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1 Introduction

Recent years witnessed the extension of game theory to unawareness. The challenge was to in-

vent formal tools for modeling asymmetric lack of conception, beliefs about other players’ lack

of conception etc. It goes beyond modeling standard asymmetric lack of information. Several

frameworks have been proposed both for static games (Meier and Schipper, 2014, Feinberg,

2021, Sadzik, 2021, Perea, 2022) and dynamic games (Halpern and Rego, 2014, Heifetz, Meier,

and Schipper, 2013, 2021, Feinberg, 2021, Grant and Quiggin, 2013, Li, 2008, Schipper, 2021,

2019, Guarino, 2020); see Schipper (2014) for a non-technical review. These tools lead already

to interesting applications in contract theory (Filiz-Ozbay, 2012, von Thadden and Zhao, 2012,

Auster, 2013, Auster and Pavoni, 2024, Francetich and Schipper, 2023, Pram and Schipper,

2024), political economy (Schipper and Woo, 2019), and finance (Schipper and Zhou, 2021).1

Developing sensible solution concepts for games with unawareness has been another challenge.

The problem with familiar equilibrium concepts is that a player’s awareness may change endoge-

nously during the course of play making the equilibrium assumption of an ex ante ready-made

behavioral convention often implausible; see Schipper (2021) for an extensive discussion. As

a remedy, rationalizability concepts have been proposed (Heifetz, Meier, and Schipper, 2013,

2021) and successfully used in applications (Schipper and Woo, 2019, Francetich and Schipper,

2023). It is well-known that rationalizability in the normal form is equivalent to the iterated

elimination of strictly dominated strategies (Pearce, 1984). A similar result holds for strong

rationalizability and iterated elimination of conditional strictly dominated strategies (Shimoji

and Watson, 1998, Chen and Micali, 2013).2 Such a characterization might be useful for ap-

plications as it is often easier to eliminate strategies by dominance arguments than eliminating

beliefs over opponents’ strategy profiles especially in games with more than two players.3 This

paper studies the connection of rationalizability and dominance in games with unawareness.

We focus on dynamic games with unawareness (Heifetz, Meier, and Schipper, 2013) because,

as already mentioned, the challenge under unawareness is the endogenous change of players’

awareness throughout the play. This elevates the time structure of the strategic interaction

embodied by the generalized extensive form. It makes an equivalence between rationalizability

notions and iterated dominance notions more surprising as the latter are typically applied to

the associated normal form while the former apply to the extensive form. Arguably, the normal

form “folds” the time structure. Nevertheless, Kohlberg and Mertens (1986) argued that for

standard games without unawareness, the normal form contains all strategically relevant infor-

mation. Could a similar claim be made for strategic situations in which the very perceptions

1See http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm for a bibliography on unawareness.
2Strong rationalizability has also been called extensive-form rationalizability in the literature. It has been

introduced by Pearce (1984) and Battigalli (1997). More specifically, we refer to what have been called extensive-

form correlated rationalizability because for n-player games with n > 2 we allow any player to believe in corre-

lations among her opponents’ strategies.
3While finding both undominated strategies and best responses involve linear programming problems, the

dimensionalities of these linear programming problems differ. For undominated strategies, we need to find

mixtures over the player’s own strategies while for rationalizability, we need to find mixtures over opponents’

strategy profiles. With more than two players, the latter problem involves more computations.
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of the situation by players change endogenously in ways that ex ante are not even anticipated

by all players? To answer such a question in the context of rationalizability notions for games

in extensive form with unawareness, we first need to define the appropriate notion of normal

form associated with dynamic games with unawareness. For standard dynamic games with-

out unawareness, the associated normal form features strategies of the players as primitives.

A strategy assigns an action to each information set of the player. Dynamic games with un-

awareness consist of a forest of partially ordered trees, each representing a partial view of the

objectively feasible sequences of moves. A player’s information set at a node of a tree may

consist of nodes of a “less expressive” tree. A player may not be aware of all strategies ex

ante and may discover further actions during the course of the play. Yet, for any tree, there

is a well-defined set of partial strategies, namely assignments of actions to information sets of

the player in the tree and any less expressive tree. The associated generalized normal form

consists now of a partially ordered set of normal forms, indexed by trees, taking the sets of

partial strategies as primitives.

With the definition of associated generalized normal form in place, we can characterize

strong rationalizability of Pearce (1984) and Battigalli (1997) extended to unawareness in

Heifetz, Meier, and Schipper (2013) by iterated elimination of conditionally strictly dominated

strategies similar to Shimoji and Watson (1998) for standard games without unawareness. Yet,

the non-trivial twist is that partial strategies eliminated in less expressive normal forms must

trigger also the elimination of any strategies in more expressive normal forms that they are

part of. This is because strategies in more expressive normal forms also specify actions in less

expressive trees. A player with an awareness level given by the less expressive tree may con-

sider the corresponding partial strategy to be dominated. Consequently, opponents with higher

awareness levels realize that their rational but unaware opponent will not play such a strategy

and thus eliminate this player’s strategy in their more expressive normal form. We illustrate

this with a simple example in the next section.

In dynamic games with unawareness, strong rationalizability may involve imprudent behav-

ior. It may be rationalizable for a player to make an opponent aware of one of the opponent’s

actions that is extremely bad for the player because the player is allowed to believe that the

opponent will not take this action. As a remedy, Heifetz, Meier, and Schipper (2021) intro-

duced a version of strong rationalizability using the idea of prudence or caution that proved

to be instrumental in applications such as disclosure of verifiable information (Heifetz, Meier,

and Schipper, 2013, Li and Schipper, 2019, 2020), electoral campaigning (Schipper and Woo,

2019), and screening under unawareness (Francetich and Schipper, 2023). This solution con-

cept, called prudent rationalizability, could be viewed as an extensive-form analogue of iterated

admissibility in dynamic games with unawareness. While iterated admissibility is known to

be a refinement of rationalizability in static games, prudent rationalizability is surprisingly not

always a refinement of strong rationalizability in terms of strategies (not even for standard

dynamic games without unawareness); see Heifetz, Meier, and Schipper (2021) for examples.4

4More recently, results by Catonini (2022) imply that prudent rationalizability is not even an outcome refine-

ment of strong rationalizability in standard games.
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In this paper, we characterize prudent rationalizability in dynamic games with unawareness by

iterated elimination of conditionally weakly dominated strategies in the associated generalized

normal form. Again, the twist is that (partial) strategies eliminated in less expressive normal

forms must trigger also the elimination of any strategies in more expressive normal forms that

they are part of.

One could argue that the characterization of strong rationalizability (resp., prudent ratio-

nalizability) by iterated conditional strict (resp., weak) dominance falls short of showing that

one can capture sophisticated extensive-form reasoning in the normal form. This is because

we condition on normal-form information sets corresponding to information sets of a given dy-

namic game with unawareness. In our context, a relevant normal-form information set consists

of the subset of partial strategy profiles inducing a path through an information set in a given

dynamic game with unawareness. Thus, we implicitly make use of extensive-form structures

in the definition of iterated conditional strict (resp., weak) dominance when conditioning on

normal-form information sets. In contrast, for standard games without unawareness, Shimoji

and Watson (1998) show that generically they can capture sophisticated reasoning embodied

in strong rationalizability by iterated elimination of conditionally strictly dominated strategies

in the normal form using more generally any normal-form information set, i.e., normal-form

information sets for which there exists some game in extensive form with an information set

that corresponds to it (Mailath, Samuelson, and Swinkels, 1993). Such a result is elusive for

games with unawareness since normal-form information sets must also encode awareness that

crucially depends on the extensive form. A potential remedy would be to use a different solu-

tion concept that does not make use of the extensive-form structure even though it somehow

captures sophisticated reasoning in the extensive form. For standard games such a solution

concept is iterated admissibility. Indeed, Brandenburger and Friedenberg (2011) show that

for standard dynamic games with perfect recall, iterated admissibility coincides with iterated

conditional weak dominance at every level. Thus, by an inductive application of Lemma 4

of Pearce (1984), in standard games without unawareness, prudent rationalizability coincides

with iterated admissibility in the associated normal form at every level/iteration. However,

as we demonstrate, for dynamic games with unawareness the appropriate definition of iterated

admissibility must make use of information sets as well. This is due to the fact that infor-

mation sets in dynamic games with unawareness do not only model a player’s information in

the standard sense but also her awareness. The player’s awareness of strategies is crucial for

admissibility since for instance at the first level, a player cautiously considers possible any of

the opponents’ strategies only to the extent that she is aware of them. We define iterated

admissibility for games with unawareness and show that in dynamic games with unawareness,

iterated admissibility is conceptually closer to iterated conditional weak dominance because

it cannot be independent of the awareness encoded in information sets of the extensive form.

We show that prudent rationalizability is characterized by iterated admissibility in games with

unawareness.

Pram and Schipper (2023) use insights from the current paper to study efficient implemen-

tation in conditional weak dominant equilibrium in mechanisms under unawareness. In such
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settings, dynamic mechanisms become crucial as the awareness contained in the agents’ reports

is pooled by the mediator and communicated back to all agents who subsequently elaborate on

their previously reported types at the pooled awareness level. We extend dominant strategy

implementation of VCG mechanisms in the standard setting to conditional dominant strategy

implementation of dynamic direct elaboration VCG mechanisms under unawareness. We use

the insight from the current paper that admissibility in games with unawareness must still

condition on the awareness embodied in information sets. It necessitates the use of conditional

dominance under unawareness while just unconditional dominance would suffice in standard

dynamic mechanism.

The paper is organized as follows: The next section provides an illustrative example. Sec-

tion 3 recalls definitions of dynamic games with unawareness and presents the novel notion of

associated generalized normal form. Section 4 shows the characterization of strong rationaliz-

ability by iterated elimination of conditional strictly dominated strategies. The characterization

of prudent rationalizability by iterated elimination of conditional weakly dominated strategies

is presented in Section 5. Finally, we present the notion of iterated admissibility and show that

it characterizes prudent rationalizability in Section 6. Proofs are relegated to an appendix.

2 Introductory Example

The purpose of the example is to illustrate the novel notion of generalized normal form associ-

ated with dynamic games with unawareness and the subtleties of the characterization of strong

rationalizability by iterated conditional dominance in games with unawareness. In particular,

we contrast it to standard games. To this extent, we begin with a standard game given by Fig-

ure 1. There are two players, Rowena and Colin. Rowena moves first deciding between actions

Figure 1: Example without Unawareness

n and g. This is followed by a simultaneous move game. The implication of Rowena’s action g

is that Colin has all three actions B, S, and M . Otherwise, if Rowena takes action n, Colin is
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just left with actions B and S in the simultaneous game that follows. That is, Rowena’s initial

move affects Colin’s availability of action M .5 The information sets of players are indicated by

the green and purple rectangles. The green rectangle at the root of the tree belongs to Rowena.

The purple rectangles indicate information sets of both players.

Strong rationalizability is almost trivial in this example as the procedure concludes already

after the first level. Any of Rowena’s strategy that does not prescribe action M after action n

is not strongly rationalizable as there is no belief over Colin’s strategies conditional on reaching

the subgame after n for which any other action than M is rational. Similarly, any of Rowena’s

strategy that does not prescribe action M after action g is not strongly rationalizable. This

leaves strategies {nMB,nMS, nMM, gBM, gSM, gMM} for Rowena. For Colin, any strategy

that does not prescribe M in the subgame after g is not strongly rationalizable since there is

no belief of Colin over Rowena’s strategies conditional on g that would make actions B or S

rational in the subgame after g. In contrast, both B and S can be rationalized by Colin after

n with a belief that puts sufficiently high probability on Rowena playing B or S, respectively,

after n. This leaves strategies {BM,SM} for Colin. At the second level, both players believe

in the opponent’s first-level strongly rationalizable strategies. In this example it does not lead

to further eliminations. However, the example is sufficiently rich to demonstrate the difference

between strict dominance and conditional strict dominance.

Figure 2 presents the normal form associated with the standard dynamic game of Figure 1.

The rows represent Rowena’s strategies. E.g., nBS denotes the strategy that prescribes n at

her initial information, B at her information set after n, and S at her information set after

g. The strategies of Colin are represented by columns. E.g., BS is the strategy that would

require Colin to play B at his information set after n and S at his information set after g. We

also indicate the normal-form information sets by rectangles. A normal-form information set

consists of the subset of strategy profiles inducing a path through an information set in the

dynamic game. E.g., the entire strategy space is consistent with Rowena’s first information set.

That is, the green information set in Figure 1 corresponds to the green rectangle in Figure 2.

We indicate strategies eliminated by conditional strict dominance by dashed lines. Notewor-

thy, strategies {BB,BS, SB, SS} of Colin are eliminated because they are strictly dominated

conditional on the normal-form information set at the bottom of the figure, which corresponds

to his information set after g. They would not be unconditionally strictly dominated. This

illustrates how conditional strict dominance goes beyond (unconditional) strict dominance. We

also observe that for both players, strong rationalizable strategies correspond exactly to the

strategies eliminated by elimination of strictly conditional dominated strategies. This is just

an example of the general result by Shimoji and Watson (1998).

So far, in this example, both solution concepts are almost trivial as the procedure concludes

after one round of elimination. The point, beside demonstrating conditional dominance, is that

in an analogous game with Colin’s unawareness of actionM (rather than unavailability of action

M), the solution concepts are more interesting. Consider the dynamic game with unawareness

5While the names of actions and the structure bears some similarity with a game discussed in Heifetz, Meier,

and Schipper (2013), the payoffs differ.
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Figure 2: Associated Normal Form

of Figure 3. There are two “trees”, the upper tree T and the lower “tree” T ′. The upper tree

looks equivalent to the tree in Figure 1. However, here action t of Rowena is interpreted as

raising Colin’s awareness of action M . This is indicated by the purple information after t, an

information set that belongs to both players. If Rowena takes action n instead, then Colin

remains unaware of action M . This is indicated by his information set after n, which is not on

T but on the lower “tree” T ′ (see the blue arrow). The lower “tree” is just a simultaneous move

game between Rowena and Colin with actions B and S. There is no mentioning of M . Not

even action n of not telling Colin about M is part of the description of the strategic situation

in the lower tree T ′, indicating that when a player considers the tree T ′, (s)he is unaware of

M . The green information set after action n belongs only to Rowena. Colin’s information set

after n is the purple information at T ′. This purple information set is also the information set

of both players in the lower “partial” game. The example illustrates two important features
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Figure 3: Example of a Dynamic Game with Unawareness

of dynamic games with unawareness (Heifetz, Meier, and Schipper, 2013). First, there is an

ordered set of trees. In the example, T is more expressive than T ′. Second, an information set

of a player after a history in one tree may consist of histories in a less expressive tree. The latter

feature models unawareness of that player of some action in the tree that is not represented in

the less expressive tree. Colin’s information set after n in T consists only of nodes of the less

expressive tree T ′.

In this example, strong rationalizability concludes after two rounds/levels. At the first level,

any of Rowena’s strategy that does not prescribeM after n is not strongly rationalizable because

there is no belief over Colin’s strategies conditional on n that would let B and S after n yield a

higher expected payoff than M . An analogous argument holds for strategies with initial action

t. Thus, at the first level, only strategies in the set {nM ∗ ∗, t ∗M∗} are strongly rationalizable

for Rowena where the first component refers to her actions n and t at her initial information

set, the second component refers to her action in the simultaneous move game after n, the third

component specifies her action in the simultaneous game after t, and the fourth component

belongs to the simultaneous move game making up the lower “tree” T ′. (We indicate by “∗”
that the action at the corresponding information set can be arbitrary.) For Colin, the only first

level strongly rationalizable strategy is MB where the first component refers to his action at

his information set in T and the second component specifies his action at his information set

of “tree” T ′.
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At the second level, both players can take into account first-level strongly rationalizable

strategies of the the opponent. Hence, upon reaching the information set after t, Rowena is

certain that Colin plays M , while when she selects n, Colin’s action is B because he remains

unaware of M and perceives the strategic situation to be given by T ′. Colin’s action B in

T ′ induces the action B in the simultaneous move game after n. Thus, with any such belief,

Rowena’s expected payoff is largest when she plays a strategy with n followed by M . Also,

in the lower tree T ′, the unaware incarnation of Rowena is certain that Colin plays B. Thus,

her best response is B in T ′. Hence, the set of second-level strongly rationalizable strategies of

Rowena is {nM ∗B}. For Colin, it remains MB. No further changes occur at higher levels.

To derive the strategies surviving iterated elimination of strictly dominated strategies, we

first need to consider the associated normal form. For standard dynamic games, the associated

game in normal form is the game in which the players’ strategies of the dynamic game are

the primitives. A strategy assigns to each of the player’s information set an action. Since in

a standard dynamic game every player is aware of all actions, in principle she can “control”

her entire strategy ex ante. In dynamic games with unawareness, for each information set

of a player her strategy specifies – from the point of view of the modeler – what the player

would do if and when that information set of hers is ever reached. In this sense, a player does

not necessarily “own” her full strategy at the beginning of the game, because she might not be

initially aware of all of her information sets. For instance, in Figure 3 a strategy of Colin assigns

an action to the information set in the upper tree T and an action to the information set in the

lower tree T ′. A strategy for Rowena assigns an action to the root of the upper tree T , the left

information set in upper tree, the right information set in upper tree, and the information set in

the lower tree T ′. When players face the game in the lower tree T ′, they can only choose partial

strategies, i.e., strategies restricted to the information set in T ′ because they are unaware of

the upper tree T . The set of T ′-partial strategies is just {B,S} for any player. With the notion

of strategy and partial strategy, we can define the associated generalized normal form as usual

by taking the strategies and partial strategies as primitives. When we take partial strategies

in T ′ as primitives, we get the normal form at the bottom of Figure 4. When we take entire

strategies as primitives, we obtain the upper normal form in Figure 4. That is, while a dynamic

game with unawareness consists of a partially ordered set of trees, its generalized associated

normal form consists of a partially ordered set of normal forms. The operation of deriving

the associated generalized normal form from a game in extensive form with unawareness is

analogous to standard games.

We also indicated the normal-form information sets in Figure 4 using the same color coding

as for the corresponding information sets in Figure 3. Green belongs to Rowena only, purple

to both players, and the blue arrow indicates that when Rowena chooses any strategy with

action n, Colin remains unaware of M and his information set is in the lower tree T ′. Here,

the normal-form information set after Rowena chooses action n in T is the entire normal form

associated with the lower tree T ′.

With the dashed lines and the numbers beside them, we indicate the order of iterated

elimination of conditional strictly dominated strategies. However, in games with unawareness
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Figure 4: Associated Generalized Normal-form Game of the Example

10



the algorithm becomes more subtle since conditional dominance of a T ′-partial strategy implies

that all strategies with the same components (i.e., actions) are deleted as well. In the first round,

this is the case for Colin where deletion of S in the game T ′ implies that all strategies with

S as the second component in the game T are eliminated as well. In particular, this applies

to strategy MS that is not otherwise conditionally strictly dominated in the upper normal

form associated with T .6 We indicate this with dashed arrows. When considering Colin’s

play, Rowena anticipates in T that Colin will not play MS because S is strictly dominated for

him in T ′. A similar case arises for Colin in the second round. After two rounds, the process

stops. The remaining strategies coincide exactly with the strong rationalizable strategies. More

precisely, the strategies that remain after each round of elimination of conditionally strictly

dominated strategies are precisely the strategies that remain at the corresponding level of

strong rationalizability. In Section 4, we show that this is generally the case.

3 Dynamic Games with Unawareness

In this section we outline dynamic games with unawareness as introduced by Heifetz, Meier,

and Schipper (2013).7 To define a dynamic game Γ, consider first, as a building block, a finite

perfect information game with a set of players I, a set of decision nodes N0, active players In
at node n with finite action sets Ai

n of player i ∈ In (for n ∈ N0), and terminal nodes Z0 with a

payoff vector (pzi )i∈I ∈ RI for the players for every z ∈ Z0. The nodes N̄0 = N0 ∪Z0 constitute

a tree.8

Consider now a family T of subtrees of N̄0, partially ordered (⪯) by inclusion. One of the

trees T1 ∈ T is meant to represent the modeler’s view of the paths of play that are objectively

feasible; each other tree represents the feasible paths of play as subjectively viewed by some

player at some node at one of the trees.

In each tree T ∈ T, denote by nT the copy in T of the node n ∈ N̄0 whenever the copy of

n is part of the tree T . However, in what follows we will typically avoid the subscript T when

no confusion can arise.

Denote by NT
i the set of nodes in which player i ∈ I is active in the tree T ∈ T. We require

that all the terminal nodes in each tree T ∈ T are copies of nodes in Z0. Moreover, if for two

6Again, we emphasize that while our example discussed here bears similarities with examples discussed in

Heifetz, Meier, and Schipper (2013), the payoffs differ. The reason is two-fold: First, we want illustrate that a

partial strategy, which is conditionally dominated in a lower normal form, triggers deletion of all strategies in the

upper normal form that feature the partial strategy as a component. Second, while in the example of Heifetz,

Meier, and Schipper (2013), strong rationalizability in a game with unavailability of an action yields a sharper

prediction than in an analogous game with unawareness of that action, the opposite is the case in the example

discussed here. We conclude that strong rationalizability/iterated conditional strict dominance with unawareness

of actions differs from unavailability of actions but one does not necessarily yield a sharper prediction than the

other.
7See also Heifetz, Meier, and Schipper (2021), Schipper (2021), and Schipper (2019).
8Heifetz, Meier, and Schipper (2013) considered also moves of nature which we do not explicitly consider here.

Note that we can treat nature just like another player who is indifferent among all terminal nodes.
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decision nodes n, n′ ∈ NT
i (i.e., i ∈ In ∩ In′) it is the case that Ai

n ∩Ai
n′ ̸= ∅, then Ai

n = Ai
n′ .

Denote by N the union of all decision nodes in all trees T ∈ T, by Z the union of terminal

nodes, and by N̄ = N ∪ Z. (Copies nT of a given node n in different subtrees T are distinct

from one another, so that N̄ is a disjoint union of sets of nodes.) For a node n ∈ N̄ we denote

by Tn the tree containing n.

For each decision node n ∈ N and each active player i ∈ In, the information set is denoted

by πi (n). It is the set of nodes that the player i considers as possible at n. The information

set πi (n) will be in a tree different from tree Tn if at n the player is unaware of some of the

paths in Tn, and rather envisages the dynamic interaction as taking place in the tree containing

πi (n). We impose properties analogous to standard dynamic games with perfect recall; see

Appendix A and discussions in Heifetz, Meier, and Schipper (2013) and Schipper (2021, 2019).

We denote by Hi the set of i’s information sets in all trees. For any information set hi ∈ Hi,

we denote by Thi
the tree containing hi. For two information sets hi, h

′
i in a given tree T, we

say that hi precedes h
′
i (or that h

′
i succeeds hi) if for every n′ ∈ h′i there is a path n, ..., n′ such

that n ∈ hi. We denote the precedence relation by hi ⇝ h′i.

Standard properties imply that if n′, n′′ ∈ hi where hi = πi (n) is an information set, then

Ai
n′ = Ai

n′′ (see Heifetz, Meier, and Schipper, 2013, Remark 1, for details). Thus, if n ∈ hi we

write also Ahi
for Ai

n.

Perfect recall guarantees that with the precedence relation ⇝ player i’s information sets

Hi form an arborescence: For every information set h′i ∈ Hi, the information sets preceding it

{hi ∈ Hi : hi ⇝ h′i} are totally ordered by ⇝.

For trees T, T ′ ∈ T we denote T ↣ T ′ whenever for some node n ∈ T and some player i ∈ In
it is the case that πi (n) ⊆ T ′. Denote by ↪→ the transitive closure of ↣. That is, T ↪→ T ′′ if

and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying T ↣ T ′↣ · · ·↣ T ′′.

A dynamic game with unawareness Γ consists of a partially ordered set T of subtrees of a

tree N̄0 along with information sets πi (n) for every n ∈ T , T ∈ T and i ∈ In, satisfying all

properties imposed by Heifetz, Meier, and Schipper (2013); see Appendix A.

For every tree T ∈ T, the T -partial game is the partially ordered set of trees including T

and all trees T ′ in Γ satisfying T ↪→ T ′, with information sets as defined in Γ. A T -partial game

is a dynamic game with unawareness, i.e., it satisfies the same properties.

We denote by HT
i the set of i’s information sets in the T -partial game.

A (pure) strategy

si ∈ Si ≡
∏

hi∈Hi

Ahi

for player i specifies an action of player i at each of her information sets hi ∈ Hi. Denote by

S =
∏
j∈I

Sj

the set of strategy profiles in the dynamic game with unawareness.

12



If si = (ahi
)hi∈Hi

∈ Si, we denote by

si (hi) = ahi

the player’s action at the information set hi. If player i is active at node n, we say that at node

n the strategy prescribes to her the action si (πi (n)).

In dynamic games with unawareness, a strategy cannot be conceived as an ex ante plan of

action. If hi ⊆ T but T ⪰̸ T ′, then at hi player i may be interpreted as being unaware of her

information sets in HT ′
i \ HT

i . Thus, a strategy of player i should rather be viewed as a list

of answers to the hypothetical questions “what would the player do if hi were the set of nodes

she considered as possible?”, for hi ∈ Hi. However, there is no guarantee that such a question

about the information set h′i ∈ HT ′
i would even be meaningful to the player if it were asked at

a different information set hi ∈ HT
i when T ̸↪→ T ′. The answer should therefore be interpreted

as given by the modeler, as part of the description of the situation.

For a strategy si ∈ Si and a tree T ∈ T, we denote by sTi the strategy in the T -partial game

induced by si. If Ri ⊆ Si is a set of strategies of player i, denote by RT
i the set of strategies

induced by Ri in the T -partial game, The set of i’s strategies in the T -partial game is thus

denoted by ST
i . Denote by ST =

∏
j∈I S

T
j the set of strategy profiles in the T -partial game.

We say that a strategy profile s ∈ S allows the information set hi ∈ Hi if the players’

actions in Thi
lead to hi. (Notice that unlike in standard games, an information set πi(n) may

be contained in tree T ′ ̸= Tn. In such a case, si (πi (n)) induces an action to player i also in n

and not only in the nodes of πi(n).) We say that the strategy si ∈ Si allows the information

set hi if there is a strategy profile s−i ∈ S−i of the other players such that the strategy profile

(si, s−i) allows hi. Otherwise, we say that the information set hi is excluded by the strategy

si. Similarly, we say that the strategy profile s−i ∈ S−i allows the information set hi if there

exists a strategy si ∈ Si such that the strategy profile (si, s−i) allows hi. A strategy profile

(sj)j∈I allows a node n ∈ T if the players’ actions sj (πj (n
′))j∈I lead to n. Since we consider

only finite trees, (sj)j∈I allows an information set hi ∈ Hi if and if there is a node n ∈ hi such

that (sj)j∈I allows n.

As it is the case also in standard games, for every given node, a given strategy profile of the

players induces a terminal node in each tree, and hence a payoff for each player in the tree.

For an information set hi, let si/s̃
hi
i denote the strategy that is obtained by replacing actions

prescribed by si at the information set hi and its successors by actions prescribed by s̃i. The

strategy si/s̃
hi
i is called an hi-replacement of si.

3.1 Associated Generalized Normal Form

Consider a dynamic game with unawareness Γ with a partially ordered set of trees T. The

associated generalized normal form G is defined by ⟨I, ⟨(ST
i )i∈I , (u

T
i )i∈I⟩T∈T⟩, where I is the

set of players in Γ and ST
i is player i’s set of T -partial strategies. Recall that if player i is active

at node n ∈ T , then the strategy si ∈ ST
i assigns the action si(πi(n)) to node n. Hence, each

profile of strategies in ST induces a terminal node in T (even if there is a player active in T
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with no information set in T ). We let uTi (s) be the payoff associated with the terminal node

in T allowed by s ∈ ST . (Note that while strategy profiles in ST allow terminal nodes also in

trees T ′ ∈ T, T ↪→ T ′, uTi concerns payoffs in the tree T only.)

Recall that HT
i denotes player i’s set of information sets in the T -partial dynamic game. For

each hi ∈ HT
i , let S

T (hi) ⊆ ST be the subset of the T -partial strategy space containing T -partial

strategy profiles that allow the information set hi. Define also ST
i (hi) ⊆ ST

i and ST
−i (hi) ⊆ ST

−i

to be the set of player i’s T -partial strategies allowing hi and the set of profiles of the other

players’ T -partial strategies allowing hi respectively. For the entire game denote by S(hi) ⊆ S

the set of strategy profiles that allow hi. Similarly, Si (hi) ⊆ Si and S−i (hi) ⊆ S−i are the set

of player i’s strategies allowing hi and the set of profiles of the other players’ strategies allowing

hi respectively.

Given Γ and its associated generalized normal form G, define player i’s set of normal-form

information sets by

Xi = {SThi (hi) : hi ∈ Hi}.

These are the “normal-form versions” of information sets in the dynamic game with unaware-

ness. In the literature on standard games, normal-form information sets refer more generally

to subsets of the strategy space of a pure strategy reduced normal-form for which there exists

a game in extensive form with corresponding information sets (see Mailath, Samuelson, and

Swinkels, 1993). For our characterization, we are just interested in the normal-form versions of

information sets of a given dynamic game with unawareness.

For T ∈ T, any set Y ⊆ ST is called a restriction for player i (or an i-product set) of

T -partial strategies if Y = Yi × Y−i for some Yi ⊆ ST
i and Y−i ⊆ ST

−i. Clearly, a player’s

normal-form information set is a restriction for that player. I.e., if SThi (hi) is a normal-form

information set of player i, then it is a restriction for player i of Thi
-partial strategy profiles.

We say that Y ⊆ ST is a restriction of T -partial strategies if it is a restriction for every player.

4 Strong Rationalizability and Iterated Conditional Strict Dom-

inance

Strong rationalizability is an iterative procedure of refining players’ beliefs about opponents’

(partial) strategies. At each level ℓ of the procedure, each player forms beliefs at each of

her information sets about opponents’ strongly rationalizable (partial) ℓ − 1-level strategies

consistent with the information set. She keeps only strategies of her own that are sequentially

rational w.r.t. such systems of beliefs; this yields her set of strongly rationalizable ℓ-level

strategies.

In order to define the solution concept, we first define belief systems. A belief system of

player i ∈ I,

bi = (bi (hi))hi∈Hi
∈

∏
hi∈Hi

∆
(
S
Thi
−i

)
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is a profile of beliefs, a belief bi (hi) ∈ ∆
(
S
Thi
−i

)
about the other players’ strategies in the

Thi
-partial game, for each information set hi ∈ Hi, with the following properties:

• The belief bi (hi) assigns probability 1 to the set of strategy profiles of the other players

in the Thi
-partial game that allow hi.

• If hi precedes h′i (hi ⇝ h′i), then bi (h
′
i) is derived from bi (hi) by conditioning whenever

possible.

Denote by Bi the set of player i’s belief systems.

For a belief system bi ∈ Bi, a strategy si ∈ Si, and an information set hi ∈ Hi, define player

i’s expected payoff at hi as the expected payoff for player i in Thi
given bi (hi), the actions

prescribed by si at hi and its successors, and conditional on the fact that hi has been reached.9

We say that with the belief system bi and the strategy si player i is rational at the infor-

mation set hi ∈ Hi, if either si does not allow hi in the tree Thi
, or if si does allow hi in the

tree Thi
then there exists no hi-replacement of si which yields player i a higher expected payoff

in Thi
given the belief bi (hi) on the other players’ strategies S

Thi
−i .

The definition of strong rationalizability is stated next. It is the notion of strong rational-

izability of Pearce (1984) and Battigalli (1997) extended to dynamic games with unawareness

by Heifetz, Meier, and Schipper (2013). It has been also called extensive-form rationalizability

in the literature.

Definition 1 (Strong rationalizable strategies) Define, recursively, the following sequence

of belief systems and strategies of player i.

B1
i = Bi

S1
i =

{
si ∈ Si : ∃bi ∈ B1

i ∀hi ∈ Hi (si is rational with bi(hi))
}

...

Bk
i =

{
bi ∈ Bk−1

i : ∀hi ∈ Hi

((
S
k−1,Thi
−i ∩ S

Thi
−i (hi) ̸= ∅

)
=⇒

(
bi (hi)

(
S
k−1,Thi
−i

)
= 1

)) }
Sk
i =

{
si ∈ Si : ∃bi ∈ Bk

i ∀hi ∈ Hi (si is rational with bi(hi))
}

The set of player i’s strongly rationalizable strategies is

S∞
i =

∞⋂
k=1

Sk
i .

Heifetz, Meier, and Schipper (2013) proved that Sk
i ⊆ Sk−1

i for every k > 1. They also

proved that for every finite dynamic game with unawareness, the set of strong rationalizable

9Even if this condition is counterfactual due to the fact that the strategy si does not allow hi. The conditioning

is thus on the event that player i’s past actions (at the information sets preceding hi) have led to hi even if these

actions are distinct from those prescribed by si.
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strategies is non-empty. Battigalli and Siniscalchi (2002) characterized strong rationalizability

by common strong belief in rationality in standard games. This result has been extended to

dynamic games with unawareness by Guarino (2020).

Next, we turn to iterated conditional strict dominance. We say that si ∈ ST
i is strictly

dominated in a restriction Y ⊆ ST if si ∈ Yi, Y−i ̸= ∅, and there exists a mixed strategy

σi ∈ ∆(Yi) such that uTi (σi, s−i) > uTi (si, s−i) for all s−i ∈ Y−i.

Denote by S =
⋃

T∈T ST and Si =
⋃

T∈T ST
i .

For T ↪→ T ′ and a T -partial strategy si ∈ ST
i , we denote the T ′-partial strategy sT

′
i ∈ ST ′

i

induced by si. For s̃i ∈ ST ′
i , define

[s̃i] :=
⋃

T ↪→T ′

{si ∈ ST
i : sT

′
i = s̃i}.

That is, [s̃i] is the set of strategies in Si which at information sets hi ∈ HT ′
i prescribe the same

actions as strategy s̃i. Intuitively, [s̃i] is the set of T -partial strategies, for any T ∈ T with

T ↪→ T ′, that at information sets in the T ′-partial game are behaviorally indistinguishable from

the T ′-partial strategy s̃i.

Let (Y T )T∈T be a collection of restrictions, one for each T ∈ T. Define Y =
⋃

T∈T Y T . We

call this set the extended restriction.

Definition 2 (Conditional Strict Dominance) Given an extended restriction Y, we say

that si ∈ ST
i is conditionally strictly dominated on (Xi,Y) if there exists T ′ ∈ T with T ↪→ T ′

and s̃i ∈ ST ′
i with si ∈ [s̃i] such that s̃i is strictly dominated in X ∩ Y T ′

for some normal-form

information set X ∈ Xi, X ⊆ ST ′
.

This definition implies as a special case that si ∈ ST
i is conditionally strictly dominated

on (Xi,Y) if there exists a normal-form information set X ∈ Xi, X ⊆ ST such that si is

strictly dominated in X ∩ Y T . In particular, when there is just one tree like in standard games

without unawareness, the definition reduces to standard conditional dominance. Yet, the dom-

ination “across” normal forms makes the definition a non-trivial generalization of conditional

strict dominance in standard games. When player i’s T ′-partial strategy is strictly dominated

conditionally on her normal-form information set in the T ′-partial normal form, then also her

strategies that have the same components as the T ′-partial strategy should be eliminated. This

is due to the fact that her opponents in T -partial games with T ↪→ T ′ should realize that player

i would not play such strategies. That is, a player with a higher awareness level can realize that

a strategy is dominated for an opponent with lower awareness level even though that strategy

would not be dominated if the opponent were to have the same awareness level as the player.

An example is strategy “MS” for Colin in Section 2. This strategy is not dominated in the

upper normal form corresponding to the full game with unawareness. However, its component

“S” is dominated in the T ′-partial normal form at the bottom of Figure 4.

Define an operator on extended restrictions by for any extended restriction Y,

Ui(Y) = {si ∈ Si : si is not conditionally strictly dominated on (Xi,Y)},
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U(Y) =
⋃
T∈T

∏
i∈I

(
Ui(Y) ∩ ST

i

)
,

and

U−i(Y) =
⋃
T∈T

∏
j∈I\{i}

(
Uj(Y) ∩ ST

j

)
.

The following procedure formalizes iterated elimination of conditionally strictly dominated

strategies.

Definition 3 (Iterated Conditional Strict Dominance) Define recursively,

U0(S) = S,

Uk+1(S) = U(Uk(S)) for all k ≥ 0,

U∞(S) =

∞⋂
k=0

Uk(S),

and similarly for Uk
i (S) and Uk

−i(S). The set U∞(S) is the maximal reduction under iterated

elimination of conditional strictly dominated strategies.

This procedure generalizes iterated conditional strict dominance by Shimoji and Watson

(1998) to games with unawareness.

Example (Continued) We will illustrate the definitions with the introductory example of

Section 2. In Figure 4, the entire upper normal form is the normal-form information set (marked

green) of Rowena (but not Colin) associated with Rowena’s information set at the beginning

of the T -partial game (but not in the T ′-partial game). We denote this information set by

XR(∅T ). The upper green rectangle in the upper normal form is the normal-form information

set of Rowena (but not of Colin) corresponding to her information set after the history n in

the T -partial game (but not in the T ′-partial game). We denote it by XR(n). The lower purple

rectangle in the upper normal form is the normal-form information set for both Rowena and

Colin corresponding to the information sets after history t in the T -partial game (but not in

the T ′-partial game). We denote it by Xi(t).

Finally, the lower game in normal form is a normal-form information set (marked purple)

corresponding to both Colin’s and Rowena’s information set in the T ′-partial game. It is also

the normal-form information set for Colin corresponding to his information set πC(n) in the

T -partial game. We indicate this with the blue arrow. We denote it by Xi(∅T
′
) = XC(n).

The definition of Si is illustrated by the example SC = {BB,BS, SB, SS,MB,MS,B, S},
while the definition of [s̃i] can be illustrated by [“S”] = {BS, SS,MS, S}. These are all the

strategies of Colin that prescribe the action “S” (“Stravinsky”) at his information set πC(n).
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Iterated elimination of conditionally strictly dominated strategies proceeds as follows:

U0
i (S) = Si, i ∈ {R,C},

U1
R(S) = {nMBB,nMSB, nMMB,nMBS, nMSS, nMMS,

tBMB, tSMB, tMMB, tBMS, tSMS, tMMS,

B, S},
U1
C(S) = {MB,B}.

For instance, strategy nSBB is conditionally strictly dominated by nMBB in the normal-form

information set XR(∅T ) or XR(n). More interestingly, MS is conditionally strictly dominated

on (XC ,S) because MS ∈ [“S”] and S is strictly dominated by B in XC(n). This makes sense

because a player who is fully aware of the game should realize that Colin when only being

aware of the T ′-partial game considers S to be strictly dominated. Thus, Colin will not play

strategy MS. So this example demonstrates that an action in the upper normal form may be

eliminated because of strict dominance in the lower normal form. This is one reason why we

chose this game to demonstrate iterated conditional strict dominance in the dynamic game with

unawareness.

Applying the definitions iteratively yields

U2
R(S) = {nMBB,nMSB, nMMB,B},

= Uk
R(S) for all k ≥ 2,

U2
C(S) = U2

C(S) = {MB,B},
= Uk

C(S) for all k ≥ 1.

Note that U∞
i (S)∩Si = S∞

i . That is, the set of strategies remaining after iterated elimina-

tion of conditionally strictly dominated strategies coincides with the set of strong rationalizable

strategies. Both solution concepts predict that Rowena will play n followed by M , while Colin

takes action B. □

Our main result of this section is that iterated elimination of conditionally strictly dominated

strategies characterizes strong rationalizability in dynamic games with unawareness.

Theorem 1 For every finite dynamic game with unawareness, Uk
i (S)∩Si = Sk

i , for all k ≥ 1.

Consequently, U∞
i (S) ∩ Si = S∞

i .

The proof is contained in the appendix. It proceeds by induction and makes use of Lemma

3 by Pearce (1984). Theorem 1 generalizes Shimoji and Watson (1998) to dynamic games with

unawareness.
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5 Prudent Rationalizability and Iterated Conditional Weak Dom-

inance

Heifetz, Meier, and Schipper (2021) defined prudent rationalizability in order to deal with

imprudent beliefs in strong rationalizability.

Definition 4 (Prudent rationalizability) For every player i ∈ I, let

S̄0
i = Si.

For all k ≥ 1 define recursively,

B̄k
i =

{
bi ∈ Bi : ∀hi ∈ Hi

((
S̄
k−1,Thi
−i ∩ S

Thi
−i (hi) ̸= ∅

)
=⇒

(
supp bi(hi) = S̄

k−1,Thi
−i ∩ S

Thi
−i (hi)

)) }
S̄k
i =

{
si ∈ S̄k−1

i : ∃bi ∈ B̄k
i ∀hi ∈ Hi (si is rational at hi)

}
The set of prudent rationalizable strategies of player i is

S̄∞
i =

∞⋂
k=1

S̄k
i

Heifetz, Meier, and Schipper (2021) proved that the set of prudent rationalizable strategies

is non-empty and discussed various properties and examples. It has been useful in solving

disclosure games with and without unawareness (Heifetz, Meier, and Schipper, 2021, Li and

Schipper, 2019, 2020), electoral campaigning under unawareness (Schipper and Woo, 2019), and

screening and disclosure under unawareness (Francetich and Schipper, 2023). Here we study

how to capture this solution concept by iterated elimination of conditional weakly dominated

strategies.

We say that si ∈ ST
i is weakly dominated in a restriction Y ⊆ ST if si ∈ Yi, Y−i ̸= ∅, and

there exists a mixed strategy σi ∈ ∆(Yi) such that uTi (σi, s−i) ≥ uTi (si, s−i) for all s−i ∈ Y−i

and uTi (σi, s−i) > uTi (si, s−i) for some s−i ∈ Y−i.

Definition 5 (Conditional Weak Dominance) Given an extended restriction Y, we say

that si ∈ ST
i is conditionally weakly dominated on (Xi,Y) if there exists T ′ ∈ T with T ↪→ T ′

and s̃i ∈ ST ′
i with si ∈ [s̃i] such that s̃i is weakly dominated in X ∩ Y T ′

for some normal-form

information set X ∈ Xi, X ⊆ ST ′
.

Note that this definition implies as a special case that si ∈ ST
i is conditionally weakly

dominated on (Xi,Y) if there exists a normal-form information set X ∈ Xi, X ⊆ ST such that

si is weakly dominated in X ∩Y T . Yet, the weak domination “across” normal forms makes this

definition a non-trivial generalization of conditional weak dominance. Again, the idea is that a

player who perceives his opponent to be aware of less strategies than himself may realize that

the opponent considers some of her partial strategies as being weakly dominated. Consequently,
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the player knows that she will not play any strategy that has the weakly dominated partial

strategies as components.

We define an operator on extended restrictions by for any extended restriction Y,

Wi(Y) = {si ∈ Si : si is not conditionally weakly dominated on (Xi,Y)},

W (Y) =
⋃
T∈T

∏
i∈I

(
Wi(Y) ∩ ST

i

)
,

and

W−i(Y) =
⋃
T∈T

∏
j∈I\{i}

(
Wj(Y) ∩ ST

j

)
.

Definition 6 (Iterated Elimination of Conditionally Weakly Dominated Strategies)

Define recursively,

W 0(S) = S,

W k+1(S) = W (W k(S)) for all k ≥ 0,

W∞(S) =

∞⋂
k=0

W k(S),

and similarly for W k
i (S) and W k

−i(S). The set W∞(S) is the maximal reduction under iterated

elimination of conditionally weakly dominated strategies.

This extends the notion of iterated elimination of conditionally weakly dominated strategies

to games with unawareness. We characterize prudent rationalizability by iterated elimination

of conditionally weakly dominated strategies.

Theorem 2 For every finite dynamic game with unawareness, W k
i (S)∩Si = S̄k

i , for all k ≥ 1.

Consequently, W∞
i (S) ∩ Si = S̄∞

i .

Proof. The proof is analogous to Theorem 1 in the appendix. Instead of using Lemma 3 of

Pearce (1984), we now use Lemma 4 of Pearce (1984). □

6 Iterated Admissibility

For standard games in extensive form with perfect recall and without unawareness, Branden-

burger and Friedenberg (2011, Proposition 3.1) showed that iterated elimination of conditionally

weakly dominated strategies coincides with iterated admissibility at each iteration in the as-

sociated normal form. Before we can extend the result to games with unawareness, we first

need a notion of iterated admissibility for games with unawareness. How to define iterated
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admissibility in games with unawareness in generalized normal form?

Example (Continued) To motivate our notion of iterated admissibility for games with

unawareness, we consider again the example in Section 2. A first straightforward but naive

approach could be to apply iterated admissibility to each of the two normal forms separately.

At the first level, the set of admissible strategies coincides with the set of strategies that are not

conditionally strict dominated except for MS of Colin. (Recall that under conditional strict

dominance, we were able to delete strategy MS because S was strictly dominated in the lower

game T ′.) Notice that at the second level, strategy MB becomes now weakly dominated by

MS. But MB is the only strongly rationalizable strategy and prudent rationalizable strategy

of Colin in the T -partial game. What is wrong with this naive approach is that it does not

eliminate a strategy in the T -partial game when it is weakly dominated by another strategy

in a lower game. Strategies MB and MS differ in the second component only, the action of

Colin in the lower game T ′. It is in this lower game T ′ that S is dominated by B, and hence

any strategy prescribing S at the lower game T ′ should be eliminated. This motivates us to

define iterated admissibility as a procedure that conditions at least on normal forms instead of

any normal-form information set. But not any normal form will do. We also need to ensure

that for each information set, we condition on the “correct” normal form, namely the normal

form that represents the player’s awareness at this information set. This highlights a role of

information sets in dynamic games with unawareness. A player’s information set does not only

embody information in the standard sense but also the player’s awareness that is given by the

tree in which this information set is located. □

More formally, let Si = {SThi : hi ∈ Hi}. This is the collection of all strategy profiles and

T -partial strategy profiles for any tree T for which player i has an information set. We can

understand it as the set of normal forms of player i.

Definition 7 (NF-conditional Weak Dominance) Given an extended restriction Y, we

say that si ∈ ST
i is NF-conditionally weakly dominated on (Si,Y) if there exists T ′ ∈ T

with T ↪→ T ′ and s̃i ∈ ST ′
i with si ∈ [s̃i] such that s̃i is weakly dominated in ST ′ ∩Y T ′

for some

normal form ST ′ ∈ Si.

Note that this definition implies as a special case that si ∈ ST
i is NF-conditionally weakly

dominated on (Si,Y) if there exists a normal form ST ∈ Si, such that si is weakly dominated in

ST ∩Y T . Again, the weak domination “across” normal forms makes this definition a non-trivial

generalization of weak dominance.

Define an operator on extended restrictions by for any extended restriction Y,

W̃i(Y) = {si ∈ Si : si is not NF-conditionally weakly dominated on (Si,Y)},

W̃ (Y) =
⋃
T∈T

∏
i∈I

(
W̃i(Y) ∩ ST

i

)
,
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and

W̃−i(Y) =
⋃
T∈T

∏
j∈I\{i}

(
W̃j(Y) ∩ ST

j

)
.

Compared to operator W defined earlier that considered strategies that are not conditionally

weakly dominated, operator W̃ considers strategies that are not NF -conditionally weakly dom-

inated. This means that with W̃ we condition only on the normal form but not on finer subsets

of strategy profiles.

Definition 8 (Iterated Admissibility) Define recursively,

W̃ 0(S) = S,

W̃ k+1(S) = W̃ (W̃ k(S)) for all k ≥ 0,

W̃∞(S) =
∞⋂
k=0

W̃ k(S),

and similarly for W̃ k
i (S) and W̃ k

−i(S). The set W̃∞(S) is the maximal reduction under iterated

admissibility. We call any strategy of player i in W̃i(Y) admissible on (Si,Y), and any strategy

of player i in W̃∞
i (S) as iterated admissible.

This procedure generalizes iterated admissibility to games with unawareness. While the

definition boils down to admissibility (resp., iterated admissibility) when restricted to standard

games without unawareness, the terminology maybe somewhat misleading. In games with un-

awareness, iterated admissibility is conceptually closer to iterated conditional weak dominance

because it makes explicit use of information sets. In dynamic games with unawareness, the

information set does not only contain information in the standard sense but also awareness

given by the tree on which it is located. This awareness determines the relevant normal form

that is conditioned on in the definition of iterated admissibility for games with unawareness.

That is, while iterated admissibility in standards games does not rely on any structure in the

extensive form, iterated admissibility in dynamic games must rely on the awareness captured

by information sets in the extensive form. Iterated admissibility as defined here allows us to

neglect information but not awareness embodied in the extensive form.

We show that prudent rationalizability is captured also by iterated admissibility in dynamic

games with unawareness.

Theorem 3 For every finite dynamic game with unawareness, W̃ k
i (S) = S̄k

i , for all k ≥ 1.

Consequently, W̃∞
i (S) = S̄∞

i .

The proof is contained in the appendix. There, we first define a version of prudent ratio-

nalizability that weakens dynamic properties of belief systems. We then show inductively the

equivalence between that version of prudent rationalizability and iterated admissibility making

again use of Lemma 4 in Pearce (1984). Finally, we show inductively the equivalence between

that weakened version of prudent rationalizability and prudent rationalizability of Definition 4.
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As a corollary, iterated admissibility is equivalent to iterated conditional weak dominance

at every iteration in dynamic games with unawareness. This result generalizes a result for

standard games by Brandenburger and Friedenberg (2011, Proposition 3.1) to dynamic games

with unawareness.

Corollary 1 For every finite dynamic game with unawareness, W̃ k
i (S) = W k

i (S), for all k ≥ 1.

Consequently, W̃∞
i (S) = W∞

i (S).

A Properties of Information Sets

In order to make the paper self-contained, we list properties of information sets satisfied by

dynamic games with unawareness; see Heifetz, Meier, and Schipper (2013) and Schipper (2019,

2021) for further discussions and illustrations. Some of these properties are explicitly used in

the proofs of the results.

For each decision node n ∈ N and active player i ∈ In there is a nonempty information set

πi (n) satisfying the following properties:

I0 Confinement: πi (n) ⊆ T for some tree T .

I1 No-delusion given the awareness level: If πi(n) ⊆ Tn, then n ∈ πi(n).

I2 Introspection: If n′ ∈ πi (n), then πi (n
′) = πi (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceiv-

able paths: If n′ ∈ πi (n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . , n′′ ∈ T ′

such that i ∈ In′ ∩ In′′ , then πi (n
′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ πi (n), then Ai
n′ ⊆ Ai

n.

I5 Distinct action names in disjoint information sets: For a subtree T , if n, n′ ∈ T and

Ai
n = Ai

n′ , then πi (n
′) = πi (n).

I6 Perfect recall: Suppose that player i is active at two distinct nodes n1 and nk, and there

is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If n′ ∈ πi (nk), then

there exists a node n′
1 ̸= n′ and a path n′

1, n
′
2, ..., n

′
ℓ = n′ such that πi (n

′
1) = πi (n1) and

at n′
1 player i takes the action ai.

B Proofs

Proof of Theorem 1

A general belief system of player i ∈ I,

b̂i = (̂bi(hi))hi∈Hi
∈

∏
hi∈Hi

∆(S
Thi
−i )
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is a profile of beliefs – a belief b̂i(hi) ∈ ∆(S
Thi
−i ) about the other players’ strategies in the Thi

-

partial game, for each information set hi ∈ Hi, such that b̂i(hi) assigns probability 1 to the set

of strategy profiles of the other players that allow hi. The difference between a belief system

and a general belief system is that in the latter we do not impose conditioning.

For k ≥ 1, let B̂k
i and Ŝk

i be defined recursively like Bk
i and Sk

i in Definition 1, respectively,

the only change being that belief systems are replaced by generalized belief systems.

Lemma 1 Uk
i (S) ∩ Si = Ŝk

i for all k ≥ 1. Consequently, U∞
i (S) ∩ Si = Ŝ∞

i .

Proof of the Lemma 1. We proceed by induction. The case k = 0 is straightforward since

U0
i (S) ∩ Si = Si = Ŝ0

i for all i ∈ I.

Suppose now that we have shown Uk
i (S) ∩ Si = Ŝk

i for all i ∈ I. We want to show that

Uk+1
i (S) ∩ Si = Ŝk+1

i for all i ∈ I.

“⊆”: First we show, if si ∈ Uk+1
i (S) ∩ Si then si ∈ Ŝk+1

i .

We have si ∈ Uk+1
i (S)∩ Si if si ∈ Si is not conditionally strictly dominated on (Xi, U

k(S)).

Strategy si ∈ Si is not conditionally strictly dominated on (Xi, U
k(S)) if for all T ′ ∈ T with

T1 ↪→ T ′ and all s̃i ∈ ST ′
i such that si ∈ [s̃i], we have that there does not exist a normal-form

information set X ∈ Xi with X ⊆ ST ′
such that s̃i is strictly dominated in X ∩ Uk(S).

For any information set hi ∈ Hi, if s̃i ∈ S
Thi
i is not strictly dominated in SThi (hi) ∩ Uk(S),

then

(i) either s̃i does not allow hi, in which case s̃i is trivially rational at hi; or

(ii) by Lemma 3 in Pearce (1984) there exists a belief b̂i(hi) ∈ ∆(S
Thi
−i (hi)∩Uk

−i(S)) for which

s̃i is rational at hi. Since by the induction hypothesis Uk(S) ∩ S = Ŝk, we have in this

case that there exists a belief at hi with b̂i(hi)(Ŝ
k,Thi
−i ) = 1 for which s̃i is rational at hi.

By the definitions of [s̃i] and “allow”, if s̃i allows hi in the tree Thi
and si ∈ [s̃i], then si

allows hi in the tree Thi
. Hence, if s̃i ∈ S

Thi
i is rational at hi given b̂i(hi), then si ∈ [s̃i] is

rational at hi given b̂i(hi).

We need to show that beliefs in (ii) define a generalized belief system in B̂k+1
i . Consider

any b̂′i = (̂b′i(hi))hi∈Hi
∈ B̂k+1

i . For all hi ∈ Hi for which there exists a profile of player i’s

opponents’ strategies s−i ∈ Ŝk
−i that allow hi, replace b̂′i(hi) by b̂i(hi) as defined in (ii). Call

the new belief system b̂i. Then this is a generalized belief system. Moreover, b̂i ∈ B̂k+1
i .

Hence, if si is not conditionally strictly dominated on (Xi, U
k(S)), then there exists a gen-

eralized belief system b̂i ∈ B̂k+1
i for which si is rational at every hi ∈ Hi. Thus si ∈ Ŝk+1

i .

“⊇”: We show that, if si ∈ Ŝk+1
i , then si ∈ Uk+1

i (S) ∩ Si.

If si ∈ Ŝk+1
i , then there exists a generalized belief system b̂i ∈ B̂k+1

i such that for all hi ∈ Hi

the strategy si is rational given b̂i(hi). That is, either
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(I) si does not allow hi, or

(II) si allows hi and there does not exist an hi-replacement of si which yields a higher expected

payoff in Thi
given b̂i(hi) that assigns probability 1 to Thi

-partial strategies of player i’s

opponents in Ŝ
k,Thi
−i that allow hi in Thi

. By the induction hypothesis, Ŝk
−i = Uk

−i(S)∩S
Thi
−i .

Hence b̂i(hi) ∈ ∆(Uk
−i(S) ∩ S

Thi
−i (hi)).

If si ∈ [s̃i] with s̃i ∈ S
Thi
i and si allows hi in the tree Thi

, then s̃i allows hi in the tree Thi
.

Hence, if si ∈ [s̃i] with s̃i ∈ S
Thi
i is rational at hi given b̂i(hi), then s̃i is rational at hi given

b̂i(hi).

Thus, if si is rational at hi given b̂i(hi), then s̃i ∈ S
Thi
i with si ∈ [s̃i] is not strictly dominated

in Uk
−i(S) ∩ S

Thi
−i (hi) either because si does not allow hi (case (I)), or because of Lemma 3 in

Pearce (1984) (in case (II)).

It then follows that if the strategy si is rational at all hi ∈ Hi given b̂i, then si is not

conditionally strictly dominated on (Xi, U
k(S)). Hence si ∈ Uk+1

i (S) ∩ Si. □

Lemma 2 Ŝk
i = Sk

i for all k ≥ 1. Consequently, Ŝ∞
i = S∞

i .

Proof of the Lemma 2. We have Sk
i ⊆ Ŝk

i for all k ≥ 1 since, if si is rational at each

information set hi ∈ Hi given the belief system bi ∈ Bi, then there exists a generalized belief

system b̂i ∈ B̂k
i , namely b̂i = bi, such that si is rational at each information set hi ∈ Hi given

b̂i.

We need to show the reverse inclusion, Ŝk
i ⊆ Sk

i for all k ≥ 1. The first step is to show how

to construct a (consistent) belief system from a generalized belief system. Let si be rational

given b̂i ∈ B̂1
i , i.e., si ∈ Ŝ1

i . Consider an information set h0i ∈ Hi such that in Th0
i
there does

not exist an information set hi that precedes h
0
i . Define bi(h

0
i ) := b̂i(h

0
i ).

Assume, inductively, that we have already defined bi for a subset of information setsH ′
i ⊆ Hi

such that for each h′i ∈ H ′
i all the predecessors of h

′
i are also inH ′

i. For each successor information

set h′′i of each information set h′i ∈ H ′
i such that h′′i /∈ H ′

i define bi (h
′′
i ) as follows:

• If bi(h
′
i) assigns strict positive probability to a strategy profile of other players, s

Th′
i

−i , that

allows h′′i , then define bi (h
′′
i ) by using conditioning, i.e., if s

Th′
i

−i ∈ S−i(h
′′
i )

bi
(
h′′i

)(
s
Th′

i
−i

)
=

bi (h
′
i)

(
s
Th′

i
−i

)
∑

s̃
T
h′
i

−i ∈S−i(h′′
i )
bi(h′i)

(
s̃
Th′

i
−i

) .

• Otherwise let bi(h
′′
i ) ≡ b̂i(h

′′
i ).
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Since there are finitely many information sets in Hi, this recursive definition concludes in a

finite number of steps.

Next, assuming that si is rational at each information set hi ∈ Hi with the generalized

belief system b̂i, we will show that si is also rational at each information set hi ∈ Hi according

to the belief system bi.

Consider again h0i ∈ Hi with no predecessors in Th0
i
. Since bi(h

0
i ) = b̂i(h

0
i ) and si is rational

at h0i given b̂i
(
h0i

)
, si is also rational at h0i given bi

(
h0i

)
.

Assume, inductively, that we have already shown the claim for a subset of information sets

H ′
i ⊆ Hi such that for each h′i ∈ H ′

i all the predecessors of h′i are also in H ′
i. Consider a

successor information set h′′i of an information set h′i ∈ H ′
i such that h′′i /∈ H ′

i. Notice that each

h′′i -replacement is also an h′i-replacement. Therefore,

• If bi(h
′
i) assigns strict positive probability to a strategy profile of other players, s

Th′
i

−i , that

allows h′′i , then by above construction bi (h
′′
i ) is derived from bi(h

′
i) by conditioning, and

hence any h′′i -replacement that is improving player i’s expected payoff according to bi (h
′′
i )

would also improve player i’s payoff with bi(h
′
i), contradicting the induction hypothesis.

Hence si is rational at h
′′
i given bi (h

′′
i ).

• Otherwise, we have by above construction that bi (h
′′
i ) = b̂i(h

′′
i ). Hence, si is rational at

h′′i also given bi (h
′′
i ).

Applying the same argument inductively yields Ŝk
i = Sk

i for all k ≥ 1. This concludes the

proof of the lemma. □

Lemmata 1 and 2 together yield Uk
i (S)∩Si = Sk

i for all k ≥ 1. Since it applies for all k ≥ 1

and i ∈ I, this completes the proof of the proposition. □

Proof of Theorem 3

The proof proceeds in several steps. First, we show that iterated admissibility is characterized

by a variant of prudent rationalizability.

A relaxed belief system of player i ∈ I,

b̈i =
(
b̈i (hi)

)
hi∈Hi

∈
∏

hi∈Hi

∆
(
S
Thi
−i

)
is a profile of beliefs, a belief b̈i (hi) ∈ ∆

(
S
Thi
−i

)
about the other players’ strategies in the Thi

-

partial game for each information set hi ∈ Hi. Compared to belief systems, for relaxed belief

systems we do not require that for any hi ∈ Hi, belief b̈i (hi) assigns probability 1 to the set

of strategy profiles of the other players in the Thi
-partial game that allow hi. We also do not

require that, if hi ⇝ h′i, then b̈i(h
′
i) is derived from b̈i(hi) by conditioning whenever possible.

Denote by B̈i the set of player i’s relaxed belief systems.
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Definition 9 (Relaxed prudent rationalizability) Let

S̈0
i = Si

For all k ≥ 1, define recursively,

B̈k
i =

{
b̈i ∈ B̈i : ∀hi ∈ Hi

((
S̈
k−1,Thi
−i ∩ S

Thi
−i (hi) ̸= ∅

)
=⇒

(
supp b̈i(hi) = S̈

k−1,Thi
−i ∩ S

Thi
−i (hi)

)) }
S̈k
i =

{
si ∈ S̈k−1

i : ∃b̈i ∈ B̈k
i ∀hi ∈ Hi (si is rational given b̈i(hi))

}
The set of relaxed prudent rationalizable strategies of player i is

S̈∞
i =

∞⋂
k=1

S̈k
i

Proposition 1 For every finite dynamic game with unawareness, W̃ k
i (S) ∩ Si = S̈k

i , for all

k ≥ 1. Consequently, W̃∞
i (S) ∩ Si = S̈∞

i .

Proof of Proposition 1: We proceed by induction. The case k = 0 is straightforward since

W̃ 0
i (S) ∩ Si = Si = S̈0

i for all i ∈ I.

Suppose now that we have shown W̃ k
i (S) ∩ Si = S̈k

i for all i ∈ I. We want to show that

W̃ k+1
i (S) ∩ Si = S̈k+1

i for all i ∈ I.

“⊆”: First, we show that, if si ∈ W̃ k+1
i (S) ∩ Si, then si ∈ S̈k+1

i .

We have si ∈ W̃ k+1
i (S) ∩ Si if si ∈ Si is not NF-conditionally weakly dominated on

(Si, W̃
k(S)).

Strategy si ∈ Si is not NF-conditionally weakly dominated on (Si, W̃
k(S)) if for all T ′ ∈ T

with T1 ↪→ T ′ and all s̃i ∈ ST ′
i such that si ∈ [s̃i], we have that s̃i is not weakly dominated in

ST ′
i ∩ W̃ k(S).

For any information set hi ∈ Hi, if s̃i ∈ S
Thi
i is not weakly dominated in SThi ∩W̃ k(S), then

by Lemma 4 in Pearce (1984) there exists a full support belief b̈i(hi) ∈ ∆(S
Thi
−i ∩ W̃ k

−i(S)) for

which s̃i is rational at hi. Since by the induction hypothesis W̃ k(S) ∩ S = S̈k, we have in this

case that there exists a full support belief at hi with b̈i(hi) ∈ ∆(S̈
k,Thi
−i ) for which s̃i is rational

at hi.

By definition of [s̃i], if s̃i ∈ S
Thi
i is rational at hi given b̈i(hi), then si ∈ [s̃i] is rational at hi

given b̈i(hi).

Note that the profile of beliefs (b̈i(hi))hi∈Hi
are a relaxed belief system in B̈k+1

i .

Hence, if si is not NF-conditionally weakly dominated on (Si, W̃
k(S)), then there exists a

relaxed belief system b̈i ∈ B̈k+1
i for which si is rational at every hi ∈ Hi. Thus si ∈ S̈k+1

i .

“⊇”: We next show that, if si ∈ S̈k+1
i , then si ∈ W̃ k+1

i (S) ∩ Si.
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If si ∈ S̈k+1
i , then there exists a relaxed belief system b̈i ∈ B̈k+1

i such that for all hi ∈ Hi

the strategy si is rational given b̈i(hi). That is, there does not exist an alternative strategy s′i
which yields a strictly higher expected payoff in Thi

given b̈i(hi) that has full support on S̈
k,Thi
−i .

By the induction hypothesis, S̈k
−i = W̃ k

−i(S) ∩ S
Thi
−i . Hence, b̈i(hi) has full support on

W̃ k
−i(S) ∩ S

Thi
−i .

If si is rational at hi with b̈i(hi), then for any s̃i ∈ S
Thi
i with si ∈ [s̃i], s̃i is rational at hi

with b̈i(hi). By Lemma 4 in Pearce (1984), s̃i is not weakly dominated in W̃ k
−i(S) ∩ S

Thi
−i

It then follows that, if the strategy si is rational at all hi ∈ Hi given b̃i, then si is not

NF-conditionally weakly dominated on (Si, W̃
k(S)). Hence, si ∈ W̃ k+1

i (S)∩Si. This completes

the proof of Proposition 1. □

Next, we show that prudent rationalizability is equivalent to relaxed prudent rationalizabil-

ity.

Proposition 2 For every finite dynamic game with unawareness and every i ∈ I, S̄k
i = S̈k

i ,

for all k ≥ 0. Consequently, S̄∞
i = S̈∞

i .

Proof of Proposition 2 The proof proceeds by induction. By definition, S̄0
i = S̈0

i .

Assume S̄k
i = S̈k

i . We show that S̄k+1
i = S̈k+1

i .

“⊇”: Fix si ∈ S̈k+1
i and hi ∈ Hi such that si allows hi (otherwise si is trivially ratio-

nal at hi). There exists a relaxed belief system b̈i ∈ B̈k+1
i such that si is rational at hi.

By definition of B̈k+1
i , b̈i(hi) has full support on S̈

k,Thi
−i . Assume S̈

k,Thi
−i ∩ S

Thi
−i (hi) ̸= ∅. Then

b̈i(hi)
(
S̈
k,Thi
−i ∩ S

Thi
−i (hi)

)
> 0. Thus, we can consider conditional probabilities b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
)
.

(Otherwise, if S̈
k,Thi
−i ∩ S

Thi
−i (hi) = ∅, then si is trivially rational at hi.)

Suppose by contradiction that si is not rational at hi with b̈i(hi)
(
·
∣∣∣SThi

−i (hi)
)
. There exists

an hi-replacement of si, call it si/s̃
hi
i , such that si/s̃

hi
i yields a strictly higher expected pay-

off in Thi
given the belief b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
)
. That is, u

Thi
i

(
si/s̃

hi
i , b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

>

u
Thi
i

(
si, b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

. Since u
Thi
i

(
si, b̈i(hi)

)
≥ u

Thi
i

(
si/s̃

hi
i , b̈i(hi)

)
, we must have
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b̈i(hi)
(
S
Thi
−i (hi)

)
< 1. Now

u
Thi
i

(
si, b̈i(hi)

)
≥ u

Thi
i

(
si/s̃

hi
i , b̈i(hi)

)
= b̈i(hi)

(
S
Thi
−i (hi)

)
u
Thi
i

(
si/s̃

hi
i , b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

+
(
1− b̈i(hi)

(
S
Thi
−i (hi)

))
u
Thi
i

(
si/s̃

hi
i , b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

> b̈i(hi)
(
S
Thi
−i (hi)

)
u
Thi
i

(
si, b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

+
(
1− b̈i(hi)

(
S
Thi
−i (hi)

))
u
Thi
i

(
si, b̈i(hi)

(
·
∣∣∣SThi

−i (hi)
))

= u
Thi
i

(
si, b̈i(hi)

)
,

a contradiction.

“⫅”: Let S̄
k,Thi
−i (hi) denote the set of opponents’ level k-prudent rationalizable Thi

-partial

strategy profiles that allow hi. For each T ∈ T for which HT
i is nonempty, let S̄k,T

−i (H
T
i ) =⋃

hi∈HT
i
S̄k,T
−i (hi). Note that if S̄k,T

−i (H
T
i ) ⫋ S̄k,T

−i , then there is a terminal history in T that is

excluded by any information set hi ∈ HT
i . (In general, S̄k,T

−i (H
T
i ) may not be a cross-product

set).

We claim that there exists a nonempty subset of information sets GT
i ⊆ HT

i such that{
S̄k,T
−i (hi)

}
hi∈GT

i

forms a partition of S̄k,T
−i (H

T
i ). To define GT

i , we first define the rank of an

information set hi ∈ HT
i as the maximal number of information sets in HT

i required to pass

in order to allow a terminal node in T . Note that, if hi ∈ HT
i with n ∈ hi and there is path

from n to n′ in T with i ∈ In′ , then Property I3 (see Appendix A) ensures that there exists an

information set h′i ∈ HT
i with n′ ∈ h′i. Note further that there may be terminal nodes in T that

are excluded by any information set in HT
i .

Using the definition of rank of an information set, we construct a subset of information sets

GT
i as follows: For any information set hi ∈ HT

i of lowest rank, let hi ∈ GT
i if there is no

information set h′i ∈ HT
i that precedes hi. Otherwise, consider any information set h′i ∈ HT

i of

second lowest rank and let h′i ∈ GT
i if there is no information set h′′i ∈ HT

i that precedes h′i, etc.

Since T is finite, HT
i is finite, and the procedure terminates after finite steps. (In particular,

if player i moves at the root of T , GT
i is a singleton whose only information set contains the

root.)

By construction,
⋃

hi∈GT
i
S̄k,T
−i (hi) covers S̄k,T

−i (H
T
i ). Moreover, from Property I6 (see Ap-

pendix A) follows that for any two hi, h
′
i ∈ GT

i with hi ̸= h′i there is no profile of opponents’

T -partial strategies sT−i ∈ S̄k,T
−i (hi) ∩ S̄k,T

−i (h
′
i).

Fix si ∈ S̄k+1
i and hi ∈ Hi such that si allows hi (otherwise si is trivially rational at hi).

There exists a belief system b̄i ∈ B̄k+1
i such that si is rational at hi. By definition of B̄k+1

i , the

support of b̄i(hi) is the set S̄
k,Thi
−i (hi).
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Construct a belief system b̈i by setting for arbitrary ε ∈ (0, 1),

b̈i(hi)(s−i) :=


1−ε∣∣∣∣GThi
i

∣∣∣∣ b̄i(hi)(s−i) if sT−i ∈ S̄
k,Thi
−i (hi), and

ε∣∣∣∣S̄k,Thi
−i \S̄

k,Thi
−i (H

Thi
i )

∣∣∣∣ if sTi ∈ S̄
k,Thi
−i \ S̄k,Thi

−i (H
Thi
i ).

This defines a probability measure b̈i(hi) with full support on S̄
k,Thi
−i , for each information set

hi ∈ Hi.

Let B̈k+1
i be the set of all belief systems defined as above from any b̄i ∈ B̄k+1

i and ε ∈ (0, 1).

Finally, note that since for any strategy si ∈ S̄k+1
i there exists some b̄i ∈ B̄k+1

i such that

si is rational at every information set hi ∈ Hi, si continues to be rational with a belief system

b̈i ∈ B̈k+1
i at every information set hi ∈ Hi. Thus si ∈ S̈k+1

i . This completes the proof of

Proposition 2 □

The proof of the theorem now follows from Propositions 1 and 2. □
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