SEX AND SCIENCE: HOW PROFESSOR GENDER PERPETUATES THE GENDER GAP*

Scott E. Carrell
Marianne E. Page
James E. West

October 22, 2009

Abstract

Why aren't there more women in science? This paper begins to shed light on this question by exploiting data from the U.S. Air Force Academy, where students are randomly assigned to professors over a wide variety of mandatory standardized courses. We focus on the role of professor gender. Our results suggest that while professor gender has little impact on male students, it has a powerful effect on female students' performance in math and science classes, their likelihood of taking future math and science courses, and their likelihood of graduating with a STEM degree. The estimates are largest for students whose SAT math scores are in the top five percent of the national distribution. The gender gap in course grades and STEM majors is eradicated when high performing female students are assigned to female professors in mandatory introductory math and science coursework.

[^0]"The inferior sex has got a new exterior. We got doctors, lawyers, politicians too..."
Lennox and Stewart (1985), Sisters are doing it for Themselves

1 Introduction

Why aren't there more women in science? During the past forty years, women have successfully entered many prestigious careers that were formerly dominated by men, and today the number of graduate degrees in medicine, business and law are almost equally divided across the sexes. In contrast, female college students are currently 37 percent less likely than males to obtain science and engineering BA's and females comprise only 25 percent of the science, technology, engineering and math (STEM) workforce(National Bureau of Economic Research, 2005; National Science Foundation, 2006) ${ }^{1}$

What is the source of this discrepancy and why does it continue to exist when womens' expansion into other, traditionally male fields, has been so much more rapid? This question has spurred hundreds of academic studies, widely publicized conferences, and government reports, but the exact manner in which cognitive and behavioral differences intertwine with social forces to produce differences in career outcomes remains a subject of spirited debate. Understanding how these possible mechanisms work is important: social scientists have shown that gender differences in entry into science careers explain a substantial portion of the gender pay differential among college graduates (Brown and Corcoran, 1997; Weinberger, 1999) and that the low representation of women in such careers may reduce aggregate productivity (Weinberger, 1998).

What we do know is that through $12^{\text {th }}$ grade, the gender gap in math and science achievement tests is very small ${ }^{2}$ We also know that it has been declining over the past 20 years(Xie and Shauman, 2003). The small differences in high school math and science achievement tests that do exist are not predictive of men's higher likelihood of choosing a STEM career or major in college (Xie and Shauman, 2003). Conditional on proxies for ability, the gender gap in the probability

[^1]of completing a STEM degree is between 50 and 70 percent (Weinberger, 2001). Nor are the nearly non-existent differences in college preparatory math and science courses predictive of gender differences in college major (Xie and Shauman, 2003; Goldin, Katz and Kuziemko, 2006). Since aptitude and preparedness of the two sexes seem roughly equal upon entering college, it seems that an important key to understanding the broader question of why men and women's representation in STEM careers is so different is understanding what happens to them during college.

This paper begins to shed light on this issue by exploiting data from the U.S. Air Force Academy (USAFA) where students are randomly assigned to professors over a wide variety of mandatory standardized courses. We focus on the role of professor gender. Why might professor gender affect female students' propensity to persist in STEM? Role model effects are frequently cited as potentially important factors affecting educational outcomes. Other factors might include gender differences in the academic expectations of teachers, differences in teaching styles, or differences in the extent to which teachers provide advice and encouragement. Experimental studies have documented that equally skilled men and women exhibit differences that might affect their career choices (including differences in self-perceptions of ability, preferences for taking on difficult tasks, levels of risk aversion, and expectations about future performance (Beyer and Bowden, 1997; Elliot and Harackiewicz, 1994; Eckel and Grossman, 2008) but there is also a wide body of evidence suggesting that gender gaps in these characteristics are mutable (e.g., Spencer, Steele and Quinn, 1999). Teachers may be able to create an environment where this can occur.

Only a handful of studies have investigated the role of professor gender at the postsecondary level (Canes and Rosen, 1995; Neumark and Gardecki, 1998; Rothstein, 1995; Bettinger and Long, 2005; Hoffmann and Oreopoulos, 2007), and all of these studies face identification challenges stemming from university students' ability to choose their courses and professors. Random placement of students into classrooms at USAFA, together with mandatory math and science courses, allow us to investigate how professor gender influences student outcomes free of self-selection and attrition problems that plague existing research. Since students are required to take specific math and science courses beyond the first year of study, we are also able to identify the long-term effects of professor gender. A further advantage of our dataset is that course grades are not determined by an individual student's professor. Instead, all faculty members teaching the same course use an identical syllabus and give the same exams during a common testing period $]^{3}$ Our rich data combined with the random assignment of students to professors in core math and science courses

[^2]at the USAFA allow us to overcome the self-selection and attrition problems that have limited the inferences that can be drawn from previous work in this area.

It is important to point out that if professor gender impacts female students, then these influences occur at a critical juncture in the life-cycle. Decisions about choosing a STEM major are likely to have a substantial effect on future labor market opportunities. Furthermore, Xie and Shauman (2003) show that most women with a STEM bachelor's degree had initially planned on majoring in a non-STEM field. This suggests that the path towards a career in science is not primarily determined by the influence of social forces prior to college entry.

Our results suggest that while professor gender has only limited impact on male students, it has a powerful effect on female students' performance in math and science classes, their likelihood of taking future math and science courses, and their likelihood of graduating with a STEM degree. The estimates are robust to the inclusion of controls for students' initial ability, and they are substantively largest for students with high SAT math scores. Indeed, among these students, the gender gap in course grades and college major is eradicated when female students are assigned to introductory math and science professors who are female. The fact that we find the largest effects among high ability women with a predisposition towards math and science is important because this group of women are, arguably, the set of women most suited for entering science and engineering careers. In contrast, the gender of professors teaching humanities courses has, at best, a limited impact on students' outcomes.

We also attempt to distinguish the role of professor gender itself from the role of other (unobservable) professor characteristics that are correlated with gender. We do this by estimating each professor's average "value-added" separately for male and female students. We find that some male professors are very effective at teaching female students - even more effective than they are at teaching male students. However, we find that the gender of introductory math and science professors continues to exert a positive influence on female students' long run outcomes, even after controlling for professors' average value-added.

The remainder of the paper unfolds as follows: Section 2 describes our dataset, and Section 3 discusses the statistical methods we will employ. In Section 4 we present our main results. Section 5 investigates mechanisms, and Section 6 concludes.

2 Data

Our data come from the United States Air Force Academy (USAFA). The Air Force Academy is a fully accredited undergraduate institution of higher education with an approximate annual enrollment of 4,500 students. All students attending the USAFA receive 100 percent scholarship to cover their tuition, room, and board. Additionally, each student receives a monthly stipend of $\$ 845$ to cover books, uniforms, computer, and other living expenses. All students are required to graduate within four years and typically serve a minimum five-year commitment as a commissioned officer in the United States Air Force following graduation 4

Despite the military setting, in many ways the USAFA is comparable to other selective postsecondary institutions in the United States. Similar to most selective universities and liberal arts colleges, USAFA faculty have earned their graduate degrees from a broad sample of high quality programs in their respective fields. Approximately 40 percent of classroom instructors have terminal degrees, as one might find at a university where introductory coursework is taught by graduate student teaching assistants. On the other hand, the number of students per section in any given course rarely exceeds 25 , and student interaction with faculty members in and outside of the classroom is encouraged. In this respect, students' learning experiences at USAFA more closely resemble those of students who attend small liberal arts colleges. There are approximately 32 academic majors offered at USAFA across the humanities, social sciences, basic sciences, and engineering.

Students at USAFA are high achievers, with average math and verbal SAT scores at the $88^{\text {th }}$ and $85^{t h}$ percentiles of the nationwide SAT distribution 5 Students are drawn from each Congressional district in the US by a highly competitive process, insuring geographic diversity. Fourteen-percent of applicants were admitted to USAFA in $2007 \cdot \sqrt{6]}$ Approximately 17 percent of the students are female, five percent are black, seven percent are Hispanic and six percent are Asian. Seven percent of students at USAFA have a parent who graduated from a service academy and 17 percent have a parent who previously served in the military.

Table I presents statistics for USAFA and a set of comparison schools. We show the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of each school's verbal and SAT math scores, undergraduate enrollment, acceptance

[^3]rates, and percent female for selected universities. SAT scores at USAFA are comparable to the SAT scores of students at top ranked public universities such as UCLA and UNC Chapel Hill, but, unlike these schools, only seventeen percent of USAFA students are female. This characteristic makes USAFA most comparable to selective universities that have strong traditions in science and technology, such as the Georgia Institute of Technology, or Renssaleur Polytechnical Institute. Our results are thus most salient for women who enter college with a pre-disposition towards STEM. While this group is not representative of all female college students, it is a group of particular relevance to the question under study. If professor gender has important effects among high ability women who are already interested in science, and who have selected into an environment that is predominantly male, then the results have strong implications for the type of women who are most likely to choose to major in STEM out of high school. Put differently, our estimates probably speak most directly to retaining women with an interest in STEM, rather than the question of what causes women to enter STEM majors.

2.1 The Dataset

Our dataset includes 9 , 481 students who comprise the USAFA graduating classes of 2000 through 2008. Data for each student's high school (pre-treatment) characteristics and their achievement while at the USAFA were provided by USAFA Institutional Research and Assessment and were stripped of individual identifiers by the USAFA Institutional Review Board. Student-level pretreatment data includes whether students were recruited as athletes, whether they attended a military preparatory school, and measures of their academic, athletic and leadership aptitude. Academic aptitude is measured through SAT verbal and SAT math scores and an academic composite computed by the USAFA admissions office, which is a weighted average of an individual's high school GPA, class rank, and the quality of the high school attended. The measure of pretreatment athletic aptitude is a score on a fitness test required by all applicants prior to entrance.7 The measure of pre-treatment leadership aptitude is a leadership composite computed by the USAFA admissions office, which is a weighted average of high school and community activities (e.g., student council offices, Eagle Scout participation, captain of a sports team).

Table II provides summary statistics and Figure I plots the distribution of pre-treatment academic variables by gender. As in nationally representative samples, the upper tail of the math score

[^4]distribution is somewhat thicker for male than it is for female students. Since our estimation strategy is based on random assignment and includes pre-treatment characteristics as controls, small differences in distributions will not affect our analysis.

Our academic performance measures consist of final grades in core courses for each individual student by course and section-semester-year. Students at USAFA are required to take a core set of approximately 30 courses in mathematics, basic sciences, social sciences, humanities, and engineering, but we focus only on mandatory introductory and follow-on courses in mathematics, physics, chemistry, engineering, history, and English $\sqrt[8]{8}$ A distinct advantage of our dataset is that all students are required to take a follow-on related curriculum. Grades are determined on an A, $\mathrm{A}-, \mathrm{B}+, \mathrm{B} \cdots \mathrm{C}-, \mathrm{D}, \mathrm{F}$ scale where an A is worth 4 grade points, an $\mathrm{A}-\mathrm{is} 3.7$ grade points, a $\mathrm{B}+$ is 3.3 grade points, etc. The sample grade point average in core STEM coursework is 2.72 among females and 2.85 among males. The grade point average in core humanities courses is 2.81 among females and 2.73 among males. We standardize these course grades to have a mean of zero and a variance of one within each course, semester and year.

We also examine students' decisions to enroll in optional follow-on math and science classes, whether they graduate with a bachelor's degree, and their choice of academic major. In our sample, female students are less likely than males to take higher level elective math courses (34 percent of females vs. 50 percent of males) and less likely to major in STEM (24 vs. 40 percent but are more likely to graduate (84 vs. 81 percent) $\stackrel{9}{9}^{9}$

Individual professor-level data were obtained from USAFA historical archives and the USAFA Center for Education Excellence and were matched to the student achievement data for each course taught, by section-semester-year ${ }^{10}$ We have information on each professor's academic rank, gender, education level (M.A. or Ph.D.), and years of teaching experience at USAFA. During the period we study, there were 249 different faculty members who taught introductory mathematics, chemistry, or physics courses. Nineteen-percent (47 of 249) of these faculty were female and taught 23-percent (286 of 1, 221) of the introductory math and science course-sections. 112 different faculty members

[^5]taught humanities courses, and 21-percent of them were female.

2.2 Student Assignment to Courses and Professors

Prior to the beginning of the freshman year, students take placement exams in mathematics, chemistry, and select foreign languages, and the scores on these exams are used to place students into the appropriate beginning core courses (i.e., remedial math, Calculus I, Calculus II, etc.). Conditional on course placement, the USAFA Registrar randomly assigns students to core course sections ${ }^{11}$ Thus, throughout their four years of study, students have no ability to choose their required core course professors. Since faculty members teaching the same course use an identical syllabus and give the same exams during a common testing period, grades in core courses are a consistent measure of relative achievement across all students. $\sqrt{12}$ These institutional characteristics assure there is no self-selection of students into (or out of) courses or towards certain professors.

Table II indicates that the types of students assigned to female faculty are nearly indistinguishable from those assigned to male faculty. In math and science courses, the average class size for female faculty is 19.2 compared to 19.0 for males. In addition, male and female professors have a similar numbers of female students per section, and similar average scores on SAT verbal, SAT math, academic composite, and algebra/trigonometry tests.

To formally test whether course assignment is random with respect to faculty gender we regressed faculty gender on individual student characteristics. The results of this analysis are shown in Table III. Panel A shows results for math and science courses and Panel B shows results for humanities courses. Across all subgroups we see that the correlation between faculty gender and student characteristics is generally small and statistically insignificant. For each specification, we

[^6]calculated the joint significance of all individual covariates and found these to be insignificant in 15 of the 16 estimates. Additionally, in Carrell and West (2008), we show that student assignment to core courses at USAFA is random with respect to peer characteristics and faculty academic rank, experience, and terminal degree status. In that paper, we used resampling methods to construct 10,000 sections drawn from the relevant course and semester and found that the distribution of academic ability by assigned section is indistinguishable from the distribution observed in the resampled sections. Results from these analyses indicate that the algorithm that assigns students to course sections is consistent with random assignment.

3 Statistical Methods

We begin by estimating the following linear regression model:

$$
\begin{equation*}
Y_{i c j s t}=\phi_{1}+\beta_{1} F_{i}+\beta_{2} F_{j}+\beta_{3} F_{i} F_{j}+\phi_{2} X_{i c s t}+\phi_{3} P_{j}+\gamma_{c t}+\epsilon_{i c j s t} \tag{1}
\end{equation*}
$$

where $Y_{i c j s t}$ is the outcome measure for student i in course c with professor j in section s in semesteryear $t . F_{i}$ is an indicator for whether student i is female and F_{j} is an indicator for whether professor j is female. The β coefficients are the primary coefficients of interest in our study. β_{1} represents the difference in mean performance between female and male students. β_{2} is the value added from having a female professor, and, β_{3} indicates the extent to which having a female professor differentially affects female vs. male students. Because students are randomly assigned, estimates of the β coefficients are unbiased.

The vector $X_{i c s t}$ includes the following student characteristics: SAT math and SAT verbal test scores, academic and leadership composites, algebra/trigonometry placement test score, fitness score, race, whether the student was recruited as an athlete, and whether he/she attended a military preparatory school. We also include cohort dummies. P_{j} is a vector of professor characteristics including indicators of the professor's academic rank, teaching experience and terminal degree status. $\gamma_{c t}$ are course by semester-year fixed effects, which control for unobserved mean differences in academic achievement or grading standards across courses and time. The inclusion of these fixed effects ensures that the model identifies professor quality using only the within course by semesteryear variation in student achievement. We also include course and time of day fixed effects. $\epsilon_{i c j s t}$ is the error term. Standard error estimates are clustered by professor.

We implement a slightly modified version of equation (1) to estimate the effect of professor
gender in initial courses on performance in follow-on related courses:

$$
\begin{equation*}
Y_{i c^{\prime} s^{\prime} t^{\prime}}=\phi_{1}+\beta_{1} F_{i}+\left(\beta_{2}+\beta_{3} F_{i}\right) \frac{\sum_{j \mid i}}{n_{i t}}+\phi_{2} X_{i c s t}+\gamma_{c^{\prime} s^{\prime} t^{\prime}}+\epsilon_{i c^{\prime} s^{\prime} t^{\prime}} \tag{2}
\end{equation*}
$$

where $Y_{i c^{\prime} k s^{\prime} t^{\prime}}$ is performance in the follow-on course, c^{\prime} in section s^{\prime} and semester-year $t^{\prime} . \frac{\sum_{j \mid i} F_{j t^{\prime}}}{n_{i t^{\prime}}}$ is the proportion of introductory course faculty j who were female for student i at time t^{\prime}. Including this variable allows us to measure the average impact of having more female professors in introductory math and science courses. We have also estimated regressions in which we include separate variables indicating each introductory course professor's gender. In principle, this specification should allow us to separately identify the effects of introductory math vs. chemistry vs. physics professors, but in practice the estimated coefficients on the separate indicator variables are too noisy to identify differential effects. The proportion of female professors teaching the students' introductory courses efficiently summarizes the interesting variation. To adjust for any possible professor, section, or year effects in the follow-on course, we include a section by course by semester-year
 average differences across male and female students, the effect of having more female professors in the introductory STEM courses, and the differential effect across male and female students of being assigned more female professors in introductory courses. Because students are re-randomized into the mandatory follow-on course sections, estimates of the β coefficients are again unbiased.

To estimate the effect of professor gender on longer term outcomes, such as choosing to take higher level math or graduating with a technical degree, we estimate a variation of equation (2):

$$
\begin{equation*}
D_{i t^{\prime}}=\phi_{1}+\beta_{1} F_{i}+\left(\beta_{2}+\beta_{3} F_{i}\right) \frac{\sum_{j \mid i} F_{j t}}{n_{i t}}+\phi_{2} X_{i t}+\epsilon_{i t^{\prime}} \tag{3}
\end{equation*}
$$

where $D_{i t^{\prime}}$ is a dummy variable that indicates whether student i at time t^{\prime} chose to take a higher level math course or chose a STEM major. As before, the β coefficients are the coefficients of interest.

4 Estimated Effects of Introductory Course Professor Gender in Science and Math Classes

4.1 Estimated Effects on Course Performance in the Professor's Own Course

Figure III provides unconditional mean estimates by student and professor gender. The pattern of estimates shown in the figure are quantitatively and qualitatively similar to those produced by
equation (1), which include all of the covariates discussed in the previous section and are shown in Table IV. The first two columns of Table IV show the estimated effects for all students, while the remaining columns focus on subsets of students with varying math skills. We include detailed student-level control variables in Column 1; Column 2 replaces the control variables with individualstudent fixed effects.

For the full sample, our estimates on the female faculty dummy variable indicate that when male students are taught by female professors they end up with somewhat lower course grades than when they are taught by males ${ }^{13}$ The coefficient on the female professor dummy is between -0.05 (Column 1) and -0.06 (Column 2), which suggests that female professors lower male students' course grades by about 5 to 6 percent of a standard deviation. The magnitude of the teacher gender effects is swamped, however, by the estimated coefficient on the female student dummy (Column 1, Row 2), which indicates that women, on average, score 15 percent of a standard deviation lower than men whose math skills were comparable upon entry into the USAFA when assigned a male professor. Given that we are controlling for initial skills, this is a dramatic discrepancy, which can only be documented because of the randomized nature of our study. In most university settings, the possibility of differential selection into courses would make it impossible to detect this phenomenon.

The third row of Table IV displays the estimated coefficient on the female student \times female professor interaction. Focusing first on Column 1, we see that the estimate is of substantive magnitude (10 percent of a standard deviation) and positive, indicating that female students' performance in math and science courses improves substantially when the course is taught by a female professor. In fact, taken together with the estimates in rows 1 and 2, the estimated coefficient on the interaction term suggests that having a female professor reduces the gender gap in course grades by approximately two thirds. This finding reflects both the fact that male students do worse when they have a female professor, and that female students do significantly better. The absolute gain to women from having a female professor is 5 percent of a standard deviation $(-0.050+0.097)$.

The estimates shown in Column 1 are based on regressions that control for observable proxies of ability and provide information about the relative gains to men and women from having a male vs. female professor in first year math and science classes. The next column replaces the student control variables with a student fixed effect. In this regression, the coefficient on the interaction term indicates how much better female students do when they have female professors, compared to their own performance in other mandatory first year math and science courses. When the estimated coefficients on the female professor dummy and interaction term are added together

[^7]$(-.043+0.139)$ the resulting estimate indicates that, conditional on proxies of own ability, female students' performance improves by nearly 10 percent of a standard deviation.

Columns 3-8 focus on subgroups of women defined according to their observed math skills at the time they entered college. Columns 3 and 4 show the regression estimates for students whose SAT math score was below 660 , Columns 5 and 6 show the regression estimates for students whose math SAT was above 660 , and Columns 7 and 8 show the same results for students who scored above 700. These scores correspond to the median and $75^{\text {th }}$ percentile of the distribution at USAFA, and to the $90^{\text {th }}$ and $95^{\text {th }}$ percentiles of the national SAT Math distribution. Since we control for initial SAT math scores and math placement test scores in our regressions, this is unlikely to reflect men's higher likelihood of scoring at the very top of the distribution prior to college. Rather, it suggests that either 1) there are gender differences in math/science ability that are not captured by the initial controls, or 2) something about the college experience has a particularly detrimental effect on the math and science performance of highly skilled women.

The most striking pattern in Table IV is that as female students' initial math skills increase, the relative importance of professor gender also increases. In fact, at the top of the distribution (Column 7), having a female professor completely closes the gender gap $(-0.162+0.172)$. Notably, at higher skill levels, the evidence that professor gender matters to male students also weakens. We speculate that something about the classroom environment created by female math and science professors has a powerful effect on the performance of women with very strong math skills - with virtually no expense incurred by their comparable male peers. This result is particularly relevant as men and women with high math ability are precisely those needed in the STEM labor market ${ }^{14}$

Our estimates are robust to changes in specification that allow the correlation between student characteristics and course grades to vary with student gender. They are also insensitive to the inclusion of interactions between the professor gender dummy and professor characteristics, and to the inclusion of interactions between the student gender dummy and the professor level control variables. The results will be discussed further in Section 6.

We have also extended our analyses to include a full set of professor gender indicators, one for

[^8]each of the three introductory math and science courses, plus interactions between these indicators and the student gender dummy. The magnitudes of the effects are larger for mathematics, but not significantly different than those for chemistry and physics. We also examined and found no evidence of spillover effects across the introductory courses. For example, students' introductory math course grades are affected by the gender of their math professor but not by the gender of their introductory physics or chemistry professors. Similarly, introductory chemistry and physics grades are only affected by the gender of the chemistry or physics professors and not the gender of the professor teaching the other introductory math/science subjects. Results from this analysis are available in Appendix Table 1 in the on-line appendix.

4.2 Longer-term Effects of Professor Gender

Our main finding is that female students perform substantively better in their math and science courses when they are taught by a woman. Since we are interested in understanding why the prevalence of women in science careers is lower than that of men, our next task is to examine whether these effects persist to longer-term outcomes; course performance itself is only interesting to the extent that it affects pathways into STEM careers. Table V provides the results from estimating the effect of professor gender, measured by the proportion of introductory courses taught by female faculty, on longer-term outcomes. We look at four outcomes: whether the student withdraws from the USAFA, the student's performance in all required follow-on STEM coursework, whether the student chooses to take higher level math courses beyond those that are required for graduation with a non-STEM degree, and whether she graduates with a STEM degree ${ }^{15}$ All four of these outcomes are correlated with future career choices. Beginning with the top panel, Column 2 shows that, conditional on entering math skills, women and men are equally likely to withdraw from the USAFA. However, female students perform significantly worse in follow-on STEM coursework, are less likely to take higher level math courses, and are less likely to graduate with a STEM degree compared to male students. It is also clear that gender differences in college major are much larger when we exclude biological sciences (Columns 5 vs. 4), which typically require less math, and have higher rates of female participation ${ }^{16}$

The estimated effect of professor gender on these long-term outcomes varies across the subsamples, with the biggest effects, by far, accruing to women with high entering math ability. Across

[^9]the full sample, there is no statistically significant evidence that having a higher proportion of female professors affects a woman's likelihood of withdrawing, her performance in follow-on coursework, her probability of taking higher level math courses, or her probability of graduating with a STEM major. Similar results are shown in Panel B, where we focus on the subgroup of women whose math SAT scores were below the median. However, as the sample narrows to include increasingly high skilled women (as approximated by their SAT math score), the estimated effects of professor gender become much larger and statistically significant. Among the top quartile of female students, and for each long-term outcome, higher proportions of female professors in introductory math and science courses are associated with reductions in the gender gap. In fact, the estimates suggest that increasing the fraction of female professors from 0 to 100 percent would completely eliminate the gender gap in math and science majors. For example, Column 5 of Panel C indicates that among the highest ability women, those whose introductory math and science professors are exclusively female are 26 percentage points more likely to major in STEM than those who are exclusively assigned to male faculty. For this high ability group, the male/female gap in the probability of completing a STEM major is 27 -percent.

At the same time, there is no evidence that having a female professor affects a female student's likelihood of dropping out, regardless of her ability level. This suggests that whatever it is about female professors that affects women in their first year math and science courses, it is not something that changes retention rates, but rather something that changes their preferences for math and science. This interpretation is consistent with Zafar (2009) who finds evidence at Northwestern University that the gender gap in academic major is "due to differences in beliefs about enjoying coursework and differences in preferences." Hence, our findings suggest that female professors may be changing female student's beliefs and preferences toward STEM coursework and careers. We have also estimated regressions in which we include three separate dummy variables indicating each introductory course professor's gender. This allows us to investigate the possibility that our estimated long-run effects are driven by professor gender in a particular course ${ }^{17}$ We find little evidence that our long-run estimates are driven by professor gender in a particular subject or that professor gender in the same previous subject is more important than professor gender in "cross" subjects ${ }^{18}$

Our findings are robust to changes in model specification that exclude individual controls or that

[^10]increase model flexibility by including interactions between individual characteristics and student gender. They are not generated by a few outliers: when we estimate teacher value-added for each professor and plot the effects by professor and student gender we find that among female professors over $2 / 3$ of the value-added shrinkage estimates are positive for their high ability female students ${ }^{19}$

4.3 Estimated Effects of Professor Gender in English and History Classes

Next, we consider the role of professor gender in humanities courses. Table VI shows the estimated effects of professor gender when we estimate equation (1) for introductory English and history courses. The estimates are strikingly different. There is no observable gender gap in course performance, and there is no evidence that female students' course grades are improved when they have a female professor. As in Tables IV and V, we find weak evidence that both men and women have lower humanities grades when the course is taught by a female professor, but most of the coefficient estimates on the female professor dummy are barely significant at the 10 percent level ${ }^{202}$ Specifications 3-6 carry forward our analyses for longer-term outcomes. We look at the effect of professor gender in initial humanities courses on later course selection and choice of major. All of the estimated female professor coefficients are small, and none are statistically significant. This indicates that the gender of professors in initial humanities courses has no effect on male students' longer-term choices. Similarly, most of the estimated coefficients on the interaction term are small, and only one is statistically different from zero, suggesting that female students' long run choices are also unrelated to the sex of the professor who teaches their humanities courses.

These results stand in direct contrast to our estimated professor effects in math and science, where it appears that female students with strong math skills are powerfully affected by the gender of their introductory course professors. These results also indicate the effects we find are not likely driven by the general (military) culture of the institution we study. In the next section, we explore mechanisms that might be behind this effect.

[^11]
4.4 Contemporaneous Effects of Professor Gender in Follow-on Courses

We have seen evidence that female students' paths into math and science careers are influenced significantly by the gender of the professor who teach their introductory math and science courses. Next, we examine how the gender of professors in more advanced follow-on math and science courses affect contemporaneous student STEM outcomes ${ }^{21}$ Results in Table VII show negligible effects of professor gender in mandatory follow-on math and science courses on (contemporaneous) course grades, whether the student takes higher-level math, and whether the student graduates with a degree in STEM. We find that none of the estimated interaction terms are statistically different from zero, most are small in magnitude, and a few are in the opposite direction from our earlier estimates. Because these courses are taken later in students' educational path, the effect of professor gender may be different due to either a mechanical effect (i.e., academic majors may already be chosen) or due to the fact that preferences and self-perceptions of student ability may already be formed at this juncture. Nevertheless, these results suggest that classroom environment has its strongest influence on female students early in the college career.

5 Mechanisms

5.1 Is it All About Professor Gender?

Table IV suggests that female students' initial math and science grades are substantively higher when they are taught by female professors. The estimated effects are particularly large among female students in the upper quartile of the SAT math distribution. In this section, we investigate whether gender differences in student performance are driven by professor gender per se, or whether they might be driven by some other professor characteristic that is correlated with professor gender. For example, male and female students may respond in different ways to younger versus older professors or they may have different responses to alternative teaching styles that are correlated with, but not exclusive to, professor gender.

To investigate possible mechanisms further, we conduct three additional analyses. First, we interact all of our professor level variables with the professor and student gender dummies to see whether the importance of particular professor characteristics varies with student and/or professor

[^12]gender. The results of these regressions, which are shown in Table VIII, indicate that it is not differences in observables, or differences in student-gender specific responsiveness to those observables, that are driving our results.

Second, we examined the role of voluntary interaction between students and professors outside of formal classroom instruction. To do so, the Mathematics Department at USAFA collected office hour data for each student by professor during the fall of 2008. These data showed that female students were no more likely to attend office hours with female vs. male professors. ${ }^{22}$ Although the data were from a single course in a single semester, the results suggest that the mechanisms that are driving our estimated effects are not likely driven by gender differences in willingness to approach professors for addition instruction.

Finally, we examine the role of unobservables through a professor "value-added" analysis. This is implemented through a two-step process: first, for each professor and course, we estimate a student gender-specific random effect, which summarizes the professors average value-added separately for female and for male students ${ }^{[23}$ This provides us with estimates of each professor's "value added" for both female and male students. Figure IV shows the distribution of the gender-specific estimated value-added, $\hat{\xi}$. As expected, the distribution of the female-student-female-teacher effects (middle column) is to the right of the distribution of female-student-male-teacher effects. These results reconfirm our previous finding that, on average, female students perform better when their math and science courses are taught by female faculty, but also make clear that many male professors are very effective at teaching female students. In other words, student performance in the introductory course is correlated with professor gender, but not exclusively.

Our next step is to re-estimate the follow-on equations, (2) and (3), while including the average
${ }^{22}$ Female students were much more likely to attend office hours compared to male students across all professors.
${ }^{23}$ We estimate a Bayesian shrinkage estimate for each professor's value-added by student gender in a random effects framework as in Rabe-Hesketh and Skrondal (2008). The shrinkage estimates take into account the variance (signal to noise) and the number of observations for each professor. Because we have random assignment, both random effects and fixed effects models will produce consistent estimates, but random effects models are efficient. To eliminate classroom-specific common shocks we estimated professor j 's value-added in section s using professor j 's students not in section s (i.e. we use sections other than the students own section). The value added estimates are based on regressions that control for all variables in equation 11, except for professor gender. In addition we include interactions between student gender and professor academic rank, experience, and terminal degree status and interactions between student gender and individual-level covariates. The raw correlation between the within-professor male and female student value-added is 0.19 . For recent work estimating teacher value-added models see Rivkin, Hanushek and Kain (2005), Kane, Rockoff and Staiger (2008), Kane and Staiger (2008), Hoffmann and Oreopoulos (2009), and Carrell and West (2008).
of the estimated professor value-added, $\hat{\xi}$, as explanatory variables.

$$
\begin{align*}
Y_{i c^{\prime} s^{\prime} t^{\prime}}=\phi_{1}+\beta_{1} F_{i}+\phi_{2} X_{i c s t}+ & \left(\beta_{2}+\beta_{3} F_{i}\right) \frac{\sum_{j \mid i} F_{j t}}{n_{i t}}+\beta_{4} F_{i} \frac{\sum_{j \mid i} \hat{\xi}_{f j}}{n_{i t}}+\beta_{5} F_{i} \frac{\sum_{j \mid i} \hat{\xi}_{m j}}{n_{i t}} \\
& +\beta_{6} M_{i} \frac{\sum_{j \mid i} \hat{\xi}_{f j}}{n_{i t}}+\beta_{7} M_{i} \frac{\sum_{j \mid i} \hat{\xi}_{m j}}{n_{i t}}+\gamma_{c^{\prime} s^{\prime} t^{\prime}}+\epsilon_{i c^{\prime} s^{\prime} t^{\prime}} \tag{4}
\end{align*}
$$

M_{i} is an indicator variable of whether student i is male. This equation allows us to investigate whether students' outcomes are affected by professors who have high "male/female value-added," conditional on professor gender. In other words, we can separately estimate the impact of professor "quality" from the impact of professor gender itself. We present results for this analysis in Table IX. Column 1 shows that both the professor gender and professor "value-added" variables are strong predictors of student performance in the introductory STEM courses. However, results in Columns 2-4 show that while professor gender continues to exert a positive effect on female student outcomes, the introductory course professor value-added has no predictive power on the longer-term outcomes. As in Carrell and West (2008), we find no persistence of introductory course value-added into follow-on course performance at USAFA. Thus, it appears that the influence of female professors on their female students' future math and science performance operates largely through factors other than value-added in the introductory course grades.

6 Conclusion

Why aren't there more women in science careers? If we want to know the answer to this question we need to make sense of what happens to women in college. College is a critical juncture in the life-cycle, and in spite of the fact that men and women enter college with similar levels of math preparation, substantially fewer women leave college with a science or engineering degree. This, in turn, closes the door to many careers in science and technology.

The goal of this paper is to shed light on how women's paths towards science are affected by the college environment, focusing on the role of professor gender. Unlike previous research on this topic, we are blessed with experimental conditions that ensure our estimates are uncontaminated by self-selection and attrition bias. This is possible because USAFA randomly assigns students to professors over a wide variety of mandatory standardized courses. A further advantage of studying this campus is that course grades are not determined by an individual student's professor.

The nature of our data allows us to document a number of interesting patterns. First, we find that compared to men with the same entering math ability, female students perform substantially
less well in their introductory math and science courses. To our knowledge, this is the first study that has been able to document this factit is only knowable because of the mandatory nature of introductory math and science courses at the USAFA. We document a gender gap in most other dimensions of STEM success, as well. Second, we find that the gender gap is mitigated considerably when female students have female professors ${ }^{24}$ Conversely, professor gender seems to be irrelevant in the humanities. Third, we find that the effect of female professors on female students is largest among students with high math ability. In particular, we find that among students in the upper quartile of the SAT math distribution, being assigned to a female professor eliminates the gender gap in introductory course grades and science majors. We also find that professor gender has minimal effects on male students' outcomes.

This research raises a number of interesting questions about why professor gender is important, particularly among students whose math skills are at the top of the ability distribution. Do female professors serve as role models? Do they teach in ways that female students find more accessible? Are they more encouraging of their female students? We have begun to investigate these questions by looking at the distribution of each professor's gender-specific, average value-added. We find that professor value-added is correlated with professor gender, but is not exclusive to it. Additionally, professor gender continues to be a positive predictor of long-term STEM success even when controlling for professor value-added. In future research, we hope to investigate whether there are observable characteristics of male and female teachers that can help explain this phenomenon. While this is not possible with our current data, it would provide invaluable information to policymakers who seek to improve women's representation in science.

UC Davis and NBER
UC Davis and NBER

US Air Force Academy

References

Barron, John M., Bradley T. Ewing, and Glen R. Waddell, "The Effects of High School Participation on Education and Labor Market Outcomes," The Review of Economics and Statistics, 82 (2000), 409-421.

[^13]Bettinger, Eric and Bridget Terry Long, "Do Faculty Serve as Role Models? The Impact of Instructor Gender on Female Students," American Economic Review, 95 (2005), 152-157.

Beyer, Sylvia and Edward M. Bowden, "Gender Differences in Self-Perceptions: Convergent Evidence from Three Measures of Accuracy and Bias," Personality and Social Psychology Bulletin, 23 (1997), 157-172.

Brown, Charles and Mary Corcoran, "Sex-Based Differences in School Content and the Male-Female Wage Gap," Journal of Labor Economics, 15 (1997), 431-465.

Canes, Brandice and Harvey Rosen, "Following in Her Footsteps? Faculty Gender Composition and Womens Choices of College Majors," Industrial and Labor Relations Review, 48 (1995), 486-504.

Carrell, Scott E. and James E. West, "Does Professor Quality Matter? Evidence from Random Assignment of Students to Professors," Working Paper 14081, National Bureau of Economic Research, 2008.
__ , Richard L. Fullerton, and James E. West, "Does Your Cohort Matter? Estimating Peer Effects in College Achievement," Journal of Labor Economics, 27 (2009), 439-464.

Eckel, Catherine C. and Philip J. Grossman, "The Difference in the Economic Decisions of Men and Women: Experimental Evidence," in Handbook of Experimental Economics Results, Charles Plott and Vernon Smith, ed., Vol. 1 (Elsevier, 2008).

Elliot, Andrew J. and Judith M. Harackiewicz, "Goal Setting, Achievement Orientation, and Intrinsic Motivation: A Mediational Analysis," Journal of Personality and Social Psychology, 66 (1994), 968-980.

Ellison, Glenn and Ashley Swanson, "The Gender Gap in Secondary School Mathematics at High Achievement Levels: Evidence from the American Mathematics Competitions," Working Paper 15238, National Bureau of Economic Research, 2009.

Goldin, Claudia, Lawrence Katz, and Ilyana Kuziemko, "The Homecoming of American College Women: The Reversal of the College Gender Gap," Journal of Economic Perspectives, 20 (2006), 133-156.

Hoffmann, Florian and Philip Oreopoulos, "A Professor Like Me: The Influence of Instructor Gender on College Achievement," Working Paper 13182, National Bureau of Economic Research, 2007.
and ___ , "Professor Qualities and Student Achievement," Review of Economics and Statistics, 91 (2009), 83-92.

Kane, Thomas J. and Douglas O. Staiger, "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," Working Paper 14607, National Bureau of Economic Research, 2008.
__, Jonah E. Rockoff, and Douglas O. Staiger, "What does certification tell us about teacher effectiveness? Evidence from New York City," Economics of Education Review, 27 (2008), 615631.

Lennox, Annie and Dave Stewart, "Sisters Are Doin' It for Themselves," in Eurythmics: Be Yourself Tonight, Dave Stewart, ed. (RCA Records, 1985).

National Bureau of Economic Research, "Diversifying the Science and Engineering Workforce: Women, Underrepresented Minorities, and Their Science and Engineering Careers," http://www.nber.org/sewp/events/2005.01.14/Agenda-1-14-05-WEB.htm (2005).

National Science Foundation, "Science and Engineering Degrees: 1966-2004," Manuscript NSF 07307, National Science Foundation, Division of Science Resources Statistics, 2006.

Neumark, David and Rosella Gardecki, "Women Helping Women? Role Model and Mentoring Effects on Female Ph.D. Students in Economics," Journal of Human Resources, 33 (1998), 220-46.

Pope, Devin G. and Justin R. Sydnor, "A New Perspective on Stereotypical Gender Differences in Test Scores," The Journal of Economic Perspectives, 23 (2009). Forthcoming.

Rabe-Hesketh, Sophia and Anders Skrondal, Multilevel and Longitudinal Modeling Using Stata, second ed. (College Station, TX: Stata Press, 2008).

Rivkin, Steven G., Eric A. Hanushek, and John F. Kain, "Teachers, Schools and Academic Achievement," Econometrica, 73 (2005), 417-58.

Rothstein, Donna S, "Do Female Faculty Influence Female Students Educational and Labor Market Attainments?," Industrial and Labor Relations Review, 48 (1995), 515-30.

Spencer, Steven J., Claude M. Steele, and Diane M. Quinn, "Stereotype Threat and Womens Math Performance," Journal of Experimental Social Psychology, 35 (1999), 4-28.

Weinberger, Catherine J., "Race and Gender Wage Gaps in the Market for Recent College Graduates," Industrial Relations, 37 (1998), 67-84.
__ , "Mathematical College Majors and the Gender Gap in Wages," Industrial Relations, (1999), 407-413.
__ , "Is Teaching More Girls More Math the Key to Higher Wages?," in Squaring Up: Policy Strategies to Raise Womens Incomes in the U.S., Mary C. King, ed. (The University of Michigan Press, 2001).

Xie, Yu and Kimberlee A. Shauman, Women in Science: Career Processes and Outcomes (Cambridge, MA: Harvard University Press, 2003).

Zafar, Basit, "College Major Choice and the Gender Gap," Working Paper 364, Federal Reserve Bank of New York, 2009.

Figure I: Distribution of Academic Pre-treatment Measures by Gender

Notes: Figures represent the distribution of pre-Academy characteristics by student gender for the USAFA graduating classes of 2001-2008.

Figure II: Math and Science Courses: Distribution of Female Student Pre-treatment Characteristics by Professor Gender

Notes: Figures represent the distribution of pre-Academy characteristics for female students by professor gender for the USAFA graduating classes of 2001-2008.

Figure III: Unconditional Mean Performance by Student and Professor Gender

Section D: Graduate with a Math, Science, or Engineering Major

Notes: Data for the USAFA graduating classes of 2001-2008.

Figure IV: Distribution of Professor Value-Added by Student and Professor Gender

Notes: Figures represent the distribution of professor value-added estimates (Bayes shrinkage) by student and professor gender in introductory math and science courses for the USAFA graduating classes of 2001-2008. .

Table I: Comparison Schools

| | Percent | SAT Verbal | | SAT Math | | 2007 | Percent |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Female | 25 th | 75 th | 25 th | 75 th | Undergraduate
 Enrollment | Admitted |
| Kettering University | 14.9 | 510 | 630 | 600 | 690 | 2,178 | 23.0 |
| Air Force Academy | $\mathbf{1 8 . 6}$ | $\mathbf{5 9 0}$ | $\mathbf{6 7 0}$ | $\mathbf{6 2 0}$ | $\mathbf{7 0 0}$ | $\mathbf{4 , 4 6 1}$ | $\mathbf{1 4 . 0}$ |
| Rose-Hulman Institute of Technology | 20.6 | 560 | 680 | 630 | 710 | 1,936 | 69.7 |
| Rennselaer Polytechnic Institute | 26.6 | 600 | 690 | 650 | 730 | 5,146 | 49.4 |
| Georgia Tech | 28.6 | 590 | 690 | 650 | 730 | 17,936 | 28.0 |
| California Institute of Technology | 30.6 | 700 | 780 | 770 | 800 | 913 | 16.9 |
| Virginia Tech | 41.6 | 530 | 630 | 570 | 670 | 23,041 | 67.1 |
| Case-Western Reserve University | 42.3 | 580 | 690 | 620 | 720 | 4,207 | 74.7 |
| UCLA | 44.7 | 570 | 680 | 610 | 720 | 25,928 | 25.8 |
| University of Illinois at Urbana Champaign | 46.9 | 550 | 670 | 640 | 740 | 31,472 | 71.0 |
| University of Michigan | 50.3 | 590 | 690 | 630 | 730 | 25,555 | 50.3 |
| UC San Diego | 52.6 | 540 | 660 | 600 | 700 | 22,048 | 45.6 |
| University of Virginia | 55.8 | 590 | 700 | 610 | 720 | 15,078 | 35.2 |
| UNC Chapel Hill | 58.7 | 590 | 690 | 610 | 700 | 17,628 | 34.1 |

Notes: Data originally from National Center for Education Statistics (2007-2008)

Table II: Summary Statistics

	Female Students			Male Students		
Student-Level Variables	Observations	Mean	Std. Dev.	Observations	Mean	Std. Dev.
Total Course Hours	1,504	25.71	5.89	7,511	25.56	6.13
Math and Science Core Course Grades (normalized course by semester)	7,547	-0.09	1.00	36,739	0.02	1.00
English and History Core Course Grades (normalized by course by semester)	5,349	0.08	0.99	27,274	-0.02	1.00
Withdraw in First Year	1,504	0.06	0.23	7,511	0.07	0.25
Withdraw in First or Second Year	1,504	0.14	0.35	7,511	0.15	0.36
Take Higher Level Math Elective	1,504	0.35	0.48	7,511	0.51	0.50
Take Higher Level Humanities Elective	1,504	0.25	0.43	7,511	0.22	0.42
Graduate	1,504	0.84	0.37	7,511	0.81	0.39
Graduate with a Math, Science or Engineering Degree	1,504	0.41	0.49	7,511	0.46	0.50
Graduate with a Math, Science or Engineering Degree (excludes biological sciences)	1,504	0.25	0.43	7,511	0.41	0.49
Graduate with a Humanities Degree	1,504	0.10	0.30	7,511	0.07	0.26
Proportion Female Professors (Introductory Math \& Science)	1,492	0.23	0.27	7,430	0.23	0.28
Proportion Female Professors (Introductory Humanities)	1,489	0.16	0.28	7,437	0.15	0.27
SAT Verbal	1,504	637.65	67.08	7,511	630.05	64.41
SAT Math	1,504	650.21	59.72	7,511	666.40	61.24
Academic Composite	1,504	1311.22	197.09	7,510	1262.30	216.75
Algebra/Trigonometry Placement Score	1,496	59.89	19.13	7,461	62.79	19.39
Leadership Composite	1,503	17.65	1.92	7,503	17.23	1.83
Fitness Score	1,502	4.67	0.92	7,510	4.86	0.94
Black	1,504	0.07	0.25	7,511	0.05	0.21
Hispanic	1,504	0.08	0.27	7,511	0.07	0.25
Asian	1,504	0.07	0.26	7,511	0.04	0.20
Recruited Athlete	1,504	0.31	0.46	7,511	0.26	0.44
Attended Preparatory School	1,504	0.16	0.36	7,511	0.21	0.41
Math, Physics, and Chemistry Introductory Courses	Female Professors			Male Professors		
Professor-Level Variables	Observations	Mean	Std. Dev.	Observations	Mean	Std. Dev.
Number of Sections Per Instructor	47	6.09	4.29	202	4.61	3.36
Instructor is a Lecturer	47	0.57	0.50	200	0.42	0.49
Instructor is an Assistant Professor	47	0.30	0.46	200	0.37	0.48
Instructor is an Associate/Full Professor	47	0.13	0.34	202	0.22	0.42
Instructor has a Terminal Degree	47	0.28	0.45	199	0.43	0.50
Instructor's Teaching Experience	47	3.17	3.16	199	4.81	6.05
Class-Level Variables	Observations	Mean	Std. Dev.	Observations	Mean	Std. Dev.
Class Size	286	19.18	3.10	935	18.97	3.97
Average Number of Female Students	286	3.31	1.81	935	3.26	1.99
Average Class SAT Verbal	286	625.16	22.55	935	625.78	27.04
Average Class SAT Math	286	653.42	28.69	935	651.26	32.60
Average Class Academic Composite	286	12.47	0.89	935	12.40	1.02
Average Class Algebra/Trig Score	286	58.03	11.97	935	56.58	12.24
English and History Introductory Courses		Professo		Male Professors		
Professor-Level Variables	Observations	Mean	Std. Dev.	Observations	Mean	Std. Dev.
Number of Sections Per Instructor	24	6.92	5.77	88	8.93	7.42
Instructor is a Lecturer	24	0.54	0.51	88	0.52	0.50
Instructor is an Assistant Professor	24	0.42	0.50	88	0.33	0.47
Instructor is an Associate/Full Professor	24	0.04	0.20	88	0.15	0.36
Instructor has a Terminal Degree	24	0.17	0.38	88	0.32	0.47
Instructor's Teaching Experience	24	3.35	3.31	88	4.42	5.04
Class-Level Variables	Observations	Mean	Std. Dev.	Observations	Mean	Std. Dev.
Class Size	166	15.14	4.86	786	16.10	3.89
Average Number of Female Students	166	2.58	1.83	786	2.58	1.74
Average Class SAT Verbal	166	623.12	28.18	786	627.88	27.89
Average Class SAT Math	166	659.01	28.34	786	662.25	27.21
Average Class Academic Composite	166	12.75	0.94	786	12.64	0.96
Average Class Algebra/Trig Score	166	61.67	8.57	786	61.92	8.03

Table III: Randomness Check Regressions of Faculty Gender on Student Characteristics

Panel A. Math and Science Courses	All Students		$\begin{gathered} \text { SAT Math }<=660 \\ \text { (median) } \end{gathered}$		$\begin{aligned} & \text { SAT Math }>660 \\ & (\text { median }) \end{aligned}$		$\begin{gathered} \text { SAT Math }>700 \\ (75 \text { th pctile }) \end{gathered}$	
	Male \& Female	Female						
Specification	1	2	3	4	5	6	7	8
Female Student	$\begin{gathered} \hline 0.003 \\ (0.008) \end{gathered}$	NA	$\begin{gathered} \hline 0.005 \\ (0.008) \end{gathered}$	NA	$\begin{gathered} \hline \hline-0.001 \\ (0.012) \end{gathered}$	NA	$\begin{gathered} \hline \hline 0.022 \\ (0.023) \end{gathered}$	NA
SAT Verbal	$\begin{aligned} & -0.005 \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.019 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.01 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.046^{* *} \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.019 \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.038 \\ & (0.026) \end{aligned}$
SAT Math	$\begin{aligned} & -0.001 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.059 \\ (0.042) \end{gathered}$	$\begin{aligned} & -0.041 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.038 \\ & (0.090) \end{aligned}$
Academic Composite	$\begin{gathered} 0.231 \\ (0.262) \end{gathered}$	$\begin{gathered} 0.321 \\ (0.450) \end{gathered}$	$\begin{gathered} 0.512 \\ (0.356) \end{gathered}$	$\begin{gathered} 0.743 \\ (0.579) \end{gathered}$	$\begin{aligned} & -0.256 \\ & (0.303) \end{aligned}$	$\begin{aligned} & -0.514 \\ & (0.648) \end{aligned}$	$\begin{aligned} & -0.253 \\ & (0.413) \end{aligned}$	$\begin{aligned} & -1.921^{*} \\ & (1.055) \end{aligned}$
Algebra/Trig Placement	$\begin{gathered} 0.068 \\ (0.064) \\ \hline \end{gathered}$	$\begin{gathered} 0.083 \\ (0.074) \\ \hline \end{gathered}$	$\begin{gathered} 0.06 \\ (0.063) \\ \hline \end{gathered}$	$\begin{gathered} 0.061 \\ (0.073) \\ \hline \end{gathered}$	$\begin{gathered} 0.07 \\ (0.075) \\ \hline \end{gathered}$	$\begin{gathered} 0.103 \\ (0.102) \\ \hline \end{gathered}$	$\begin{gathered} 0.063 \\ (0.087) \\ \hline \end{gathered}$	$\begin{gathered} -0.016 \\ (0.175) \\ \hline \end{gathered}$
Observations	23,056	3,963	13,861	2,721	9,195	1,242	4,046	489
P-Value: Joint significance of all individual covariates	0.626	0.210	0.714	0.676	0.419	0.135	0.684	0.021
Panel B. Humanities Courses	All Stud		SAT Math (medi		SAT Math (medi		SAT Math (75th pc	
	Male \& Female	Female						
Specification	1	2	3	4	5	6	7	8
Female Student	$\begin{gathered} \hline 0.011 \\ (0.009) \end{gathered}$	NA	$\begin{gathered} \hline 0.019^{*} \\ (0.010) \end{gathered}$	NA	$\begin{gathered} \hline \hline-0.002 \\ (0.014) \end{gathered}$	NA	$\begin{gathered} \hline 0.002 \\ (0.021) \end{gathered}$	NA
SAT Verbal	$\begin{aligned} & -0.008 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.051^{* *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.044^{* *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.057^{* *} \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.02 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.031) \end{aligned}$
SAT Math	$\begin{gathered} 0.007 \\ (0.007) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.018) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.012) \end{gathered}$	$\begin{gathered} 0 \\ (0.036) \end{gathered}$	$\begin{gathered} -0.02 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.032 \\ & (0.073) \end{aligned}$
Academic Composite	$\begin{gathered} 0.372 \\ (0.289) \end{gathered}$	$\begin{gathered} 0.710^{*} \\ (0.388) \end{gathered}$	$\begin{gathered} 0.292 \\ (0.319) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.532) \end{gathered}$	$\begin{gathered} 0.525 \\ (0.390) \end{gathered}$	$\begin{gathered} 0.678 \\ (0.889) \end{gathered}$	$\begin{gathered} 0.613 \\ (0.535) \end{gathered}$	$\begin{gathered} 0.55 \\ (1.155) \end{gathered}$
Algebra/Trig Placement	$\begin{gathered} 0.007 \\ (0.024) \\ \hline \end{gathered}$	$\begin{gathered} 0.081 \\ (0.068) \\ \hline \end{gathered}$	$\begin{gathered} 0.02 \\ (0.031) \\ \hline \end{gathered}$	$\begin{gathered} 0.037 \\ (0.071) \\ \hline \end{gathered}$	$\begin{array}{r} -0.008 \\ (0.029) \\ \hline \end{array}$	$\begin{gathered} 0.158 \\ (0.103) \\ \hline \end{gathered}$	$\begin{gathered} 0.041 \\ (0.048) \end{gathered}$	$\begin{array}{r} -0.016 \\ (0.171) \\ \hline \end{array}$
Observations	15,044	2,438	8,071	1,560	6,973	878	3,396	380
P-Value: Joint significance of all individual covariates	0.362	0.145	0.116	0.245	0.731	0.441	0.797	0.223

Notes: Each specification represents results for a regression where the dependent variable is an indicator variable for female faculty. The SAT Verbal, SAT Math, Academic Composite, and Algebra/Trig Placement variables were divided by 100 prior to running the regression. For brevity, coefficients for indicators for black, Hispanic, Asian, recruited athlete, and attended a preparatory school are not shown. Standard errors are clustered at the professor level. * Significant at the 0.10 level, ** Significant at the 0.05 level, *** Significant at the 0.01 level.
Table IV: Math and Science Introductory Course Professor Gender Effects on Initial Course Performance

Table V: Math and Science Introductory Course Professor Gender Effects on Longer-term Outcomes

Panel A. All Students					
Specification	1	2	3	4	5
Outcome	Follow-on STEM Course Performance	Withdraw in First 2-Years	Take Higher Level Math	Graduate	th STEM
Proportion of Professors Female (Introductory Courses)	$\begin{aligned} & \hline-0.048^{*} \\ & (0.027) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.015) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.019) \end{gathered}$	$\begin{gathered} \hline 0.022 \\ (0.019) \end{gathered}$	$\begin{gathered} \hline 0.010 \\ (0.019) \end{gathered}$
Female Student	$\begin{gathered} -0.046^{*} * \\ (0.022) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.013) \end{gathered}$	$\begin{gathered} -0.140 * * * \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.032^{*} \\ & (0.017) \end{aligned}$	$\begin{gathered} -0.136^{* * *} \\ (0.016) \end{gathered}$
Female Student * Proportion of Professors Female	$\begin{gathered} 0.032 \\ (0.062) \end{gathered}$	$\begin{gathered} -0.049 \\ (0.036) \end{gathered}$	$\begin{aligned} & 0.078^{*} \\ & (0.045) \end{aligned}$	$\begin{gathered} 0.030 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.046) \end{gathered}$
Observations	58,929	8,851	8,851	8,851	8,851
Dependent Variable Mean/Std Dev (Female Students)	$\begin{gathered} -0.021 \\ (0.976) \end{gathered}$	$\begin{gathered} 0.140 \\ (0.347) \end{gathered}$	$\begin{gathered} 0.350 \\ (0.477) \end{gathered}$	$\begin{gathered} 0.412 \\ (0.492) \end{gathered}$	$\begin{gathered} 0.247 \\ (0.431) \end{gathered}$
Dependent Variable Mean/Std Dev (Male Students)	$\begin{gathered} 0.004 \\ (1.002) \\ \hline \end{gathered}$	$\begin{gathered} 0.150 \\ (0.358) \\ \hline \end{gathered}$	$\begin{gathered} 0.508 \\ (0.500) \\ \hline \end{gathered}$	$\begin{gathered} 0.461 \\ (0.499) \\ \hline \end{gathered}$	$\begin{gathered} 0.407 \\ (0.491) \\ \hline \end{gathered}$
Panel B. SAT Math $<=660$ (median)					
Specification	1	2	3	4	5
Proportion of Professors Female (Introductory Courses)	$\begin{gathered} \hline \hline-0.001 \\ (0.041) \end{gathered}$	$\begin{gathered} \hline \hline 0.024 \\ (0.024) \end{gathered}$	$\begin{aligned} & \hline \hline 0.050^{*} \\ & (0.028) \end{aligned}$	$\begin{aligned} & \hline 0.053^{*} \\ & (0.029) \end{aligned}$	$\begin{gathered} \hline 0.064 * * \\ (0.027) \end{gathered}$
Female Student	$\begin{gathered} -0.034 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.118^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.099^{* * *} \\ (0.021) \end{gathered}$
Female Student * Proportion of Professors Female	$\begin{gathered} -0.070 \\ (0.089) \end{gathered}$	$\begin{gathered} -0.025 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.063) \end{gathered}$	$\begin{gathered} -0.071 \\ (0.065) \end{gathered}$	$\begin{gathered} -0.086 \\ (0.060) \end{gathered}$
Observations	31,517	4,673	4,673	4,673	4,673
Dependent Variable Mean/Std Dev	-0.228	0.159	0.241	0.314	0.161
(Female Students)	(0.948)	(0.366)	(0.428)	(0.464)	(0.368)
Dependent Variable Mean/Std Dev	-0.246	0.169	0.350	0.335	0.281
(Male Students)	(0.975)	(0.375)	(0.477)	(0.472)	(0.450)
Panel C. SAT Math > 660 (median)					
Specification	1	2	3	4	5
Proportion of Professors Female (Introductory Courses)	$\begin{gathered} \hline \hline-0.080^{* *} \\ (0.033) \end{gathered}$	$\begin{gathered} \hline 0.002 \\ (0.019) \end{gathered}$	$\begin{aligned} & \hline-0.030 \\ & (0.025) \end{aligned}$	$\begin{gathered} \hline 0.003 \\ (0.026) \end{gathered}$	$\begin{gathered} \hline-0.028 \\ (0.026) \end{gathered}$
Female Student	$\begin{aligned} & -0.065^{*} \\ & (0.032) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.169 * * * \\ (0.026) \end{gathered}$	$\begin{gathered} -0.057 * * \\ (0.027) \end{gathered}$	$\begin{gathered} -0.179 * * * \\ (0.027) \end{gathered}$
Female Student * Proportion of Professors Female	$\begin{gathered} 0.157 * * \\ (0.080) \end{gathered}$	$\begin{gathered} -0.080 \\ (0.050) \end{gathered}$	$\begin{gathered} 0.136^{* *} \\ (0.066) \end{gathered}$	$\begin{gathered} 0.140^{* *} \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 0.155^{* *} \\ (0.070) \end{gathered}$
Observations	27,414	4,178	4,178	4,178	4,178
Dependent Variable Mean/Std Dev	0.315	0.109	0.526	0.569	0.384
(Female Students)	(0.925)	(0.312)	(0.500)	(0.496)	(0.487)
Dependent Variable Mean/Std Dev (Male Students)	$\begin{gathered} 0.268 \\ (0.961) \\ \hline \end{gathered}$	$\begin{gathered} 0.131 \\ (0.338) \\ \hline \end{gathered}$	$\begin{gathered} 0.670 \\ (0.470) \\ \hline \end{gathered}$	$\begin{array}{r} 0.589 \\ (0.492) \\ \hline \end{array}$	$\begin{gathered} 0.535 \\ (0.499) \\ \hline \end{gathered}$
Panel D. SAT Math >700 (75th pctile)					
Specification	1	2	3	4	5
Proportion of Professors Female (Introductory Courses)	$\begin{gathered} \hline \hline-0.104^{* * *} \\ (0.041) \end{gathered}$	$\begin{gathered} \hline-0.010 \\ (0.025) \end{gathered}$	$\begin{gathered} \hline \hline-0.018 \\ (0.033) \end{gathered}$	$\begin{gathered} \hline 0.036 \\ (0.036) \end{gathered}$	$\begin{gathered} \hline 0.021 \\ (0.037) \end{gathered}$
Female Student	$\begin{gathered} -0.104^{*} * \\ (0.045) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.029) \end{gathered}$	$\begin{gathered} -0.235 * * * \\ (0.037) \end{gathered}$	$\begin{aligned} & -0.071^{*} \\ & (0.041) \end{aligned}$	$\begin{gathered} -0.265^{* * *} \\ (0.042) \end{gathered}$
Female Student * Proportion of Professors Female	$\begin{gathered} 0.228^{* *} \\ (0.102) \end{gathered}$	$\begin{gathered} -0.096 \\ (0.069) \\ \hline \end{gathered}$	$\begin{gathered} 0.193 * * \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 0.110 \\ (0.099) \\ \hline \end{gathered}$	$\begin{gathered} 0.258^{* * *} \\ (0.101) \\ \hline \end{gathered}$
Observations	13,110	2,040	2,040	2,040	2,040
Dependent Variable Mean/Std Dev	0.462	0.116	0.564	0.610	0.398
(Female Students) Dependent Variable Mean/Std Dev (Male Students)	$\begin{gathered} (0.879) \\ 0.429 \\ (0.920) \\ \hline \end{gathered}$	$\begin{gathered} (0.321) \\ 0.118 \\ (0.323) \\ \hline \end{gathered}$	$\begin{array}{r} (0.497) \\ 0.7498 \\ (0.434) \\ \hline \end{array}$	$\begin{gathered} (0.489) \\ 0.648 \\ (0.478) \\ \hline \end{gathered}$	$\begin{gathered} (0.490) \\ 0.600 \\ (0.490) \\ \hline \end{gathered}$

Notes: * Significant at the 0.10 level, ** Significant at the 0.05 level, ${ }^{* * *}$ Significant at the 0.01 level. Robust standard errors in parentheses are clustered by student in Specification 2.
Control Variables: Graduation class fixed effects. Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. Introductory course proportion of professors who are associate or full professors, mean teaching experience, and proportion with a terminal degree. For Specification 2 we also include course by semester by section fixed effects.

[^14]Table VI: English and History Introductory Course Professor Gender Effects

Outcome	Initial Course Performance	Follow-on Course Performance	Take Higher Level Humanities	Graduate with Humanities Degree	Take Higher Level Math	Graduate with STEM Degree ${ }^{+}$
Panel A. All Students	1	2	3	4	5	6
Proportion of Professors Female (Introductory Courses)	$\begin{gathered} \hline \hline-0.113^{*} \\ (0.064) \end{gathered}$	$\begin{gathered} \hline \hline-0.008 \\ (0.038) \end{gathered}$	$\begin{gathered} \hline-0.016 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline \hline-0.002 \\ (0.012) \end{gathered}$	$\begin{gathered} \hline \hline 0.008 \\ (0.019) \end{gathered}$	$\begin{aligned} & \hline \hline-0.007 \\ & (0.020) \end{aligned}$
Female Student	$\begin{gathered} -0.018 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.019 * * \\ (0.009) \end{gathered}$	$\begin{gathered} -0.110^{* * *} \\ (0.015) \end{gathered}$	$\begin{gathered} -0.123^{* * *} \\ (0.015) \end{gathered}$
Female Student * Proportion of Professors	0.028	-0.098	0.019	-0.009	-0.087*	-0.043
Female	(0.074)	(0.078)	(0.042)	(0.027)	(0.045)	(0.045)
Observations	15,044	13,661	8,720	8,720	8,720	8,720
Panel B. SAT Math $<=660$ (Median)	1	2	3	4	5	6
Proportion of Professors Female	-0.107	-0.014	-0.041	0.004	0.028	-0.076
(Introductory Courses)	(0.065)	(0.050)	(0.028)	(0.018)	(0.027)	(0.055)
Female Student	-0.064	-0.018	0.026	0.019	$-0.094 * * *$	-0.109***
Female Student	(0.040)	(0.032)	(0.019)	(0.012)	(0.019)	(0.018)
Female Student * Proportion of Professors	-0.009	-0.027	0.015	-0.0004	-0.122**	0.076
Female	(0.008)	(0.102)	(0.059)	(0.038)	(0.058)	(0.055)
Observations	8,071	7,244	4,619	4,619	4,619	4,619
Panel C. SAT Math > 660 (Median)	1	2	3	4	5	6
Proportion of Professors Female (Introductory Courses)	$\begin{aligned} & \hline-0.115^{*} \\ & (0.068) \end{aligned}$	$\begin{gathered} \hline-0.028 \\ (0.054) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.023) \end{gathered}$	$\begin{gathered} \hline-0.009 \\ (0.015) \end{gathered}$	$\begin{aligned} & \hline-0.016 \\ & (0.028) \end{aligned}$	$\begin{gathered} \hline-0.024 \\ (0.030) \end{gathered}$
Female Student	0.050	0.077*	0.011	0.019	$-0.135 * * *$	$-0.145^{* * *}$
Female Student	(0.045)	(0.041)	(0.019)	(0.013)	(0.023)	(0.025)
Female Student * Proportion of Professors	0.086	-0.102	0.047	-0.024	-0.048	-0.005
Female	(0.083)	(0.122)	(0.058)	(0.038)	(0.070)	(0.075)
Observations	6,973	6,417	4,101	4,101	4,101	4,101
Panel D. SAT Math > 700 (75th pctile)	1	2	3	4	5	6
Proportion of Professors Female	-0.101	-0.087	0.005	-0.007	-0.017	-0.026
(Introductory Courses)	(0.073)	(0.073)	(0.030)	(0.019)	(0.037)	(0.042)
Female Student	0.021	0.110*	0.007	-0.0003	-0.187***	-0.209***
	(0.052)	(0.061)	(0.027)	(0.017)	(0.034)	(0.038)
Female Student * Proportion of Professors	0.083	-0.137	0.101	0.048	-0.026	0.038
Female	(0.104)	(0.177)	(0.079)	(0.048)	(0.097)	(0.109)
Observations	3,396	3,155	1,997	1,997	1,997	1,997

Notes: * Significant at the 0.10 level, ${ }^{* *}$ Significant at the 0.05 level, ${ }^{* * *}$ Significant at the 0.01 level. For Specification 1 standard errors are clustered by professor. For Specification 2 standard errors are clustered by student.

Control Variables: Graduation class fixed effects. Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. For Specifications 1 and 2 we control for the academic rank, teaching experience, and terminal degree status of the professor. For Specifications 3-5 we control for the introductory course proportion of professors who are associate or full professors, mean teaching experience, and proportion with a terminal degree. For Specification 1 we include a course by semester fixed effect. For Specification 2 we include course by semester by section fixed effects.
${ }^{+}$Excludes biological sciences.

Table VII: Contemporaneous Effects of Professor Gender in Follow-on Courses

Panel A. All Students			
Specification	1	2	3
Outcome	Course Grade	Take Higher	Graduate with
		Level Math	

Notes: The dependent variable in all specifications is the normalized grade in the course. * Significant at the 0.10 level, ${ }^{* *}$ Significant at the 0.05 level, ${ }^{* * *}$ Significant at the 0.01 level. Robust standard errors in parentheses are clustered by instructor.

Control Variables: Contemporanous course by semester fixed effects, graduation class fixed effects, and course time of day fixed fixed effects. Introductory course by semester by section fixed effects. Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. Professor-level academic rank dummies, teaching experience, and terminal degree status dummy.

+ Excludes biological sciences.

Table VIII: Math and Science Introductory Course Professor Gender Effects with Additional Controls

Panel A. All Students						
Specification	1	2	3	4	5	6
Outcome	Introductory Course Performance	Follow-on STEM Course Performance	Withdraw in First 2-Years	Take Higher Level Math	Graduate w	M Degree ${ }^{+}$
Female Student * Proportion of Professors Female	$\begin{gathered} \hline 0.098 * * \\ (0.040) \end{gathered}$	$\begin{gathered} \hline 0.038 \\ (0.064) \end{gathered}$	$\begin{gathered} \hline-0.051 \\ (0.037) \end{gathered}$	$\begin{aligned} & \hline 0.076^{*} \\ & (0.046) \end{aligned}$	$\begin{gathered} \hline 0.036 \\ (0.048) \end{gathered}$	$\begin{gathered} \hline 0.047 \\ (0.047) \\ \hline \end{gathered}$
Observations Dependent Variable Mean/Std Dev (Female Students) Dependent Variable Mean/Std Dev (Male Students)	22,956 -0.122 (1.018) 0.026 (0.994)	$\begin{gathered} \hline 58,929 \\ -0.021 \\ (0.976) \\ 0.004 \\ (1.002) \\ \hline \end{gathered}$	8,851 0.140 (0.347) 0.150 (0.358)	8,851 0.350 (0.477) 0.508 (0.500)	8,851 0.412 (0.492) 0.461 (0.499)	8,851 0.247 (0.431) 0.407 (0.491)
Panel B. SAT Math $<=660$ (median)						
Specification	1	2	3	4	5	6
Female Student * Proportion of Professors Female	$\begin{aligned} & \hline 0.080^{*} \\ & (0.044) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.072 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.022 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.015 \\ (0.064) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.069 \\ (0.066) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.066 \\ (0.061) \\ \hline \end{gathered}$
Observations Dependent Variable Mean/Std Dev (Female Students) Dependent Variable Mean/Std Dev (Male Students)	$\begin{gathered} \hline 13,778 \\ -0.291 \\ (1.014) \\ -0.186 \\ (0.984) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31,517 \\ -0.228 \\ (0.948) \\ -0.246 \\ (0.975) \\ \hline \end{gathered}$	4,673 0.159 (0.366) 0.169 (0.375)	4,673 0.241 (0.428) 0.350 (0.477)	4,673 0.314 (0.464) 0.335 (0.472)	4,673 0.161 (0.368) 0.281 (0.450)
Panel C. SAT Math >660 (median)						
Specification	1	2	3	4	5	6
Female Student * Proportion of Professors Female	$\begin{aligned} & \hline 0.133^{*} \\ & (0.070) \end{aligned}$	$\begin{gathered} \hline 0.204 * * \\ (0.081) \end{gathered}$	$\begin{gathered} \hline-0.082 \\ (0.051) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.138 * * \\ (0.069) \end{gathered}$	$\begin{aligned} & \hline 0.140^{*} \\ & (0.072) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.164 * * \\ (0.073) \\ \hline \end{gathered}$
Observations Dependent Variable Mean/Std Dev (Female Students) Dependent Variable Mean/Std Dev (Male Students)	9,178 0.247 (0.925) 0.321 (0.929)	$\begin{gathered} \hline 27,414 \\ 0.315 \\ (0.925) \\ 0.268 \\ (0.961) \\ \hline \end{gathered}$	4,178 0.109 (0.312) 0.131 (0.338)	4,178 0.526 (0.500) 0.670 (0.470)	4,178 0.569 (0.496) 0.589 (0.492)	4,178 0.384 (0.487) 0.535 (0.499)
Panel D. SAT Math >700 (75th pctile)						
Specification	1	2	3	4	5	6
Female Student * Proportion of Professors Female	$\begin{gathered} \hline 0.211^{* *} \\ (0.086) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.274 * * \\ (0.110) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline-0.094 \\ (0.074) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline 0.183^{*} \\ & (0.097) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline 0.073 \\ (0.106) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 0.239^{* *} \\ (0.108) \\ \hline \end{gathered}$
Observations Dependent Variable Mean/Std Dev (Female Students) Dependent Variable Mean/Std Dev (Male Students)	$\begin{gathered} \hline 4,043 \\ 0.420 \\ (0.891) \\ 0.502 \\ (0.846) \\ \hline \end{gathered}$	13,110 0.462 (0.879) 0.429 (0.920)	2,040 0.116 (0.321) 0.118 (0.323)	2,040 0.564 (0.497) 0.7498 (0.434)	2,040 0.610 (0.489) 0.648 (0.478)	2,040 0.398 (0.490) 0.600 (0.490)

Notes: * Significant at the 0.10 level, ${ }^{* *}$ Significant at the 0.05 level, *** Significant at the 0.01 level. Robust standard errors in parentheses are clustered by professor in Specification 1 and student in Specification 2. For Specification 1 the female faculty and value-added variables correspond to the professor who taught the initial course.
Control Variables: Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. Introductory course proportion of professors who are associate or full professors, mean teaching experience, and proportion with a terminal degree. Graduation class by gender fixed effects. Interactions between the professor-level variables and student gender. Interactions between the professor-level variables and professor gender. Interactions of student gender and all individual-level controls. For Specification 1 we include course by semester fixed effects. For Specification 2 we include course by semester by section fixed effects.
${ }^{+}$Excludes biological sciences.
Student Gender

Sample	Panel A. All Students				Panel B. SAT Math $<=660$ (median)			
Outcome	Introductory Course Performance	Follow-on STEM Course Performance	Take Higher Level Math	Graduate with STEM Degree	Introductory Course Performance	Follow-on STEM Course Performance	Take Higher Level Math	Graduate with STEM Degree
Specification	1	2	3	4	1	2	3	4
Female Student Coefficients								
Female Student * Proportion of Professors Female	$\begin{aligned} & 0.079 * * \\ & (0.038) \end{aligned}$	$\begin{gathered} 0.029 \\ (0.063) \end{gathered}$	$\begin{aligned} & 0.084^{*} \\ & (0.046) \end{aligned}$	$\begin{gathered} 0.041 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.043) \end{gathered}$	$\begin{gathered} -0.060 \\ (0.089) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.063) \end{gathered}$	$\begin{gathered} -0.082 \\ (0.060) \end{gathered}$
Mean Initial Course Professor Value-Added for Female Students	0.040**	-0.013	$-0.045^{* *}$	-0.013	0.028	-0.021	-0.047^{*}	-0.015
Mean Initial Course Professor Value-Added for Male Students	(0.019) 0.044*** (0.015)	$\begin{gathered} (0.025) \\ 0.009 \\ (0.25) \end{gathered}$	$\begin{gathered} (0.020) \\ 0.014 \\ (0.018) \end{gathered}$	$\begin{gathered} (0.020) \\ 0.024 \\ (0.018) \end{gathered}$	(0.022) $0.043^{* * *}$ (0.016)	$\begin{gathered} (0.034) \\ 0.032 \\ (0.033) \end{gathered}$	$\begin{gathered} (0.026) \\ 0.019 \\ (0.023) \end{gathered}$	$\begin{gathered} (0.025) \\ 0.016 \\ (0.022) \end{gathered}$
Male Student Coefficients								
Mean Proportion of Professors Female	-0.030**	-0.049*	0.003	0.012	-0.029	-0.006	0.048*	0.063**
	(0.014)	(0.027)	(0.019)	(0.019)	(0.019)	(0.041)	(0.028)	(0.027)
Mean Initial Course Professor Value-Added for Female Students	0.013*	0.010	0.004	-0.006	0.011	0.025	0.002	-0.002
	(0.007)	(0.012)	(0.008)	(0.008)	(0.010)	(0.018)	(0.013)	(0.011)
Mean Initial Course Professor Value-Added for Male Students	0.080***	-0.016	0.0004	0.001	0.078***	-0.020	-0.006	-0.002
	(0.008)	(0.011)	(0.008)	(0.008)	(0.010)	(0.017)	(0.012)	(0.011)
Observations	22,342	58,493	8,770	8,770	13,433	31,490	4,668	4,668
Sample	Panel C. SAT Math > 660 (median)				Panel D. SAT Math > 700 (75th pctile)			
Specification	1	2	3	4	1	2	3	4
Female Student Coefficients								
Female Student * Proportion of Professors Female	0.106	0.137*	0.144**	0.179**	0.157**	0.215**	0.216**	0.294***
	(0.069)	(0.081)	(0.068)	(0.072)	(0.076)	(0.106)	(0.093)	(0.103)
Mean Initial Course Professor Value-Added for Female Students	0.062**	-0.017	-0.045	-0.010	0.034	0.020	-0.071*	-0.008
	(0.029)	(0.033)	(0.030)	(0.032)	(0.035)	(0.047)	(0.041)	(0.045)
Mean Initial Course Professor Value-Added for Male Students	0.052*	-0.014	0.011	0.038	0.049	-0.023	0.019	0.076
	(0.029)	(0.033)	(0.028)	(0.029)	(0.040)	(0.046)	(0.039)	(0.043)
Male Student Coefficients								
Mean Proportion of Professors Female	-0.032	-0.077**	-0.028	-0.026	-0.008	-0.099**	-0.018	0.024
	(0.021)	(0.033)	(0.025)	(0.027)	(0.028)	(0.041)	(0.033)	(0.037)
Mean Initial Course Professor Value-Added for Female Students	0.015*	0.001	0.003	-0.013	-0.014	-0.013	0.011	-0.015
	(0.011)	(0.015)	(0.012)	(0.012)	(0.016)	(0.019)	(0.015)	(0.017)
Mean Initial Course Professor Value-Added for Male Students	$0.081^{* * *}$	-0.010	0.010	0.006	0.090***	0.008	0.009	0.010
	(0.012)	(0.014)	(0.011)	(0.012)	(0.016)	(0.018)	(0.014)	(0.016)
Observations	8,909	27,003	4,102	4,102	3,912	12,806	1,984	1,984
Notes: * Significant at the 0.10 level, ${ }^{* *}$ Significant at the 0.05 level, ${ }^{* * *}$ Significant at the 0.01 level.								
Specification 1: The female faculty and value-added variables correspond to the professor who taught the initial course. Standard errors are clustered by professor. Control variables: Course by semester fixed effects, graduation class fixed effects, and course time of day fixed effects. Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. Introductory course professor-level academic rank, teaching experience, and terminal degree status. Specifications 2-4: Standard errors are clustered by student. Control Variables: Graduation class fixed effects. Individual-level SAT verbal, SAT math, academic composite, leadership composite, fitness score, algebra/trig placement score and indicator variables for students who are black, Hispanic, Asian, female, recruited athlete, and attended a preparatory school. Introductory course proportion of professors who are associate or full professors, mean teaching experience, and proportion with a terminal degree. For Specification 2 we also include course by semester by section fixed effects.								

[^0]: *JEL Classifications: I20; Key Words: Gender Gap, Postsecondary Education, STEM
 Thanks go to USAFA personnel: J. Putnam, D. Stockburger, R. Schreiner, K. Carson and P. Egleston for assistance in obtaining the data for this project, and to Deb West for data entry. Thanks also go to Charlie Brown, Caroline Hoxby, Deborah Niemeier, Kim Shauman, Douglas Staiger, Catherine Weinberger and seminar participants at the NBER Higher Education Working Group, PPIC, SDSU, UC Davis, UC Irvine, UC Santa Barbara, UC Santa Cruz, and University of Washington for their helpful comments and suggestions. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the USAF, DoD, or the U.S. Government.

[^1]: ${ }^{1}$ Among young workers in STEM careers, the fraction who are women is higher. For example, among STEM workers ages $30-39$, 40 percent are female. This statistic, however, includes women in the biological sciences, who comprise the majority of female STEM workers. Statistics from the National Science Foundation suggest that the gender gap in many STEM careers will continue to persist among young cohorts. For example, in 2002, women received only 21 percent of bachelor's degrees awarded in engineering, 27 percent in computer science, and 43 percent in physical science.
 ${ }^{2}$ Some recent work by Ellison and Swanson (2009) and Pope and Sydnor (2009) suggests that there may be gender differences at the very upper tail of the ability distribution.

[^2]: ${ }^{3}$ While the students in Hoffman and Oreopoulos's dataset are not randomly assigned and do not take mandatory STEM courses, their dataset has one similarity to ours: course grades are determined by a general exam that is given to all students enrolled in the course, regardless of which professor they have taken the course from.

[^3]: ${ }^{4}$ Special exceptions are given for religious missions, medical "set-backs", and other instances beyond the control of the individual.
 ${ }^{5}$ See http://professionals.collegeboard.com/profdownload/sat_percentile_ranks_2008.pdf for SAT score distributions.
 ${ }^{6}$ See the National Center for Education Statistics: http://nces.ed.gov/globallocator/

[^4]: ${ }^{7}$ Barron, Ewing and Waddell (2000) find a positive correlation between athletic participation and educational attainment and Carrell, Fullerton and West (2009) find a positive correlation between fitness scores and academic achievement.

[^5]: ${ }^{8}$ Course descriptions for Math 130, 141, 142; Physics 110, 221; Chemistry 141, 142; History 101, 202; English 111, 211; and the required engineering courses (aeronautical, astronautical, electrical, mechanical, civil, and thermo dynamics) can be found at: http://www.usafa.edu/df/dfr/curriculum/CHB.pdf. Additionally, Carrell and West (2008), Table II, provides a list of the required STEM courses at USAFA.
 ${ }^{9}$ Figures for STEM major exclude the biological sciences, which require less mathematics and have historically higher rates of female participation. When including biological sciences the gender difference is smaller (40 vs. 45 percent).
 ${ }^{10}$ We were only able to obtain the professor observable data for the mathematics, chemistry, physics, English, and history departments. Hence, we focus our analysis on these courses.

[^6]: 11 The USAFA Registrar employs a stratified random assignment algorithm to place students into sections within each course and semester. The algorithm first assigns all female students evenly throughout all offered sections, then places male-recruited athletes, and then assigns all remaining students. Within each group (i.e., female, maleathlete, and all remaining males), assignments are random. The one exception is introductory chemistry, where the 92 lowest ability freshman students each year are ability grouped into four separate sections and are taught by the most experienced professors. Our results are not sensitive to the exclusion of these sections.
 ${ }^{12}$ The one exception is that in some core courses at USAFA, 5 to 10-percent of the overall course grade is earned by professor/section specific quizzes and/or class participation. Among the introductory courses we examine in this study, grades in calculus were not based on any professor specific assignments between 2000 and 2007. Introductory physics professors were allowed to establish 5 -percent of the course grade and introductory chemistry professors were allowed to establish 4-percent of the course grade. The introductory course effects we find do not vary significantly across math, chemistry, and physics courses; hence, we believe that the subjective portion of course grades has very little influence on our estimates.

[^7]: ${ }^{13}$ The estimated effect is not statistically significant across all of the subsamples indicated in Columns 3-6 or across all of the specifications that we use in our robustness analyses.

[^8]: ${ }^{14}$ The improvements in initial course grade are unlikely to result from female instructors engaging in preferential treatment. In the math courses that we study, all exams are graded by a team of faculty and these grades form the basis of their course grade. In all courses, the final grade-cut lines are not determined by the faculty member. To formally test this, we were able to obtain the percentage of points earned in the course for a two-thirds subset of our data. We found nearly identical results when using this continuous data compared to the categorical data. For example, the magnitude of the female student \times female professor interaction variable for the highest ability students (Table 4, Column 7) is 0.172 for the categorical data and 0.192 for the continuous data.

[^9]: ${ }^{15}$ The attrition results we present in Table V show attrition after the second year; however, results are qualitatively similar for 1 -year and 4 -year attrition. See footnote 12 for a list of the required follow-on coursework.
 ${ }^{16}$ We find qualitatively similar results when we also exclude environmental engineering, a field with a relatively higher rate of female participation.

[^10]: ${ }^{17}$ The results from this analysis can be found in Appendix Table 1, Panel B in the on-line appendix.
 ${ }^{18}$ We find one exception. Among women with SAT Math scores greater than 700, we find that the effects of professor gender on graduating with a STEM degree and taking higher-level math are significantly greater for calculus professors compared to chemistry or physics professors.

[^11]: ${ }^{19}$ See Section 5.1 for details of how we calculated the value-added estimates. Figure IV shows plots of the valueadded shrinkage estimates by student and professor gender.
 ${ }^{20}$ We have also estimated individual student fixed effects model analogous to the specification that is employed in Columns 2, 4, 6 and 8 of Table IV. The results from this specification suggest that when male students are taught by women introductory humanities courses, their grades are about 20 percent of a standard deviation lower. Because we only observe this effect for male students with one of each gender professor (19 percent of sample) indicates than any sort of grade discrimination on the part of professors is not driving the effect. Rather, the result is consistent with a story of effort/response on the part of male students who have this very specific treatment. Among female students, course performance seems to be unrelated to professor gender. Results are available upon request from the authors.

[^12]: ${ }^{21}$ Specifically, we examine how the gender of the professor teaching mandatory second-semester courses in calculus, chemistry, and physics affects course grades.

[^13]: ${ }^{24}$ Note that the impact of female professors may reflect the high quality of faculty at USAFA, and that substituting lower quality female professors for high quality male professors is not a policy that would be recommended by the authors.

[^14]: ${ }^{+}$Specification 5 excludes biological sciences.

