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Abstract

If a group takes a collective decision on the basis of separately aggregated group

judgments on the probabilities of independent events, there may not exist any anony-

mous aggregation rule that respects individuals’ unanimous outcome preferences at

all profiles of beliefs.
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1. INTRODUCTION

Consider the following fairly general model of reason-based group choice. A group

of agents i ∈ I has agreed to base its choice among social alternatives y ∈ Y on a

set of group judgments xkI ∈ Xk on “issues” k ∈ K according to a group decision

function Φ :
Q

k∈K Xk → Y . The group judgments on the k-th issue, in turn, are

derived from the individual judgments on that issue according to some aggregation

rule fk :
¡
Xk
¢I → Xk. The issues in question might concern, for example, beliefs

regarding specified events or propositions, the valuation of some alternative according

to various criteria, the weight of those criteria, etc. .

It is natural to wonder in which cases reason-based group choices agree with unan-

imous individual outcome preferences; if such agreement is guaranteed, we will say

that the aggregation rule f is “Pareto consistent with Φ”. Formally, the aggregation

rule f = (fk)k∈K is Pareto consistent with Φ iff, for all profiles (xi)i∈I and all y ∈ Y,

Φ
¡
f
¡
(xi)i∈I

¢¢
= y whenever Φ (xi) = y for all i ∈ I.

In Nehring (2005), we have analyzed this question exhaustively for the case of binary

judgments on issues and binary decisions on outcomes, i.e. with Xk = Y = {0, 1} for
all k, and a monotone decision function Φ. It is shown there in particular that only

dictatorial aggregation rules are Pareto consistent whenever Φ is sufficiently complex.

In those cases a “Paretian rational” is impossible.

In the present note, we consider a Bayesian version of the problem, allowing the

group judgment to take on continuous values, with Y = [0, 1] and Xk = D ⊆ [0, 1]
for all k. We demonstrate that the basic thrust of the results in the discrete setting

of Nehring (2005) is robust by showing that there exist natural decision rules Φ for

which anonymous Pareto consistent aggregation rules do not exist.

A significant dimension of generality is the consideration of restricted domains

D ( [0, 1]. Such domains are of interest in situations in which the group decision

mechanism elicits only coarse information about the agents’ beliefs, as assumed in

the standard discrete judgment aggregation set-up. For example, in a legal setting,

the agents (jury members) may only be asked whether they are “sufficiently confident”

about whether Ek has occurred or not. This can be given a Bayesian interpretation by

interpreting a positive answer as a probabilistic estimate α that is higher than the one

associated with a negative answer, β, resulting in a domainD = {α, β}. The Bayesian
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interpretation represents a significant shift from the acceptance-rejection formulation

that is standard in the judgment aggregation literature1 in that it naturally gives

rise to graded group beliefs intermediate between β and α and increasing continu-

ously with the number of agents affirming sufficient confidence in the occurrence of a

particular event.

2. A BAYESIAN MODEL OF REASON-BASED GROUP CHOICE

To formulate a Bayesian model of reason-based group choice, suppose that a group

decision is to be taken on the basis of individual agents’ probability judgments pki
on K subjectively stochastically independent contingencies Ek. Thus each agent’s

beliefs pi are described by a product measure ⊗kp
k
i on the state space {0, 1}K , with

Ek = {1} × {0, 1}K\k, where pki is uniquely specified by the number pki = pki (Ek),

the subjective probability of agent i that the k-th contingency Ek materializes. The

assumption of stochastic independence is clearly rather special, but the basic points

of the following discussion would easily generalize to conditional independence struc-

tures. As demonstrated by the explosive growth of “Bayes’ nets” and “graphical

models” in Bayesian theory and applications over the last 15 years, these are of

extremely wide applicability and fundamental importance; see, for example, Pearl

(1988) and Cowell et al. (1999).

The individual beliefs are aggregated by an aggregation rule f mapping profiles of

individual beliefs into a group beliefs pI , where pI is a probability measure on {0, 1}K .
The aggregation rule is anonymous if it is invariant under any permutation of beliefs
across agents.

The group needs to make a Yes-No-decision on the basis of the aggregated group

probabilities. In a Bayesian setting, it is natural to assume that the group uses an

expected utility criterion described by an agreed-upon group utility function u : 2K →
R, where u (ω) is the (possibly negative) utility gain in state ω of having chosen “Yes”

rather than “No”. A given utility function u induces the decision function Φu, with

Φu (p) = 1 if and only if
X
ω∈2K

u (ω)p (ω) > 0.

1See, for example, List-Pettit (2002).
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Of particular interest are utility functions of the form u = 1S−τ , where S is an event
in 2K ; in this case, the decision function Φ(1S−τ) simplifies to

Φ(1S−τ) (p) = 1 if and only if p (S) > τ.

That is, the decision is “Yes” if and only if the group assessment of the probability of

the event S exceeds some threshold value τ . An aggregation rule f is Pareto consis-
tent with respect to u if, for all profiles P = (pi)i∈I and x ∈ {0, 1}, Φu (f(P )) = x

whenever Φu (pi) = x for all i ∈ I.

Reason-basedness of the group choice is expressed by separability of the aggregation

rule. The aggregation rule f is separable if pI is a product measure pI = ⊗kp
k
I ,

and if the group belief over the partition {Ek, E
c
k} is determined by the corresponding

individual beliefs, pkI = fk
³¡
pki
¢
i∈I

´
for some appropriate component rule fk; since

the component state-spaces are binary, we will write more simply pkI = fk
³¡
pki
¢
i∈I

´
,

viewing fk as a mapping from DI to [0, 1], where D is contained in [0, 1] and contains

a least two elements.

Separability seems eminently sensible in view of the agreed-upon epistemic inde-

pendence of the contingencies Ek : since all agents agree that there is nothing to learn

about the likelihood of Ek by being informed about the occurrence or non-occurrence

of E , it is hard to see how one could justify the possibility of such learning if all

agents are assumed to be rational while disagreeing in their assessments.2

As shown by the following example, Pareto consistency becomes an issue already

in the simplest of group choice problems.

Example 1. Suppose two expected-value maximizing agents share the profits

from a potential investment equally. The success of this investment depends on the

joint realization of two independent events E1 and E2. The investment is successful

if and only if both events materialize; in this case, the investment recoups the initial

2If, on the other hand, one interprets the disagreement as reflecting the irrationality/bias of at
least some agent, it may seem prima-facie plausible to postulate an ability of the group to learn
from the occurrence or non-occurrence of E about the relative bias of different agents; this could
motivate a change in the conditional group belief about Ek. However, one needs to ask why an
analogous reasoning failed to occur at the individual level.
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outlays tenfold; in the alternative, it is completely wasted. Thus we have u = 1S − τ ,

where S = E1 ∩E2 = {(1, 1)} and τ = 1
10
.

Consider now the following profile of probability judgments illustrated in table 1 be-

low. Agent 1 believes that the first contingency will materialize with 90% probability,

but the second only with 10% probability; the investment will therefore succeed with

9% probability, implying a negative expected return. Agent 2 likewise believes that

the investment will succeed with 9% probability, but for different reasons. While she

thinks that the second contingency will materialize with 90% probability, she gives

only a 10 % chance to the first. Pareto consistency thus counsels against investing in

the project.

By contrast, aggregating the probability judgments for the two contingencies di-

rectly by the arithmetic mean, for example, entails a group probability of 50% for

each in view of the symmetry of the individual 90% and 10%=100%-90% estimates.

This entails a 25% probability for the investment to succeed, hence a clear decision

to invest.

p1 (E1) p2 (E2) p (E1 ∩E2) Decision

Agent 1 0.9 0.1 0.09 Don’t Invest

Agent 2 0.1 0.9 0.09 Don’t Invest

Group {1,2} 0.5 0.5 0.25 Invest

Table 1

The example shows that even in the simplest group decision problems, well-motivated

aggregation rules f may fail to be Pareto consistent. On the other hand, in this par-

ticular example Pareto consistency can be achieved for instance by letting the group

probability be the geometric mean of individual probabilities, fk = fgeo for all k,

where

fgeo
¡¡
pki
¢¢
=

ÃY
i∈I

pki

! 1
n

Note that at the profile given in Table 1, this leads to group probabilities of 30% for

each contingency, and thus a 9% probability for the investment to succeed. 3

3A potential criticism of this aggregation rule is its asymmetric treatment of the positive and
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But, as shown by the following result, serependipity cannot always save the day.

Proposition 1 There exist events S and τ ∈ (0, 1) such that no anonymous separable
aggregation rule f is Pareto consistent with Φ(1S−τ).

Proof. Proposition 1 is verified by constructing an example with 6 marginal events,
defining S = (E1 ∩E2) ∪ (E3 ∩E4) ∪ (E5 ∩E6) and choosing α, β ∈ D with α > β

and setting probability threshold τ ∈ (0, 1) such that α2 + 2β2 > τ > 2αβ + β2.

Agents will be assigned one of the following types of probability assessments.

E1 E2 E3 E4 E5 E6 S Decision

q1 α α β β β β α2 + 2β2 Yes

q2 β β α α β β α2 + 2β2 Yes

q3 β β β β α α α2 + 2β2 Yes

q4 α β α β β β 2αβ + β2 No

q5 β α β α β β 2αβ + β2 No

q6 β α β β β α 2αβ + β2 No

q7 β β β α α β 2αβ + β2 No

If the number of agents is even, define the profile P by assigning n
2
agents the belief

q1 and n
2
agents the belief q2, and define the profile Q by assigning n

2
agents the belief

q4 and n
2
agents the belief q5.

On the other hand, if the number of agents is odd, define the profile P by assigning
n−1
2
agents the belief q1, n−1

2
agents the belief q2, and 1 agent the belief q3. Likewise,

define the profile Q by assigning n−1
2
agents the belief q4, n−3

2
agents the belief q5, 1

agent the belief q6 and 1 agent the belief q7.

The profiles P and Q have been constructed such that

negative realizations of the contingencies; for example, due to this asymmetry, this aggregation rule
would fail to be Pareto consistent for decision problems of the form Φ(1S−τ) if S is a disjunction
rather than conjunction of two independent events.
We note that with only two independent events and an odd number of agents, the latter problem

can be overcome in turn by using instead the event-wise median of the individual probabilities. This
follows from results of Peters et al. (1992) . On the other hand, it is easy to see that in general the
median is Pareto inconsistent if E is the conjunction of more than two events.
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i) all agents in P assign probability α2+2β2 to the event S and thus favor a positive

outcome decision;

ii) all agents in Q assign probability 2αβ + β2 to the event S and thus favor a

negative outcome decision;

iii) for each k, at P and Q the same number of agents assign a high/low probability

to the event Ek.

By the anonymity and separability of f , the group probabilities fk(P ) and fk(Q) on

each marginal event Ek must be the same at both profiles in view of iii), and therefore

the group decision must be the same as well. Yet since the agents agree on a different

outcome decision at the two profiles in view of i) and ii), Pareto consistency must be

violated at one of them. ¤

We note that for an even number of agents, the above proof already works for the

simpler event S = (E1 ∩E2) ∪ (E3 ∩E4). It fails, however, for an odd number of
agents, since in that case Pareto consistency is achieved by letting fk = fmed for all

k, where fmed
¡¡
pki
¢¢
is given as the median of the {pki }.

Proposition 1 provokes the question of how to resolve the impossibility. In Nehring

(2005), we have made a stab at answering, suggesting that in situations of “shared

self-interest”, the Pareto principle is compelling as a requirement of rational group

choice, while it is defeasible in situations of “shared responsibility”. However, this dis-

tinction is not intended as an exhaustive and clear-cut dichotomy, and much remains

to be done to achieve a fully satisfactory resolution. Indeed, much of the interest

of impossibility results such as Proposition 1 derives exactly from their challenge to

inquire more deeply into the nature of the conflicting principles and their applicability

to particular types of group decision problems.

3. RELATION TO THE LITERATURE

There is a sizeable literature on the aggregation of probability judgments only; see

in particular the classic survey by Genest and Zidek (1985). In this literature, two

aggregation rules play a dominant rule, the “linear” and the “logarithmic” “opinion

pools”. In the linear opinion pool, the group probability of each event is the (possibly
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weighted) arithmetic average of individual probabilities; by contrast, in the logarith-

mic opinion pool, the group probability of each state is proportional to the (possibly

weighted) geometric average of individual probabilities. Neither rule has emerged as

the dominant one. The linear opinion pool respects unanimous judgments of prob-

ability and expected utility by construction, and is therefore Pareto consistent. But

it fails to be separable, and is thus deficient in terms of its “reason-basedness”. This

failure has motivated interest in the logarithmic opinion, which is separable. In the

present setting, it yields, for any k, the group odds ratio pkI
1−pkI

as the geometric mean

of the individual odds ratios pki
1−pki

. In the example of Table 1, this yields the group

probabilities p1I = p2I =
1
2
, leading to the failure of Pareto consistency described above.

The contribution of the present note vis-a-vis the Bayesian literature is to show

that potential conflicts between reason-based judgment aggregation and the Pareto

criterion arises under substantially weaker conditions than previously assumed. In

particular, Proposition 1 shows that such conflicts are not tied to a specific, demand-

ing model of decision-theoretic rationality at the group level such as the Bayesian one,

but comes with the notion of reason-based group choice as such. In particular, such

conflicts do not depend on the aggregation of an entire coherent probability measure,

but arises already in the context of very simple binary decision problems. On the

other hand, the impossibility result contained in the present note is non-trivial since

the paring down of the aggregation requirements does make a difference, as it allows

to tailor the aggregation rule to the decision function Φu at hand. For instance, while

in Example 1 the logarithmic opinion pool violates Pareto consistency, Pareto consis-

tency is achieved by eventwise aggregation according to fgeo or fmed, neither of which

would yield a coherent probability measure if simultaneously applied to arbitrary

events.

Probably more well-known among economists than the above literature are the po-

tential conflicts between Bayesian group rationality and the Pareto axiom that arise

from the simultaneous disagreement about probabilities and utilities, starting with

the classic contribution of Hylland-Zeckhauser (1969) and including more recent con-

tributions by Mongin (1995, 1998), Gilboa-Samet-Schmeidler (2004) and Chambers-

Hayashi (2006). Of course, a disagreement on both dimensions makes it even easier

to achieve failures of Pareto consistency, and even harder to overcome it. Assuming
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a separate aggregation of probabilities and utilities as in Hylland-Zeckhauser (1969),

one could, for instance, easily demonstrate an analogue to Proposition 1 by means of

an analogous proof.
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