation game. Thus, continuation strategies become important. For

any players i, j ∈ N , strategy si ∈ Si, and information set I ∈ Ij, denote by si|I the
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corresponding strategy in the continuation game starting at information set I if player i

has an information set in the continuation game starting at I. That is, if player i has an

information set in the continuation game starting at I, then si|I(I
′) := si(I

′) for all I ′ ∈ Ii

with I ⪯ I ′. Similarly, for any nonempty subset of strategies Xi ⊆ Si and information

set I ∈ Ij, denote by Xi|I the subset of strategies of player i in the continuation game

starting at information set I, i.e., Xi|I := {si|I : si ∈ Xi}. Note that Xi|I might be empty

if player i has no information set in the continuation game starting at information set I.

Although with the backward induction logic, players just care about continuation

strategies, they form beliefs over strategies. To this end, we let [Xi|I ] := {si ∈ Si :

If Xi|I ̸= ∅, then si|I ∈ Xi|I}. This is the set of player i’s strategies whose continuation

strategies are in Xi|I . Intuitively, when a player believes in [Xi|I ], she does not care how

I has been reached with player i’s strategies. She just cares about player i’s continuation

strategies in Xi|I . Note that if Xi|I = ∅, then [Xi|I ] = Si. That is, [Xi|I ] is always

nonempty by definition. Lastly, we let [X−i|I ] := ×j∈N\{i}[Xj|I ]. Note that we may have

X−i ⊆ [X−i|I ]. For instance, not all strategies in a game may reach information set I.

In such a case, we may have S−i(I) ̸= [S−i|I(I)]. The l.h.s. denotes the set of strategy

profiles of player i’s opponents that reach I while the r.h.s. denotes the set of all strategy

profiles of player i’s opponents whose continuation strategy profiles from information set

I onward coincide with continuation strategy profiles of strategy profiles of player i’s

opponents that reach I. For instance, in the centipede game (Figure 7), the second level

strong rationalizable strategies of player 1 reaching the first information set of player 2

are {(C1, o1)} but the strategies of player 1 coinciding with the continuation strategies of

strategies of player 1 who reach this information set are {(C1, o1), (O1, o1)}. Latter type
of strategies are relevant for backward rationalizability because, as we will see shortly, at

every information set the player does not care how it is reached.

The following definition is due to Penta (2010) and Perea (2014). In fact, the present

version is a slight generalization because Penta (2010) just states it for multi-stage games

with observable actions and Perea (2014) states it for complete information games. Meier

and Perea (2023) define a version for games with time periods.

Definition 7 (Backward Rationalizability) Define inductively for every player i ∈
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N ,

B⃗1
i = B̄i

R⃗1
i =

{
si ∈ Si :

There exists β̄i ∈ B⃗1
i such that for every information

set Ii ∈ Ii, si|Ii is rational at Ii given β̄i(Ii).

}
...

B⃗k
i =

{
β̄i ∈ B⃗k−1

i : βi(Ii)
([

R⃗k−1
−i|Ii

])
= 1 for every information set Ii ∈ Ii.

}
R⃗k

i =

{
si ∈ Si :

There exists β̄i ∈ B⃗k
i with which for every information

set Ii ∈ Ii, si|Ii is rational at Ii given β̄i(Ii).

}
The set of backward rationalizable strategies of player i is

R⃗∞
i =

∞⋂
k=1

R⃗k
i .

A couple of remarks are in order: First, the major difference between backward ra-

tionalizability and strong rationalizability is that at an information set players believe

at level k that the opponents play k − 1 backward rationalizable continuation strate-

gies from there onward no matter whether the information set could have been reached

with such k − 1 backward rationalizable strategies or not. Since this holds for every

continuation game, it is very much in spirit of subgame perfection, or more generally,

“continuation-game perfection.” In fact, it may have been more appropriately dubbed

“continuation-game rationalizability.” However, Cantonini and Penta (2022) show (for

multi-stage games) that backward rationalizability is equivalent to a backwards induction

rationalizability procedure starting from a subgame of lowest rank and moving backward

to successively larger subgames. So in this sense, the name backward rationalizability is

justified. Cantonini and Penta (2022) also characterize further properties of the solution

concept such as order-independence and continuation-game consistency. Perea (2014)

shows equivalence to backward dominance for complete information games. More impor-

tantly, he characterizes it by common belief in opponents behaving rationally in future.

Battigalli and De Vito (2021) epistemically characterize backward rationalizability in

multi-stage games with observable actions in a richer epistemic framework, in which they

are able to distinguish between planed play and actual play.

How does k-level backward rationalizability compare to strong level-k thinking? One

defining feature of strong level-k thinking is forward induction, while this is absent in

backward rationalizability. This difference causes strategies of strong level-k thinking

(with uniform initial belief systems) to differ from backward rationalizability for instance
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in the Reny game (Figure 1). At level-3, player 2 would choose continue at her first

information sets with strong level-k thinking while moving out with the backward ra-

tionalizability (see Table 1). This is due to backward rationalizability following the

backward induction logic. Since player 1 moves out with both solution concepts, the

solution concepts do not yield different outcomes in this game. However, strong level-k

thinking (with uniform initial belief systems) is a refinement of backward rationalizable

outcomes in for instance the HMS2 game (Figure 6). There, strong level-k thinking yields

outcome a from level-2 upward while backward rationalizability allows for strategy c in

addition to a (see Table 4). Similarly, strong level-k thinking (with uniform initial belief

systems) is a outcome refinement of backward rationalizability in the Battle-of-the-sexes

games with an outside option I and II (see Table 2).

3.6 Strong Level-k versus Backward Level-k Thinking

Ho and Su (2013) study centipede games with a notion of “dynamic level-k.” Here the

dynamics w.r.t. levels is between repeated play of centipede stage-games, not within

the centipede game. However, within the centipede game, they use what we could dub

“subgame level-k”. That is, they assume first level beliefs in random choice at every

history of the game. For any higher level, they require that the k-level strategy is a

best response to the (k − 1)-level strategies of opponents in every subgame no matter

whether the subgame is reached or not. Kawagoe and Takizawa (2012) also present an

experimental analysis of centipede games using level-k best responses at every history

of the game like Ho and Su (2013) (see also Stahl and Haruvy (2008) for two-stage

games). However, they explicitly assume additional noise which makes any subgame

reachable. In the following, we define formally a notion of ‘backward level-k’ thinking,

i.e., level-k thinking at every subgame. More generally, since we allow for moves of

nature, simultaneous moves of players, and non-singleton information sets, it should be

more appropriately understood as a notion of “continuation-game level-k” thinking.

Definition 8 (Backward Level-k Thinking) Given a system of first-level beliefs, β̄1 =
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(β̄1
i )i∈N with β̄1

i ∈ B̄i, define inductively for every player i ∈ N ,

B⃗1
i (β̄

1) = {β̄1
i }

L⃗1
i (β̄

1) =

{
si ∈ Si :

For every information set Ii ∈ Ii,
si|Ii is rational at Ii given β̄1

i (Ii).

}
...

B⃗k
i (β̄

1) =
{
β̄i ∈ B̄i : β̄i(Ii)

([
Lk−1
−i|Ii(β̄

1
i )
])

= 1 for every information set Ii ∈ Ii.
}

L⃗k
i (β̄

1) =

{
si ∈ Si :

There exists β̄i ∈ B⃗k
i (β̄

1) with which for every information
set Ii ∈ Ii, si|Ii is rational at Ii given β̄i(Ii).

}
At level 1, each player has beliefs over opponents’ strategies given by the belief system

β̄1. Typically, the literature assumes some level-0 type that mixes uniformly at every

information set. However, since these types are just fictitious, we model them as what

they are, namely beliefs of level-1 types. Level-1 types best respond to their beliefs at

every continuation game. At any level k and information set of a player, the player

forms beliefs about (k−1)-level continuation strategies of opponents. Of course, it could

be that no level-(k − 1) strategy profile of opponents can reach the information set. In

that case, the player nevertheless believes that opponents play continuation strategies

consistent with level-(k − 1) strategies. That is, the player assumes that from now on,

opponents play level-(k − 1) strategies. If opponents have no action in the continuation

game, then the player is free to believe anything.

The purpose of introducing backward rationalizability before backward level-k think-

ing is to make clear that backward level-k thinking can be interpreted as a form of k-level

backward rationalizability with a restriction on first-order belief systems. In particular,

Ho and Su (2013) assumed uniform first-order beliefs at every information set. So from a

conceptual point of view, the relationship between backward level-k thinking and level-k

backward rationalizability is analogous to the relationship between strong level-k thinking

and level-k strong rationalizability. Of course, strategies and outcomes may differ.

Backward level-k thinking is a solution concept different from strong level-k thinking

as latter features forward induction while former does not. However, somewhat per-

plexingly at a first glance in some games backward level-k thinking with uniform initial

belief systems can yield forward induction outcomes of let’s say strong rationalizability

or iterated admissibility while strong level-k thinking with uniform initial belief systems

does not. Consider for instance the Battle-of-the-sexes with an outside option game I

(see Figure 3). At level-3, backward level-k thinking yields uniquely the strategy profile

((In,B), B) (see Table 2, upper part), which is the “classic” forward induction outcome
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of strong rationalizability and iterated admissibility in these games. However, closer

inspection shows that backward level-k thinking yields this forward induction outcome

without forward induction reasoning behind it. It is simply due to player 1 best respond-

ing to player 2 best response to player 1’s continuation strategy in the Battle-of-the-sexes

game. Latter is a best response in this subgame to player 1’s uniform belief over player

2’s actions. In contrast, strong level-k with uniform initial belief systems yields the set of

strategy profiles {((Out, S), S), ((Out,B), S)} and thus a outcome different from back-

ward level-k thinking and typically not associated with forward induction. This outcome

is due to player 1 best responding to his uniform belief about player 2’s actions and

choosing out. Since the Battle-of-the-sexes subgame is not reached, player 2 resorts to

her first-level beliefs and assumes that player 1 would behave uniformly in the Battle-

of-the-sexes subgame. Consequently, she keeps choosing action S at higher levels. More

generally, the example demonstrates that backward level-k thinking and strong level-k

thinking are distinct solution concepts since in this game they lead to different outcomes

from level-3 upward. However, we observe the following:

Proposition 5 For any initial profile of full support belief systems β̄1, the outcomes of

strong level-1 strategies coincide with outcomes of backward level-1 strategies.

As the proof of the proposition in the appendix notes, the observation does not extent

to strategies. That is, strong level-1 strategies may differ from backward level-1 strategies

since we can have the case that si does not reach some information set Ii. In such a case

si is trivially rational at Ii but si|Ii may not be rational at Ii. An example is again the

Battle-of-the-sexes game with an outside option I of Figure 3. As we noted before, the

set of strong level-1 strategies of player 1 is {(Out, S), (Out,B)} while only (Out,B) is

the unique backward level-1 strategy. It does not mean though that backward level-k

thinking is a refinement of strong level-k thinking. We noted this already in the same

game where at level 3 the two solution concepts yield distinct outcomes.

As we have seen already with normal-form level-k and strong level-k, also backward

level-k can lead to cyclic choices across levels. Examples are the Battle-of-the-sexes games

with an outside option II and III (Figures 4 and 5), where backward level-k leads to a cycle

of alternating strategies listed in Tables 2 and 3. Again, such a cycle creates difficulties

for an epistemic characterization but corresponds nicely to Morgenstern’s observation

cited in the Introduction that in some games level-by-level reasoning about opponents

does not lead to a solution.

32



3.7 Strong Level-k Thinking versus Backward Induction

Arguably the most commonly used solution concept to games in extensive form with per-

fect information and sequential moves is subgame-perfect equilibrium solved by backward

induction. We can consider backward induction as an iterated process “level-by-level”,

where now a “level” refers to the rank of a subgame rather than a level of belief. Consider

for simplicity a finite game in extensive form with perfect information, sequential moves,

and a finite horizon. Call the rank of a subgame the maximal number of nodes to reach

a terminal node. Backward induction is now defined as follows: At level 1, consider all

subgames of rank 1. Select a utility maximizing action of the player that moves in this

subgame. Replace the subgame with a terminal node ascribing this utility to this newly

created terminal node. Assume we have defined the procedure at level k − 1. Then at

level k, consider each subgame of rank k (in the original game in extensive form). Select

a utility maximizing action of the player that moves in this subgame considering the

utilities obtained from the procedure at level k−1. Replace the subgame with a terminal

node ascribing this utility to this newly created terminal node. Do this with all subgames

of rank k. Since the finite game has a finite horizon, the procedure stops after some finite

number of levels.

Although the notion of level in backward induction is very different from the notion of

level in various notions of level-k, we can compare strong level-k thinking with backward

induction up to level k. The following examples demonstrate that k-level backward

induction and strong level-k thinking are quite distinct solution concepts. One of the

most prominent game displaying the awkward backward induction logic transparently is

the centipede game (Rosenthal, 1981). In the centipede game, strong level-k thinking

may refine level-k backward induction at some levels but is refined by level-k backward

induction at some other levels.

Example 8 (Centipede game) Consider a short version of the centipede game de-

picted in Figure 7. The set of strong level-k strategies (with uniform initial belief sys-

tems) and backward induction strategies for every level k are detailed in Table 1. We

note that at level-1, strong level-k thinking (with uniform initial belief system) refines the

level-1 backward induction strategies and outcomes. This is not surprising as we reap

the full power of the assumption on the particular uniform“level-0” behavior while only

having the refinement power of backward induction for the game of rank 1, the “tail” and

“last leg” of the centipede. At level 2, strong level-k thinking still refines level-2 backward

induction but with strategies that differ starkly from strong level-1 thinking as players
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Figure 7: Centipede game

now take strong level-1 strategies of the opponent into account. At level-3, strong level-k

thinking still refines level-3 backward induction outcomes but the strategy of player 2 is

now inconsistent with backward induction. The reason is that player 2 does not expect

that his second information set is reached. Hence any action at this information set

is rational. In contrast, if player 2 follows backward induction and reaches her second

information set, she “shrugs her shoulders” and ignorantly continues to do backward in-

duction as if nothing had happened. As from level-4 though, backward induction refines

strong level-k strategies (for the same reason that produced the difference at level 3). The

outcomes are the same though. To summarize, for levels k ≤ 3, strong level-k thinking

refines level-k backward induction in terms of outcomes. Yet, for levels k ≥ 4, strong

level-k thinking is refined by level-k backward induction in terms of strategies but not

outcomes. This changing pattern of the relationship between strong level-k thinking and

level-k backward induction highlights the fact that they are conceptually quite different

solution concepts although both can be understood as solutions concepts employing some

form of inductive elimination of strategies. We note that strong level-k thinking does not

display the often criticized “stubborn belief” in the opponent playing backward induction

when an information set is reached that is not on the outcome path. Not surprisingly,

k-level backward rationalizability and backward level-k yields the same strategies as back-

ward induction from level-4 upward since all these solution concepts capture the idea of

subgame perfection.

4 Revisiting Prior Experiments

There is a large literature on testing solution concepts to games in extensive form in ex-

perimental game theory. Given our observations with regard to strong level-k reasoning,
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normal-form level-k reasoning, and k-level strong rationalizability, data sets on games in

which forward induction plays a role are of special interest to us. We are very grateful to

authors of some previously published experiments for providing us with their data sets.

In this section, we report as a proof of concept on a simple reanalysis of those extant

data sets attempting to glean different aspects of strategic sophistication.

4.1 The Role of Forward Induction Given the Level of Thinking
and Uniform First-Level Beliefs

Cooper et al. (1993) conducted experiments on the Battle-of-the-Sexes game with outside

options. One of the games used in their experiments is depicted in Figure 8. Although

its proper subgame is phrased as an “anti-coordination” game, it is seen easily to be

equivalent to a Battle-of-the-Sexes game just by renaming the actions of one player.

Figure 8: Game used by Cooper et al. (1993)

Table 5 presents level-by-level three solutions: strong level-k with uniform initial belief

systems, normal-form level-k with uniform initial beliefs, and k-level strong rationalizabil-

ity. We observe that in this game, strong level-k reasoning is equivalent to k-level strong

Table 5: Solutions to the game used by Cooper et al. (1993)
Strong level-k Normal-form level-k k-level strong
(uniform) (uniform) rationalizability

Level Row player Column pl. Row player Column pl. Row player Column pl.

1 {(In, 2),(O, *)} 2 {(In, 2),(O, *)} 2 {(In, 2),(O, *)} {1, 2}
2 (O, *) 1 (O, *) 1 {(In, 2),(O, *)} 1
3 (In, 2) 1 (In, 2) {1, 2} (In, 2) 1
4 (In, 2) 1 {(In, 2),(O, *)} 1 (In, 2) 1
...

...
...

...
...

...
...
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rationalizability from the third level onward. It refines k-level strong rationalizability

at the first two levels. More importantly, strong level-k thinking is a strategy refine-

ment of normal-form level-k reasoning from level 3 onward and an outcome refinement

of normal-form level-k reasoning from level 4 onward. Both, strong level-k reasoning

and normal-form level-k reasoning feature levels of reasoning. Yet, strong level-k rea-

soning also features a second dimension of strategic sophistication, namely the ability

to update beliefs about opponent’s future behavior given the opponent’s past behavior.

Games like the present one, in which strong level-k thinking strictly refines normal-form

level-k thinking, provide us with an opportunity to assess the importance of the forward-

induction ability beyond just level-k thinking. This becomes apparent at level 3. Under

normal-form level-k reasoning for k = 3, the column player is indifferent between actions

1 and 2 thinking that the row player chooses Out anyway. In contrast, when the column

player’s information set is reached and she gets to play, she now knows under strong

level-k reasoning with k = 3 that the row player cannot be an strong level-2 reasoner be-

cause such a row player would move Out. At strong level-3, the only way for the column

player to make sense of the row player’s action to move In is to attribute level-1 to the

row player. Here we see the “best rationalizability principle” embodied in strong level-k

thinking at work. Rather than believing that the row player is irrational by choosing

In, the column player attributes the highest level of rationality consistent with reaching

the subgame to the row player (and below her own level-3), which is strong level-1. This

makes her realize that the row player plans to play 2 since he moved In already. Thus,

she best responds with taking action 1.

Participants played the game for 22 periods and alternated between the row and

column player positions. Players were anonymously re-matched within each of the 21

cohorts. Results of the first 11 periods differed significantly from the last 11 periods

and Cooper et al. (1993) reported only on the last 11 periods. Other treatments of the

experiment involved variants of the Battle-of-the-Sexes games with outside options. We

focus on the game of Figure 8 because strong level-k is a strict refinement of normal-

form level-k reasoning.11 See Cooper et al. (1993) for further details of the experimental

design.12

11For instance, Cooper et al. (1993) also report on a treatment involving a game similar to Example 6.
However, in this game, strong level-k coincides with normal-form level-k and strong rationalizability
provides only a coarse solution. Therefore, we do not think we can learn much for our purposes from
that treatment w.r.t. the solution concepts discussed here and omit a reanalysis.

12Although we received the data from Cooper et al. (1993), we were not able to fully comprehend
them yet given that they were collected more than 30 years ago. Thus, our analysis makes use of the
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Table 6 describes the percentage of choices from the last 11 rounds consistent with

the various solution concepts. First, we observe that a large percentage of choices are

Table 6: Choices in Cooper et al. (1993) consistent with solutions
Strong level-k Normal-form level-k k-level strong
(uniform) (uniform) rationalizability

Level Row player Column pl. Row player Column pl. Row player Column pl.

1 98% 8% 98% 8% 98% 100%
2 20% 92% 20% 92% 98% 92%
3 78% 92% 78% 100% 78% 92%
4 78% 92% 98% 92% 78% 92%

consistent with all three solution concepts. Second and more importantly, we note that

apparently the second dimension of strategic sophistication, forward-induction, is just

missing in 8% of the column players at comparable levels of reasoning (i.e., at level-

3, the relevant level for forward induction) and comparable assumptions on first-level

beliefs/level-0 behavior (i.e., uniform). Normal-form level-k with uniform initial beliefs

trivially fits 100% of the data on the column player for k = 3 while strong level-k with

uniform initial belief systems fits 92% of the data at k = 3.

The exercise also offers a glimpse of how strong level-k thinking might be used in

experimental game theory. The goal is not so much in winning a horse race among

solution concepts in a fitting exercise. Rather, by comparing different solution concepts

who differ just in one particular feature of strategic sophistication from each other but

are otherwise comparable, we might learn about the prevalence of this feature without

interference by other varying features, which is very much in the spirit of comparative

statics. When comparing the fit of strong level-k with uniform initial belief systems

and normal-form level-k with uniform initial beliefs in the experiment, we learn about

the prevalence of forward induction given comparable levels of thinking and comparable

assumptions on initial beliefs.

4.2 The Role of Uniform Level-1 Beliefs Given Forward Induc-
tion and the Level of Reasoning

Balkenborg and Nagel (2016) study a variant of the Battle-of-the-sexes game with an

outside option in which nature moves first and selects between the outside option game

or the Battle-of-the-sexes game without the outside option. We focus here on the sub-

frequencies reported in Cooper et al. (1993, Table 4).
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game consisting of the Battle-of-the-sexes game with the outside option as depicted in

Figure 9.13 While such a focus on a subgame only is generally problematic when studying

solution concepts with forward induction, because beliefs of players might be affected by

what happened before the subgame, we do not think that it does affect our analysis of

this particular game in a relevant way.

Figure 9: Game used by Balkenborg and Nagel (2016)

The predictions of strong level-k thinking (with uniform initial belief systems) and

k-level strong rationalizability are given in Table 7. It is well-known that the outcome of

strong rationalizability is equivalent in this game to the prediction by iterated admissi-

bility and strategic stability. Balkenborg and Nagel (2016) refer to this outcome simply

as the forward induction outcome. Their interest is on testing it against Harsanyi-Selten

equilibrium selection based on risk-dominance, the focal point, and strong backward in-

duction. In particular, since the action profile (R, r) is both risk-dominant and focal

due to symmetry of payoffs, (6, 6), backward induction suggests that player 1 chooses

out and guarantees himself the larger payoff of 7. This prediction coincides with strong

level-k thinking with uniform level-0 belief systems in this game for k ≥ 1. In fact,

already Balkenborg and Nagel (2016, p. 398) note that Out is player 1’s best response

to the uniform belief over player 2’s actions in the Battle-of-the-sexes subgame. The fact

that strong level-k thinking with uniform level-0 belief systems differs from k-level strong

rationalizability in this game allows us to study the effect of level-0 uniform beliefs given

the ability to do forward induction and given comparable levels of thinking.

Note that normal-form level-k reasoning with uniform initial beliefs has “no bite” in

this game. This is because at level 3, player 1 can have arbitrary beliefs about both level-2

best responses of player 2. This makes both (Out, ∗) and (In, L) consistent with normal-

form level-k thinking for k ≥ 3. It just underlines the fact that normal-form solution

13In their terminology, it is the “left game”.
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Table 7: Solutions to the game of Balkenborg and Nagel (2016)
Strong level-k Normal-form level-k k-level strong

game (uniform) (uniform) rationalizability

Level Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

1 (Out, ∗) r (Out, ∗) r {(Out, ∗), (In, L)} {l, r}
2 (Out, ∗) r (Out, ∗) {l, r} {(Out, ∗), (In, L)} l

3
...

... {(Out, ∗), (In, L)} {l, r} {(In, L)}
...

4
...

...
...

...
...

...

concepts are not always useful for studying games in extensive form. That’s why in what

follows we focus on strong level-k thinking and k-level strong rationalizability.

In their experiments, 154 students participated in 13 independent sessions. In each

session, the game was played sequentially for 50 rounds which was followed by one round

of play using the strategy method (Selten, 1967). Participants were randomly rematched

after each round but maintained their player role throughout the experiment. Sessions

differed by the information feedback but results did not differ so that data of the various

sessions have been pooled together.

Table 8: Choices in Balkenborg and Nagel (2016)
Strong level-k k-level strong
(uniform) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 88% 43% 90.2% 100%
2 88% 43% 90.2% 57%
3 88% 43% 2% 57%

We classify individual choices from all periods in Table 8. Our exercise shows that

for the Balkenborg and Nagel (2016) dataset, 88% of the player 1 chooses Out, which

is consistent with the prediction of strong level-k thinking but not with k-level strong

rationalizability from level-3 onward. Since the most substantial difference between k-

level strong rationalizability and strong level-k thinking is the assumption of uniform

level-1 belief systems, this difference illustrates the impact of the initial beliefs assumption

given the level of reasoning (i.e., level 3) and the fact that both solution concepts feature

the assumption that players are able to do forward induction.

The picture looks different for player 2. Only 43% of player 2 choose r conditional

on the subgame is played. This is slightly less than for k-level strong rationalizability for

k ≥ 2 (57%). Together this suggests that how participants view the context of the game,

as captured by their initial beliefs, may depend on the player role. While the uniform
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beliefs assumptions seems largely consistent with the behavior of participants in the role

of player 1, it is apparently not a descriptive assumption for the majority of participants

in the role of player 2.

We can use an experiment by Evdokimov and Rustichini (2016) to check for the

robustness of the last observation for player 2. Their experiment makes use of the Battle-

of-sexes games with outside option depicted in Figure 10. This game has a similar best

Figure 10: Game used by Evdokimov and Rustichini (2016)

response structure as the Battle-of-the-sexes game with an outside option I (Example 4)

and to the game used by Balkenborg and Nagel (2016). Thus, strategies consistent with

various solution concepts are analogous to Table 7 (see Example 4 for more detailed

arguments).

There were 230 participants in the experiment. Participants played the game repeat-

edly. Their player roles could switch between repetitions. Between rounds, they received

limited feedback: Player 1 received no feedback about player 2. Player 2 received in-

formation on whether or not the Battle-of-the-sexes subgame was reached, i.e., whether

or not player 1 moved “In”. There are different treatments that differ in the number

of times the game had been repeated, when questions for belief elicitation were asked

during the repetitions, and in the incentive structure.14

Table 9: Choices in Evdokimov and Rustichini (2016)
Strong level-k k-level extensive-form

(with uniform level-1 belief system) rationalizability

Level Player 1 Player 2 Player 1 Player 2

1 62% 22% 98% 100%
2 62% 22% 98% 78%
3 62% 22% 36% 78%

14Unfortunately, we do not have the belief elicitation data.
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Focusing on the behavioral data from all of their treatments, we classify individual

choices as in Table 9. Strong level-k thinking with uniform level-1 belief systems predicts

that player 1 always chooses Out at levels above 1, which is consistent with 62% of the

choices made by the participants. In terms of player 2’s choice, the strong level-k with

uniform level-1 belief systems predicts that player 2 will select R, which is consistent

with only 22% of the choices. In contrast, the k-level strong rationalizability fits 78% of

the choices made by player 2. However, the strong rationalizability only fits 36% of the

player 1’s choices. While the percentages differ from the corresponding percentages for

the Balkenborg-Nagel game in Table 8, the stylized fact from both experiments is that

strong level-k with uniform beliefs fits better to the behavior of player 1 while strong

rationalizability fits better to player 2. Again, we conclude that while the uniform beliefs

assumptions seems largely consistent with the behavior of participants in the role of player

1, it is not a descriptive assumption for the majority of participants in the role of player

2. By fitting both strong level-k and level-k strong rationalizability to the data, we can

draw these conclusions about the role of uniform level-1 beliefs given comparable levels of

reasoning and the ability to do forward induction. We speculate that the uniform beliefs

assumptions works for player 1 because the principle of insufficient reason is perhaps

natural when a player has no prior experience with another player. In contrast, player 2

moves only after having observed some behavior of player 1, in which case it is not clear

why he should still use the principle of insufficient reason.

5 Closing Remarks

We extended normal-form level-k thinking to games in extensive form by allowing for

updating of beliefs during the play. Players can now use it these updated beliefs to make

predictions over opponents’ future play. In no way we want to suggest that strong level-k

thinking will be the ultimate behavioral solution concept that fits the data in games in

extensive form better than other solution concepts. Quite to the contrary, we expect

that in abstract choice environments some subjects in experiments may lack the ability

to meaningfully draw conclusions from opponents’ past play for predictions of opponents’

future play. This ability is like a second dimension of sophistication that is distinct from

(but interacts with) the binding cognitive bound. Our hope is that by applying strong

level-k thinking to experimental games and comparing it to normal-form level-k thinking,

we can learn about the prevalence of this second dimension of strategic sophistication.

We contrasted strong level-k thinking with other existing iterative solutions concepts
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to game in extensive forms in order to emphasize that there is more than one way to

approach levels of thinking in games in extensive form. Unfortunately, strong rational-

izability and strong ∆-rationalizability have been understudied in experimental game

theory probably because there is no text-book treatment available of these solution con-

cepts. However, similar to Kneeland (2015)’s demonstration that normal-form level-k

rationalizability is an interesting behavioral solution concept for the empirical study of

levels of reasoning, we hope that smart experiments on level-k strong rationalizability

will emerge.

The analysis of strong level-k thinking could be taken further in both theoretical

and experimental directions. For instance, it might be possible to extend the detailed

epistemic analysis of the differences between normal-form level-k thinking and k-level

rationalizability by Brandenburger, Friedenberg, and Kneeland (2020) to strong level-k

thinking and k-level strong rationalizability. Moreover, while more existing data sets on

experimental games in extensive form could be analyzed with strong level-k thinking,

we currently think about new experiments on games in extensive form tailor-made for

testing strong level-k thinking.

We compared strong level-k thinking with other level-k thinking solution concepts

to games such as normal-form level-k, k-level strong rationalizability/extensive-form ra-

tionalizability, k-level iterated admissibility, k-level backward rationalizability, backward

level-k, and k-depth backward induction. Another useful comparison would be with the

concurrent extension of the cognitive hierarchy model by Lin and Palfrey (2023). An-

other approach would extend dominance-k to games in extensive form. Costa-Gomes,

Crawford, and Broseta (2001) consider beside the level-k model in games in normal form

also a dominance-k model defined as follows: There are k rounds of elimination of actions

dominated by a pure actions and a best response to a uniform belief over the remaining

actions. This differs from k-level rationalizability in two respects. First, in its character-

ization of k-level rationalizability by k-iterated elimination of strictly dominated actions

(Pearce, 1984), an action can also be eliminated when it is dominated by a mixed action.

Second, k-level rationalizability does not assume best response to a uniform belief over

remaining actions but allows best responses to any belief over remaining actions. The

dominance-k model of Costa-Gomes, Crawford, and Broseta (2001) could also be ex-

tended to games in extensive form using ideas from iterated elimination of conditionally

dominated strategies from Shimoji and Watson (1998). A strategy is conditionally dom-

inated if it is dominated on the subspace of strategy profiles reaching an information set.

With this idea, it is now straightforward to define the notion of conditional dominance-
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k by first k-rounds elimination of strategies that are conditionally dominated by pure

strategies and then best responses to uniform belief systems over remaining strategies

at every information set. Yet another interesting approach could be based on forward

induction in a backward inductive manner. Recently, Meier and Perea (2023) defined

and characterized a version of rationalizability in extensive form featuring both forward

and backward induction but giving priority to backward induction. It would possible

to consider a version of it with fixed initial belief systems in the spirit of our notions of

strong level-k thinking and backward level-k thinking.

Proofs

Proof of Proposition 1

We prove constructively using induction on the levels.

Base Case: For all i ∈ N , since β1
i ∈ B1

i , L
1
i (β

1) ⊆ R1
i .

Inductive Hypothesis: For all i ∈ N and 1 ≤ ℓ < k, Lℓ
i(β

1) ⊆ Rℓ
i .

Inductive Step: We need to show that for every i ∈ N , Lk
i (β

1) ⊆ Rk
i . Pick any ai ∈

Lk
i (β

1). By Definition 1, there exists a belief βi ∈ ∆(A−i) that is certain of Lk−1
−i (β1) such

that ai is rational with βi. By the induction hypothesis, such a belief βi is also certain

of Rk−1
−i . Hence, ai ∈ Rk

−i. □

Proof of Proposition 2

Since the game is finite, there exists K such that for all k ≥ K, R∞
i = Rk

i for all i ∈ N .

For any ai ∈ R∞
i there exists βi ∈ ∆(A−i) such that βi(R

K
−i) = 1 and ai is rational

for player i given βi. Since this holds for every player i ∈ N , set β1 = β = (βi)i∈N . Then

ai ∈ L1
i (β

1). □

Proof of Proposition 3

For k = 1, note that for any player i ∈ N , if a strategy is rational with respect to a profile

of full-support beliefs β1
i in the associated normal-form that is consistent with the profile

of full-support belief systems β̄1, then it is rational with respect to β̄1
i (Ii) conditional on

reaching information set Ii. This is due to the fact that conditioning does not alter the

relative likelihoods of opponent’s strategies reaching the information set. Conversely, if a
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strategy is rational with respect to a profile of system of full-support beliefs β̄1 at every

information set Ii ∈ Ii, then is also rational with respect to the profile of full-support

beliefs β1 in the associated normal-form that is consistent with β̄1. □

Proof of Proposition 4

We prove by induction on the levels.

Base Case: By Proposition 3, L̄1
i (β̄

1) = L1
i (β

1) for all i ∈ N . Thus, L̄1(β̄1) = L1(β1) and

Z(L̄1(β̄1)) = Z(L1(β1)).

Inductive Hypothesis: For any ℓ with 1 ≤ ℓ < k, Z(L̄ℓ(β̄1)) ⊆ Z(Lℓ(β1)).

Inductive Step: We need to show Z(L̄k(β̄1)) ⊆ Z(Lk(β1)). Let z ∈ Z(L̄k(β̄1)).

Let N(z) ⊆ N be the set of players i ∈ N for whom an information set Ii is reached

along the path to z. Since the game in extensive form has perfect recall, each player’s

set of information sets form an arborescence, i.e., there is a partial order on the set of

information sets that orders information sets by precedence. Since it is a partial order,

it may have upper bounds, i.e., initial information sets. Yet, along each path, there is a

unique upper bound. For any i ∈ N(z), let Ii denote this first information set of i along

the path to z.

Since z ∈ Z(L̄k(β̄1)), there exists s ∈ L̄k(β̄1) with z(s) = z. For any i ∈ N(z(s)),

there exists β̄i ∈ B̄k
i (β̄

1) such that β̄i(Ii)(L̄
k−1
−i (β̄1)) = 1 and si is rational at Ii with β̄i(Ii)

(with si being the i-component of strategy profile s).

For any nonempty Z ′ ⊆ Z, with some slight abuse of notation denote by S−i(Z
′) =

{s−i ∈ S−i : z(si, s−i) ∈ Z ′, si ∈ Si}. Note that for any nonempty Z ′, Z ′′ ⊆ Z with Z ′ ⊆
Z ′′ implies S−i(Z

′) ⊆ S−i(Z
′′). The induction hypothesis, Z(L̄k−1(β̄1)) ⊆ Z(Lk−1(β1)),

implies Z(Si × L̄k−1
−i (β̄1)) ⊆ Z(Si × Lk−1

−i (β1)). Hence, we have S−i(Z(Si × L̄k−1
−i (β̄1))) ⊆

S−i(Z(Si × Lk−1
−i (β1))).

Note that for any nonempty S ′
−i ⊆ S−i, S−i(Z(Si×S ′

−i)) ⊇ S ′
−i. Thus, β̄i(Ii)(L̄

k−1
−i (β̄1)) =

1 implies β̄i(Ii)(S−i(Z(Si × L̄k−1
−i (β̄1)))) = 1 and β̄i(Ii)(S−i(Z(Si × Lk−1

−i (β1)))) = 1.

Define βi = β̄i(Ii). Note that opponents strategies in S−i(Z(Si×Lk−1
−i (β1)))\Lk−1

−i (β1)

do not affect terminal histories, i.e., Z(Si × S−i(Z(Si × Lk−1
−i (β1)))) ⊆ Z(Si × Lk−1

−i (β1)).

To see this, consider any z(s̃1, s̃−i) ∈ Z(Si × S−i(Z(Si × Lk−1
−i (β1)))) with s̃i ∈ Si and

s̃−i ∈ S−i(Z(Si×Lk−1
−i (β1))). Now, since s̃−i ∈ S−i(Z(Si×Lk−1

−i (β1))), there exists ŝi ∈ Si

such that z(ŝi, s̃−i) ∈ Z(Si × Lk−1
−i (β1)). Because this holds for any ŝi ∈ Si, we can set

ŝi = s̃i. Then z(s̃i, s̃−i) ∈ Z(Si ∈ Lk−1
−i (β1)), which is exactly what we needed to show.
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We conclude that βi(· | Lk−1
−i (β1)) yields the same expected utilities from strategies

as βi, where βi(· | Lk−1
−i (β1)) is βi conditional on Lk−1

−i (β1). Moreover, βi(· | Lk−1
−i (β1)) ∈

Bk
i (β

1).

Since si is rational with β̄i(Ii) at Ii, it is also rational with βi(· | Lk−1
−i (β1)). Thus,

si ∈ Lk
i (β

1).

This holds for all i ∈ N(z(s)). Since strategies of any other player j ∈ N \N(z(s)) do

not affect reaching z(s), we can choose any s′j ∈ Lk
j (β

1). Note that z
(
(si)i∈N(z(s)), (s

′
j)j∈N\N(z(s))

)
=

z(s). Since z
(
(si)i∈N(z(s)), (s

′
j)j∈N\N(z(s))

)
∈ Z(Lk(β1)), we have z(s) ∈ Z(Lk(β1)). □

Proof of Remark 5

For every player i ∈ I, we have that strategy si ∈ L⃗1
i (β̄

1) if and only if si|Ii is rational at

Ii given β̄1
i (Ii) for every Ii ∈ Ii. This is implies that si is rational at Ii given β̄1

i (Ii) for

every Ii ∈ Ii. Thus, si ∈ L1
i (β̄

1). The converse does not hold necessarily since we can

have the case that si does not reach Ii. In such a case si is trivially rational at Ii but

si|Ii may not be rational at Ii. However, fix an backward level-1 outcome. Consider the

path of information sets towards this outcome. Since we assumed that information sets

in the game in extensive-form are ordered by a precedence relation, this is well-defined.

Consider a profile of strategies which allows the outcome to be reached. Then they also

allow to reach any information set on the path towards the outcome. Along any such

information set Ii we have that si is rational at Ii given β̄1
i (Ii) if and only if si|Ii is rational

at Ii given β̄1
i (Ii). □
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