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A THEORY OF RATIONAL CHOICE UNDER IGNORANCE

ABSTRACT. This paper contributes to a theory of rational choice for decision-
makers with incomplete preferences due to partial ignorance, whose beliefs are
representable as sets of acceptable priors. We focus on the limiting case of
‘Complete Ignorance’ which can be viewed as reduced form of the general case
of partial ignorance. Rationality is conceptualized in terms of a ‘Principle of
Preference-Basedness’, according to which rational choice should be isomorphic
to asserted preference. The main result characterizes axiomatically a new choice-
rule called ‘Simultaneous Expected Utility Maximization’. It can be interpreted
as agreement in a bargaining game (Kalai-Smorodinsky solution) whose players
correspond to the (extremal) ‘acceptable priors’ among which the decision maker
has suspended judgment. An essential but non-standard feature of Simultaneous
Expected Utility choices is their dependence on the entire choice set. This is
justified by the conception of optimality as compromise rather than as superiority
in pairwise comparisons.
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1. INTRODUCTION

Decisions often have to be made on the basis of limited inform-
ation. Sometimes, this does not present any special difficulties to
the decision maker; he may still be willing to rank all alternatives
in a complete order and simply choose the best alternative. In other
cases, he will take this informational limitation as a lack of adequate
grounds for constructing such a ranking unambiguously; rather than
arbitrarily declaring one of two alternatives superior, or both indif-
ferent, he will find it more natural to acknowledge this lack and
suspend judgment by asserting then-comparability of the two
alternatives.
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In this paper, we deal with situations in which non-comparability
arises from limited information about the likelihood of uncertain
events. In formal terms, we will consider partial ordetsthat
satisfy all of the standard consistency conditions characteristic of
Subjective Expected Utility (SEU) preferences, with the exception
of the completeness axiom. Such partial orders can be represented
as unanimity-relations (intersections) of the SEU-orders associated
with convex sets of probability measures (“belief sets” of “ac-
ceptable priors™f. For instance, the extreme case of “complete
ignorance” is represented by a maximally incomplete partial order
in which the decision-maker weakly prefers one act over another
if and only if the act generates a weakly better consequence in
every state; this corresponds to an all-inclusive belief set. For an-
other example, a classical statistician may be prepared to assume
gualitative knowledge about the stochastic process generating the
observations, but may not be willing to make any probabilistic as-
sumptions about parameter values. Such qualitative knowledge can
be described by a partial order R, for instance in terms of conditions
of “exchangeability; the corresponding belief set would include
all priors consistent with the assumed qualitative knowledge.

The goal of the paper is to develop a theory of rational choice for
“decision-problems under uncertainty” (d.p.u.s) which are defined
by a set of actsX and a partial ordeR on some universe of acts.
While optimality for partial orders has been traditionally identified
with “admissibility”, i.e. the absence of feasible superior altern-
atives, we will argue that optimality is not exhausted bysiime
admissible acts may be superior to others (in a context-dependent
way) as compromise choice¥he choice rule proposed, “Sim-
ultaneous Expected-Utility Maximization” (SIMEU), makes this
intuition of optimal choice as a best compromise formally precise
and provides an axiomatic justification for it. SIMEU can be in-
terpreted as Kalai-Smorodinsky bargaining solution representing a
fair compromise among “alter egos” corresponding to the different
extremal priors.

Of the full axiomatic theory underlying SIMEU, the present
paper presents half, namely the limiting case of “maximally non-
comparable” preferences characterized by all-inclusive belief sets,
which turn out to correspond to the classical notion of “Complete
Ignorance” (CI); for a still valuable introduction to the classical
literature, which culminated in the early 1950s prior to Savage’s



A THEORY OF RATIONAL CHOICE UNDER IGNORANCE 207

“Foundations of Statistics” (1954), see Luce and Raiffa (1957, ch.

13). It has been shown in Nehring (1991, ch. 2) and Nehring (1992)

how choice rules defined on CI problems can be extended to the
class of general d.p.u.s.; a brief sketch is given in Section 5.4. The
nature of the extension entails that Cl problems can be viewed as
reduced forms of general d.p.u.s.; the study of Cl problems is thus
of much greater applicability than is apparent at first.

The main result of the paper characterizes SIMEU in complete
ignorance problems as equivalent to the conjunction of four ax-
ioms, Admissibility, Symmetry, Consequence Isomorphism and a
context-dependent choice-consistency condition WAREP. Admiss-
ibility rules out the choice of ex-post dominated acts. Symmetry
says that since CI preferences are symmetric with respect to ar-
bitrary event-permutations, Cl choices must be symmetric in the
same way; due to the extreme richness in such symmetries, Sym-
metry precludes as-if expected utility maximization. The final axiom
called “Consequence-lsomorphism” (CISO) has no precedent in the
classical literature. It requires invariance of the choice rule with
respect to positive affine transformations of consequence utilities
state-by-state. CISO captures an understanding of optimal choice
as compromise, and is a natural consequence of the bargaining
metaphor. At a deeper level, CISO is motivated by the requirement
that the choice-function take full account of the fact that asserting
complete ignorance preferences is tantamount to denying the com-
parability of any two acts that are mutually ex-post non-dominated,
however large the utility differences between them may be in partic-
ular states (Section 5.3). In contrast to the literature, we do not rely
on an axiom that appeals to a principle of description invariance.

To put the contribution of SIMEU theory into relief, it is helpful
to relate it to Savage’s (1951) “minimax loss solution” (MML), its
closest relative in the literatufeThe MML solution is often pre-
ferred over straight maximin for its more plausible performance.
For example, Radner-Marschak (1954) have shown for a class of
problems of acquiring information under complete ignorance that
rules which evaluate acts in terms of minimal and maximal pos-
sible utilities often entail no information acquisition at all; by
comparison, under MML the optimal amount of information is
positive and decreases with the information cost, in accordance
with intuition. Just like SIMEU, MML violates context-independent
choice-consistenda feature which presumably has played a sig-
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nificant role in limiting its acceptanceArrow (1960, p. 72), for
example, concluded, probably representatively for the classical lit-
erature, that a rational solution to complete ignorance problems is
impossible: “Perhaps the most nearly definite statement is that of
Milnor (1954) who showed in effect that every proposed ordering
principle contradicts at least one reasonable axiom.”

In the literature, the context-dependence of MML has remained
essentially ad hoc and without systematic theoretical justification.
SIMEU theory remedies this fundamental deficit by explaining the
context-dependence as inherent in the compromise character of op-
timal choice under ignorance. This is worked out more fully in
Section 5, where we also introduce a “Principle of Preference-
Basedness” to justify the key axioms of the theory, Symmetry and
Consequence Isomorphism, in terms of the idea that a satisfact-
ory choice-rule must make full use of the information embodied in
the asserted preferences, including the asserted non-comparabilities.
This Principle is of particular importance in providing a more cogent
justification of the Consequence Isomorphism axiom. SIMEU dif-
fers from MML also in content; we argue that, by satisfying CISO,
SIMEU reflects the extreme agnosticism inherent in Complete
Ignorance preferences more faithfully than MML does.

The paper is structured as follows: Section 2 presents and inter-
prets the SIMEU choice rule for general d.p.u.s in the two-event
case. In Section 3, the formal framework is introduced, the SIMEU
solution is formally defined, and its basic mathematical properties
are established. Section 4 presents the rationality postulates of the
theory and axiomatizes the SIMEU solution. A side result char-
acterizes the lexicographic maximin-rule which is also shown to
coincide with Barbera-Jackson’s (1988) “protective criterion”. Sec-
tion 5 provides a more detailed account of the context-dependence
of the solution, justifies the key axioms in terms of the Principle of
Preference-Basedness, and briefly sketches the extension of SIMEU
to general d.p.u.s. The appendix contains bits of extra material and
the proofs.

There are four natural stopping points, intermediate or terminal,
for reading this paper: at the end of this sentence, after Section 2
(the main idea), after Section 4 (the main result), and after the final
Section 5 (the conceptual underpinnings); taking a deep breath is
especially recommended after Section 4.
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2. PRELIMINARY EXPOSITION OF SIMEU

This section explains the SIMEU choice rule for general partial or-
ders in the two-state case. An acte R? maps consequences to
cardinal utilities® A belief setT is a closed convex subsetaf, the
unit simplex ofR?; its elements are called “acceptable”, its extreme
pointsz” andx” “extremal” priors. A “consistent” partial ordeR

on R? is one that can be represented as the unanimity rela&ijpn
induced by a belief sdi:

x Rp yifandonlyifz -x > 7 - yforall & € II.

Note that unanimity with respect to all extremal priors is equiv-
alent to unanimity with respect to all acceptable ones. A two-state
decision-problem under uncertainty can then be specified as a pair
(X, IT), where X denotes the choice-set, a convex and compact
subset oR?; if IT = AZ?, the d.p.u. is one under complete ignorance.

An undisputed necessary condition of the optimality of an act
x is its “admissibility,” i.e., the absence of any feasible alternative
that is strictly preferred to it. In the two-dimensional case, the set of
admissible actsa (X, IT) = A(X,R) = {x € X |[fornoy € X:
yRpx and notx Ry y} traces out the boundary &f betweeny” and
x”, the optimal acts undetr’ andz” in A(X, IT) respectively; see
Figure 1 belowA (X, IT) may be understood as the set of acts that
compete for enactment. —

While clearly necessary, we submit that admissibility is st
ficientas a criterion of optimality for partial orders. In particular, it
seems natural to discriminate among admissible acts based on con-
siderations ofobustnessintuitively speaking, an alternative lacks
robustness if it is an especially poor choice under some prior. In
Figure 1, choices ok’ or x” exemplify failures of even minimal
robustness: while each act performs best against some prior (
respectivelyr”), it performs worst against its opposite (i.e.’
respectivelyr’) compared to any other admissible act. Robustness
requires at a minimum choosing an act somewhere in between
andx”. An alternative is “optimally robust” if it minimizes the risk
of being a poor choice by simultaneously taking into account all
acceptable priors to the greatest extent possible. In other words,
an optimal choice represents the best possible compromise among
the different acceptable priors. This conception of optimal choice
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under non-comparability will be formalized axiomatically in terms
a choice rule called “Simultaneous Expected-Utility Maximization”
(SIMEU). It should be noted, however, that while the robustness
interpretation helps to make intuitive sense of the proposed rule,
the axioms themselves do not rely on this intuitively rather vague
notion, but on the sharper concept of “structural isomorphism”.

The SIMEU rules incorporates robustness by “implementing”
each extremal priorr’ andz” “to the same degree”. It is based on
a cardinal measurg of the “degree of implementation” defined as
follows.

AMx,m; X, IT)
B T-x—min{r-yly € A(X, 1)}
- max{m-yly € AX,TD} —min{r - y|y € AX, D)}’

with 0/0=1 by definition.

We will often suppress the argumeriisandIl. In effect,A(-, )
is the von Neumann-Morgenstern representation of the EU prefer-
ences induced by such that maxi(y, 7) |y € A(X, 1)} = 1 and
min{A(y, )|y € A(X, I1)} = 0. For exampler(x”, #”) = 1 and
A", 7"y =0.

The SIMEU choice ruler is defined as the unique act that is
admissible and implements both extremal priors to the same degree:

xeo(X, 1) & x € AX,IT) andir(x, 7”) = A(x, 7).

It is easily verified that (X, IT) can equivalently be defined as
the unique maximin in degrees of implementation, i.e.,

o (X, IT) = argmaxex min(i(x, ), A(x, 7")).

Geometricallyg can be constructed as follows:

Define two reference points® and y° wherex” andn’ sim-
ultaneously achieve their maximal respectively minimal expected
utilities. y! is thus defined by the conditions” - y! = =" - x”
andz’ - y! = 7’/ - ¥/, i.e., as intersection of the indifference-line
for 7" throughx” with that for 7’ throughx’. Similarly, y° is
defined byz” - y° = z” . x’ andx’ - y° = 7/ - x”. By construc-
tion, A(yL, #”) = A(yL, 7') = 1 andr(y%, ") = 1(y°, ') = 0.
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Figure 1. The SIMEU choice rule

By the affine definition ofi, settingy” = yy% + (1 — y)y?,
A, 7"y = y = A(y¥,n'); the straight line througly! and y°
describes therefore the locus of acts that implemehand =’ to
the same degree.(X, IT) is given as the intersection of this line
and the admissible set(X, IT).

It is easy to see from this construction thaits formally identical
to the Kalai-Smorodinsky (1975) solution to a bargaining problem
with two players whose preferences are the EU preferences with
respect tor’ and tox”. Technically speaking, define a mapping
¥ : R2—»R? such thaW (x) = (7’ - x, 7" - x); ¥ maps into vectors
of expected utilities and is one-to-one £lfY, d) is defined as the
Kalai-Smorodinsky solution for a feasible set of utiliti#sand a
“threat-point”d, o can be characterized by

E(W(X), W(y?) = W(o (X, ).

Note that whiley9 is the threat-point (in act spacey! is
the “ideal point” in the terminology of Kalai and Smorodin-
sky. To establish comparability to the definition ef we shall
also write £ in terms of the primitives ag, with £(X, 1) =
UL (X), w(y9))). The equivalence can then be restated as

o(X, ) = £(X, I).
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One can use this purely formal equivalence to interpres the
fair outcome of a bargaining between the different fictitious “alter
egos” of the decision maker given by his extremal priors, his dif-
ferent virtual Bayesian selves, as it were. This interpretation of
as a fair bargaining solution extends to the general (finite) case: one
can definer (X, IT) = £(X, I1), where£ refers to the lexicographic
variant of the Kalai-Smorodinsky solution which has been defined
and axiomatized by Imai (19839.

An essential feature of SIMEU is its context-dependence. Con-
sider, for example, in Figure 1 the subs&tof all acts inX above
the straight line through® and y!. While o (X, IT) is still feasible
in X', it is now worst against” within the shrunken set of admiss-
ible actsA (X', IT) = A(X, IT) N X’; as a result, to preserve even
minimal robustnessy (X’, IT) must be to the left o (X, IT), with
lower payoff in state one and higher payoff in state two, thus vi-
olating context-independent choice-consistency conditions such as
WARP11

Due to the convexity ofX and the smoothness o4 (X, IT),
o (X, IT) has a unique supporting “compromise prige{ X, IT) €
A? such thatu(X, 1) - (X, 1) > w(X, ) - x for all x € X.
Clearly, the analogously defined compromise py@¥X’, IT) sup-
porting o (X', IT) puts more weight on state two and less on state
one. The context-dependence of SIMEU choices is thus reflected
in context-dependent supporting priors, whidly, virtue of their
context-dependengeannot be interpreted as the decision maker’s
subjective probabilities. Indeed, it is easily seen thaty non-
extremal acceptable prior is a supporting priaiY, IT) for some
choice-set’; in this way, the decision maker’s suspension of judge-
ment among acceptable priors is faithfully reflected in his SIMEU
choices.

3. SIMEU AND LEXIMIN: DEFINITION AND BASIC PROPERTIES

3.1. Framework and notation

Let @2 denote an infinite universe of states, and#ebe the set of
finite partitionsF = {S}scr of Q into infinite subsets. Note that,

by definition, anyF € ¥ is infinitely divisible in the sense that
any event of any patrtition itF¥ can be broken up into arbitrarily
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many subevent¥ the role of this assumption is explained in Re-
mark 1 following Theorem 2. Aactx maps states to consequences
c € K: x:Q — K.For expositional simplicity, we will assume
that K = [0, 1], interpretingc as cardinal utility (normalized von
Neumann Morgenstern utility, “payoff”); such an interpretation can
be justified by standard arguments along the lines of Anscombe-
Aumann’s (1963) two-stage “horse-lottery” approaéhn a world
with only two final consequences (“winning” and “losing”, with
winning preferred),x,, can be identified with the objective prob-
ability of winning conditional onw. A well-defined choice set
is assumed to be closed with respect to the inclusion of mixed
acts, and is therefore formally represented as a convex set of acts
X C [0, 1]%. To canonically include mixed acts is technically neces-
sary and seems to be the more conservative way to proceed outside
SEU-theory*

For F € F, let[0, 1]¥ denote the class df-measurabl® acts,
and denotd0, 11 = Urc#[0, 1]F, the class ofsimpleacts. A
choice-seX is simpleifitis a closed (hence compaétjand convex
set of simple acts; leX denote their class. It is not very difficult to
show that a closed convex skt € [0, 1]* is simple if and only
if all acts in X are measurable with respect to a common finite
partition, i.e. if X < [0, 1]¥ for someF e . This fact is tech-
nically important and will be used throughoftSome additional
notation: ‘c/ X” is the closure ofX, “co X" is the convex hull of
X, and[x, y] = co {x, y}. “x<y” holds if x < y andx,<y,, for
somew € Q, “x K ¥y if x,<y, for all € Q; ¢ denotes the
indicator-function ofS, i.e.,e5 = 1if w € S, ande = 0 otherwise.

A decision problem under Complete Ignorarft€l problem”) is
apair(X, Ry), whereX is a choice set anfl; denotes the Complete
Ignorance preference relation defined by

XRyy <:>[xw > Yo foralla)esz].

SinceRy is assumed fixed in almost all of the following, we will
normally identify a Cl problem(X, Ry) with its choice seX, and
define achoice functionas a non-empty-valued mappiggon X
such thatC(X) C X for all X € X. We will write “x Py y” for
“x Ry y and noty Ry x”, as well as % Ny y" for “neitherx Ry y
nory Ry x".
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3.2. SIMEU and leximin

The following sections are devoted to an axiomatization of SIMEU
for Complete-lgnorance problems¢’. Along the way, we also
obtain a choice-functional characterization of the lexicographic
maximin ruleL M defined as follows, with mir) = —oo.

LM(X)={xe X |Forallye X: min x, > min y,}.
WX FEYw WX FEYw

As it reads, we have definddV/ (X) as Barbera-Jackson’s (1988)
“protective criterion”. Since the following proposition shows it
to coincide (onconvexsets) with the lexicographic maximin, we
denote it byL M and refer to it by the latter, more informative name.

The SIMEU rules ¢! modifiesL M by normalizing ex-post utilit-
ies; the normalization yields “degrees of implementatiog{x) of
x within X in statew (respectively: “for each extremal prief’”),

Xo — INfyenx) Yo
SUR,c A x) Yo — INfyeax) Yo
with 0/0 = 1 by convention

)Lw(x) =

Also, define
clX)={x e X|Forallye X: min iyx)
W:Aep(X)FEAo ()

> min A}
W:Ae(X)FEro (y)

EXAMPLE 1. The following matrix describes the payoffs of two
acts in terms of the event partiti¢§1, S»}.

S1 So
090| O
0 |0.10

Consider choices from the s& = [x, y]. The leximin-rule
equalizes payoffs across states, selectinmg(X) = (0.09, 0.09) =
0.1x + 0.9y, which can be interpreted as randomized choice of
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with a probability of 90%. Measured in terms of degrees of imple-
mentation,L M (X) favors the evenf,, and is thus non-robust with
respect to the possibility ¢f;, with 1,,((0.09, 0.09)) = 0.90 for any

w € S», whereas,,,((0.09, 0.09)) = 0.10 for anyw € S1. By com-
parison,SIMEU (X) = (0.45,0.045 = 0.5x + 0.5y, equalizing
degrees of implementation across states.

It is instructive to compare the selection of SIMEU to that of
Savage’s (1951) “minimax loss” rule (“MML”), its closest kin in
the literature, withM M L(X) denoting the set of acts that min-
imize max,cq(MaXecx Yo — Xo»). MML equalizes losses across
statessMML(X) = (0.81,0.01) = 0.9x + 0.1y. This is also
non-robust, this time with respect to the possibility $f with
14((0.81,0.01)) = 0.10 for anyw € S», andA,((0.81,0.01)) =
0.90 for anyw € S1. MML relies heavily on the comparison of
utility-differences across states, arguably more so than is warranted
in view of the absence of any bound on the relative weigl$yaind
So; this is further discussed in Example 3 below. O

PROPOSITION 1() If X € X, LM(X) and ¢/ (X) are non-
empty and single-valued.
(ii)) Moreover, ifx = LM(X) andy € X\{x},

min x, > min y,.
WXy F Ve WX F Vo

Similarly, ifx = c¢/(X) andy € X\{x},

min Ao (X)) > min Ao (Vaw)-
@:hoy (X)) Fro (Vo) @Ay (X)) Fho (Vo)

Remark. The convexity assumption oiX is indispensable, as
the counter-example ok = {(1,0), (0, 1)} shows, for which
LM(X) = SIMEU(X) = X.1° Convexity is also necessary to
ensure (via part ii) of the Proposition) satisfaction of the consist-
ency conditions defined below, of WARP for LM and of WAREP
for SIMEU, respectively.

4. AXIOMATIZATION OF SIMEU AND LEXIMIN

This section characterizes SIMEU and LM in complete ignor-
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ance problems; while the relevant axioms on choice functions are
given a first-round motivation, a more extensive discussion is re-
served for the next section. The most basic rationality-requirement
is compatibility with asserted preferences.

AXIOM 1 (Admissibility. For all X € X andx,y € X: x Py y
impliesy ¢ C(X).

If one rewrites the conditionx’ Py y” in utility-terms as “for all
w € Q, x, = Yo, and for somev € 2, x,>y,”, itis evident that
this axiom amounts to the standard concetatt admissibility.

The two key axioms of the theory are axioms of structural equi-
valence. The first is based on the symmetryRygfin events. For
any one-to-one map : F — F’ on event partitiong’, F’ € £,
define an associated one-to-one map on @ct$0, 11 — [0, 117 '
by ®(x)g(s) = x5, for § € F. ®(x) is the act that results if the
consequences occurs in the event (S) instead of in the everS.

AXIOM 2 (Symmetry, SYFor all X € X, any F € ¥ such thatX
is F-measurable, and ay: F — F thatis one-to-one: ®(X) =
X impliesC(X) = ®(C(X)).

SY requires that symmetry of the choice set in events implies
a corresponding symmetry of the chosen set. It is a weak version
of the hallmark axiom of the CI literature (see Remark 1 follow-
ing Theorem 1); it rules out representability of the choice function
by some (as-if) subjective probability, as shown by the following
example.

EXAMPLE 2. The following matrix describes the payoffs of four
acts in terms of the event-partitidri* = {51, S2, S3}.

S1| 82|83
w| 1|01
x| 1]1/|0
yl0]1]1
z1110]0
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SupposeC to be representable by the as-if subjective probability
vector (i1, 2, w3). SY applied to the choice séi, x], with F =
F* and¢ given by¢(S1) = S1, ¢(S2) = S3 and ¢(S3) = Sa,
impliesx € C([w, x]) & w € C([w, x]), and thust, = 3. An
analogous application of SY to the choice get y] yieldsm1 = 7>,
and thust; = , = 73 = 3. However, applying SY tdy, z] with
F = {81, S2US3} and¢ given by (S1) = S2U S3, andeg (S2U S3) =
S1impliesy € C([y, z]) & z € C([y, z]), and thusty = 72 + 73,

a contradiction. O

Symmetry can be viewed as expressing a decision-theoretic
“principle of insufficient reason”. It is desirably weaker than its clas-
sical Laplacian counterpart by merely asserting context-dependent
equivalences of choice, rather than equal probabilities. As illustrated
by Example 2, this makes it possible to apply this principle to arbit-
rary event partitions simultaneously and to thereby captoneplete
ignorance?’

A second invariance axiom called CISO (for “Consequence
Isomorphism”), “dual” to Symmetry, considers transformations of
payoffs within states. It hinges critically on an understanding of
optimal choice as compromise, and is a natural consequence of the
bargaining metaphor: the optimal choice should be invariant to pos-
itive affine transformations of state (fictitious players’) utilities. In
5.3, a more detailed justification of the axiom is given. To define
CISO formally, let araffine consequence-isomorphférhe a map-
ping 6 from [0, 1] to [0, 1]* (not necessarily onto) of the form
0(x) = (dwXe + PBow)wen, fOr appropriatex,>0 andp,,.

AXIOM 3 (CISO. For all X € X and any affine consequence-
isomorphisn® such that (X) € X: C(6(X)) = 6(C(X)).

EXAMPLE 3. Consider a typical instance of CISO.

S11 52
10
0|1
vyl O | €

Let X = [x,y], X = [x,y€], and assume O< ¢ < 1.
Sincex Ny y as well asx Ny y¢, and sinceX¢ can be obtained
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from X by positive affine transformation of payoffs, CISO implies
y € C(X) & y¢ € C(X¢). Holding for arbitrarily small positive,
this implication seems wild at first blush: while it seems perfectly
reasonable to choosein X, who would not choose over y€ in
X€? After all, x might be much better thap® (in S1) which at
best might only be slightly better (ifi). Such a reaction forgets,
however, that the decision-maker could have asserted this preference
himself, but explicitly declined to do so by asserting/y y¢. CISO
ensures that the asserted non-comparabilities are fully respected by
the choice-function. O

As discussed in more detail below, the preceding three ax-
ioms are incompatible with traditional context-independent choice-
consistency conditions such as WARP.

CONDITION 1 WARB. Forallx,y e XN Y :
xeCX)=[yeC¥)=xeCY).

In words: ifx is chosen inX, x is “revealed” to be at least as choice-
worthy as any other alternatiyein X, hence must be chosen th
whenevery is. It seems natural to contain the extent of context-
dependence by restricting WARP to “range-equivalent” pairs of
decision problems for which it is unproblemati&. and X’ are
range-equivalenif proj,, ¢l A(X) = proj, cl A(X') forallw € Q,
that;gz, if they agree on the set of “admissible consequences” in each
states

AXIOM 4 (WAREBR. For any range-equivalei¥, X’ € X andx,
XeXnNX xeCX)=x eCX)=x e CX)).

While WAREP does not rest on quite as compelling a foundation
as the other axioms, it has the definite merit of leading to a tractable
and nicely interpretable solution. Moreover, it is weak in being sat-
isfied by all major Cl-solutions proposed in the literature, and in not
determining the qualitative character of the choice rule, for which
SY and CISO are responsible.

THEOREM 1. ¢¢! is uniquely characterized by Admissibility,
Symmetry, Consequence-lsomorphism and WAREP.
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If one insists on preserving context-independence, at least one of
the other axioms has to go. If one drops CISO, a characterization of
leximin is obtained by a much simplified proof.

THEOREM 2.L M is uniquely characterized by Symmetry, Admiss-
ibility and WARP.

REMARK 1. Theorems 1 and 2 appear to be unique in the liter-
ature in using only symmetry besides the shared assumptions of
admissibility and choice-consistency (as well as CISO in the case
of Theorem 1). From Milnor (1954) on (see also Luce-Raiffa 1957),
most use in addition an axiom that express some idea of description-
invariance. This conceptually not unproblematic requirement can
be dispensed with due to the infinite-divisibility assumption on the
partitions F € £ . It has been the main reason for making that
assumption in the first placé.

REMARK 2. Theorems 1 and 2 are also unique among axiomat-
izations of “maximin-type” solutions in that they do not make any
(explicit) assumption of “uncertainty-aversion,” be it in the form of
a quasi-concavity condition on preferences, as Milnor (1954) and
Barbera-Jackson (1988) do, or as convex-valuedness of the choice
function. We are enabled to drop such a condition by Lemma 2 in
the proof of Theorem 1, for whicstrict Admissibility is crucial.

In the literature, Complete Ignorance is defined in terms of fi-
nite universes of events; part 1 of the appendix shows how the two
theorems apply to finite universes via an embedding argument.

5. DISCUSSION

5.1. Incompleteness as non-comparability

Does it really make sense in situations of tratympleteignorance

to determine a single-valued choice function, as we have dbne?
To legitimately obtairanydeterminate restriction on choice beyond
ex-post undominatedness, it would seem s@nheknowledge on
part of the decision-maker must be assumed, at least implicitly.
Indeed, ithas beenassumed that, when asserting the preference
relation Ry, the decision-maker acknowledges and, in this sense,
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“knows of” his complete ignorance about events. In other words,
for SIMEU theory to be applicable, incompleteness of preferences
must be given arexhaustiveinterpretation on which absence of
weak preference (of botk over y andy overx) is equivalent to
a judgment ofnon-comparability(“l decline to prefer one altern-
ative over another”). In terms of beliefs, this active suspension of
judgment involves accepting each “acceptable prior” as fully com-
patible with one’s total view of the evidence; non-comparability
thus corresponds tgelf-awareignorance, as in “I know that |
don't know”2®> An exhaustive interpretation of incompleteness as
non-comparability contrasts withgartial elicitation interpretation
of incompleteness ason-comparednesshat is: as mere absence
of comparing judgment (“I have not figured out / made up my
mind”).?8

Thus the possibility to meaningfully select among admissible
acts is based on an active suspension of judgment. Conversely, it
can be argued that the notion of a rationally motivated suspen-
sion of judgment makes pragmatic sense only if it is supported by
a choice rule that selects among admissible acts. For if admiss-
ibility were the only criterion of rational choice with incomplete
preference orderingp, it would be legitimate — in terms of the
exclusively relevant admissibility criterion itself! — to arrive at a
decision by replacing (more or less arbitrarily) the given partial or-
der R with any complete ordeR,; that extends it, withr € IT.
SinceA(-, Rizy) € (-, Ri), any choice optimal undet,, would
then also be admissible, hence optimal, under the original partial
order Rr;. A decision-maker could thus never go wrong by ad-
opting complete preferences: some decision must be made — some
act will be chosen, after all — so what use would it be to suspend
judgment since you cannot suspend choice? At worst, some prefer-
ence judgments entailed in the completion might be arbitrary. The
concept of non-comparability would be useless for the purpose of
decision-making.

5.2. On the rationale for context-dependence
It follows easily from examples 2 and 3 that for single-valued
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choice-functions the conjunction of Symmetry and CISO implies

way:C([x,y]):{%x—l-%y}.

This “coin-flip property” endows judgments of non-compar-
ability with well-defined operational meaning It also entails
that one cannot reconcile these axioms with traditional context-
independent choice-consistency conditions such as WARP.

In the present non-comparability-based approach, the necessity
of violating WARP should come as no surprise. Indeed, since CISO
and Symmetry reflect the requirement that the choice-function take
proper account of thenpn-transitivé) non-comparability inherent
in the structure of the underlying partial ordey, WARP’s incom-
patibility with these axioms simply reflects its inappropriateness.

Rather than being an embarrassment or impasse, the inherent
context-dependence of SIMEU plays a crucial conceptual role by
resolving an apparent tension between the assumed exhaustive in-
terpretation of the underlying partial order and the single-valuedness
of the derived choice-ruldiow can an ack be legitimately chosen
over another actx) when the decision maker has suspended judg-
ment between themPhe answer is that suspension of judgment
involves abstention only from expressingdefinite preference of
x overy, i.e. abstention from contextdependenthoice ofx over
y. On the other hand, suspension of preference judgment is entirely
compatible with choice ok overy and of y overx on a “case-
by-case” basis. This happens under SIMEU: it is not difficult to
show that for anyr, y such thatx Nyy, any choice ofx overy is
contextdependent i.e. that there exisk’, X" 2 {x, y} such that
{x} = oc¢I(X") and{y} = ¢/ (X"). Intuitively, non-comparability
rules out the choice of one act over anothanagnsically betterbut
is compatible with the choice of one act over anothe®a superior
compromisen the context of a particular choice-set.

A particularly clear-cut instance of this distinction occurs in the
choice among just two non-comparable alternatives, where SIMEU
recommends the flipping of a fair coin. The only apparent advantage
of such randomization is the symmetric treatment of both alternat-
ives; this may not seem much. On the other hand, given the assumed
suspension of judgment one cannot really hope to do better. Psycho-
logically though, some dissatisfaction may still remain, as it does for
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the author. But perhaps such dissatisfaction reveals just how hard it
is to honestly face genuine ignorance and to suspend judgment ac-
cordingly. In this vein, Elster (1989, pp. 54-59) argues that as a rule
there is a psychological bias against its acknowledgment. He makes
a strong case for the existence of a human tendency to exaggerate
the support of many decisions by “reasons,” summarizing (on p. 58):
“The toleration of ignorance, like the toleration of ambiguity more
generally, does not come easify.”

An understanding of optimal choice as best compromise is also
helpful in getting an intuitive grip on how to endow context-
dependence with more structure, especially on how to contain its
extent in terms of axioms such as WAREP. The following example
is intended to flesh out the motivation for that axiom.

EXAMPLE 4. Consider three choice-seXg, X», X3, with X; =
co{x, v, z;} defined in terms of the following five acts:

S1| 52

1

5 1

313

4 4
71| 1 %

5 1
12 [ 2
z3| 1|0

For the SIMEU, LM and MML choice functiong; (X1) = y.
Noting thatX; = A(co{x, y, z1, 22, z3}), the conjunction of Ad-
missibility and WARP entaily = C(X») as well asy = C(X3).
Neither implication is appealing from a compromise perspective.
Intuitively, in X, a choice ofy favors the possibility ofS;, and
comparatively neglects that 6p, since it almost achieves maximal
utility in the former, but not in the latter. An optimal compromise
should yield less utility thary in S1 and more inS»; SIMEU in fact
selects the ac¢1—70, %’). By contrast, inX3 y intuitively favors the
possibility of S», since now some admissible choices, in particular
that ofz2, might entail much lower utility inS> than any admissible
act did before (inX1 wherey was an optimal compromise). Corres-
pondingly, an optimal compromise should yield more utility than
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in 1 and less ins,; SIMEU selects the aat], 55). Note that MML
moves in the desired direction X» but not inX3. O

The replacements af by z> andzs in X2 respectivelyX3 both
illustrate both the context-dependence of an optimal compromise.
At least as an approximation, it seems reasonable to attribute this
context-dependence in the caseXyf to the decrease ahaximal
S1-utility, and in the case aX’3 to the decrease of thminimal ad-
missibleS,-utility .22 WAREP entails that the context-dependence of
SIMEU choices is entirely driven by such changes in the state-wise
ranges of admissible utilities. If there is no such change, i.e. if the
two choice sets are “range-equivalent”, WAREP requires context-
independence; this is formalized by the condition that the choice
in range-equivalent sets cannot reveal contradictory compromise
rankings. WAREP thus assumes as much context-independence as
is possible?®

5.3. A deeper justification: the principle of preference-basedness

Conceptually, we have attributed the context-dependence of SIMEU
to an interpretation of optimal choice as compromise. Mathem-
atically, the context-dependence of the solution arises from the
two invariance conditions underlying the solution, especially CISO.
These two perspectives will now be linked, with the purpose of
achieving a deeper justification of the two key invariance axioms
based on the compromise interpretation. The intuitive point of de-
parture is the idea that a good compromise-chaudg exploits all
available preference information, and that this information consists
not only in the asserted preference comparisons, but also in the
preference comparisons abstained from, that is: in the asserted sus-
pensions of judgment. This leads to the informal requirement that
the structure of the choice function should reflect the structure of
the entire preference relation.

It is a non-trivial issue how to formalize this requirement, which
we shall refer to as the “Principle of Preference Basedness” (PPB).
While a comprehensive treatment of this issue goes beyond the
scope of this paper, we will argue that SY and CISO are natural
consequences of the PPB. The discussion will initially be phrased
in terms of conditions on choice-functio®(X, R) that involve
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appropriate general partial ordeRs3C we will later specialize to
the complete-ignorance orderiiy, for which the PPB turns out to
be especially powerful.

Note first that it would be mistaken to formalize the PPB in
contgﬁtindependenmanner by way of a condition of the following
type:

CONDITION 2. For anyx, y, X such thatc, y € X : if either yRz
andzRy or notyRz and notzRy, thenz € C(X, R) if and only if
y e C(X, R).

This condition asserts choice-equivalence between two acts in
any choice seX whenever they are treated symmetrically by the
preference relatiorR, i.e. whenever the acts are either indifferent
or non-comparable. Conceptually, the condition is inappropriate as
it effectively equates non-transitive non-comparability with trans-
itive indifference. The mismatch is reflected in the mathematics,
as Condition 2 is not even consistent with Admissibility! Setting
X = co{x, y, z} in Example 2 of Section 4, for instance, Condition 2
implies bothx € C(X, Ry) & y € C(X, Ry) andz € C(X, Ry) &

y € C(X, Ry), hence alsox € C(X,Ry) & z € C(X, Ry), In
conflict with Admissibility.

This example also points to the source of error in Condition 2,
which stems from the fact that) the context of the choice s&t
the preference orderingy doesnottreatz andy fully symmetric-
ally, sincez is Ry—inferior to some feasible act ix, namelyx,
whereasy is inferior to none. Condition 2 needs to be reformulated
in a manner thaallows the context to mattera prototype is the
following “invariance under preference-isomorphisoondition.

CONDITION 3. Let# be any mapping frono, 1]* to [0, 1]*
(not necessarily onto) that preservés—order, i.e. such that
6(x) RO(y) xRy Vx,yel0 1.

Then, for allX € X such thato(X) € X, CO(X),R) =
6(C(X, R)).

The normative force of a condition of this kind resides in tak-
ing an isomorphism of choice problems in terms of the ordering
R to besufficientfor choice equivalence; this means timat other
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information is allowed to matten particular, the PPB formalized

in this way rules out approaches such as Levi's (1980, ch. 7), who
proposes to select among admissible acts on the bases of additional
(non-expectational) “security considerations”.

While Condition 3 conveys the general idea of the PPB correctly,
it needs further refinement; for one thing, its presupposition is still
too weak by neglecting cardinal information (see clause ii) in the
reformulation of CISO below and its discussion). From now on,
we will specialize Condition 3 t®R = Ry, and show that by re-
quiring the mapping® to have additional structure, one obtains
both a version of Symmetry as well as CISO, thus showing these
two key axioms to emanate from the PPB properly formuldtdd.
the notation of Section 4, consider first mappifgs ¢ (“event-
isomorphisms”) based on some permutation of events F —

F’. Note thatany such ® is Ry-order-preservingf; Condition 3
thus specializes to the following condition of “Event-lsomorphism”
which is slightly stronger than Symmetry.

CONDITION 4 EISO. ForallX € X and¢ : F — F’ one-to-one
such thatX is F-measurableC(®(X), Ry) = ®(C(X, Ry)).

In complementary fashion, CISO can be viewed as a condi-
tion of invariance with respect to preference-isomorphisms that
assign different payoffs to given events. More formally and pre-
cisely, let aconsequence-isomorphisgra a mapping from [0, 1]*
to [0, 1]* (not necessarily onto) that preserves order as well as
mixture-information about acts and is separable in states, i.e., that
satisfies

() O(x) RgO(y) & xRyy Vx,yel0 1%,

(i) 60x + (1L —1)y) =r10x)+ (1L —1)0(y) Vx,yel0, 1%,
0<A<l1 and

(iii) There exist(0,)we,bs : [0,1] — [0, 1] such thatt(x) =
Ow(X0))wesn-

It is easily verified tha® is a consequence-isomorphism with
respect taRy if and only if eachy,, is of the formb,,(¢) = a,c+ Bu,
with «,>0. CISO amounts therefore to restricting Condition 3 to
consequence isomorphisms. The mixture-condition ii) reflects the
need to preserveardinal utility information; as is well-known
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from bargaining theory, without it, no interesting theory could be
developed. Note also that it is automatically satisfied by the event-
isomorphisms considered in EISO. Just as EISO, CISO in extremely
powerful in the context of Cl-problems due to their extreme richness
in asserted non-comparabilities. In particular, if the decision-maker
had asserted any preference other tiRgninvariance with respect

to arbitrary positive affine state-by-state transformations would no
longer be entailed.

While CISO has been motivated heuristically by the bargaining
metaphor, it is fully justified only by (something like) the PPB.
The PPB explains why the bargaining metaphor is approptfate.
Without a justification of this kind, CISO would be open to the
critique that it forces the decision-maker to ignore prima-facie rel-
evant information, namely utility differences across states. The PPB
counters this critique (recall the discussion of Example 3 in Section
4) by insisting that the choice rule should mdikk use of the prefer-
ence relatiorRy, and in particular, that it should respect the entailed
non-comparabilitiedVy.

5.4. Extension to partial ignorance

In view of their extreme nature, Complete Ignorance problems are
relevant for applications not so much in themselves, but primarily
because they can be viewed as “reduced forms” of general d.p.u.s.
The reduction of general d.p.u.s is achieved by a condition of “Com-
plete Ignorance Reduction” (CIRY.CIR associates to each d.p.u.
an equivalent CI problem “in expected utility profiles”; these are
obtained from taking the expected utility of an act with respect to
each extremal priof® In the two-event case, it reads as follows (in
the notation of Section 2).

CONDITION 5 (CIR). C(X, IT) = ¥~1(C(¥(X), A2)).

As far as we know, the first contribution extending choices in CI-
problems to a reasonably general class of decision problems under
partial ignorance is Jaffray’s (1989) using a mixture-space approach;
see also Hendon et al. (1994) for further work along this line. Two
points of comparison seem particularly noteworthy. Mathematically,
the mixture-space approach applies to “belief-functions” which cor-
respond to a rather restrictive class of belief $ét€onceptually,
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the mixture-space approach takes the underlying belief-function
(respectively lower probability) as representiggzen evidence,
whereas an agent’s incomplete preference relation is viewed in our
approach as the outcome of the agent’s judgment, and, in this sense,
as somethinghosen The appeal to the agent’s active suspension
of judgment has been central to our justification of the key axioms
Symmetry and CISO via the PPB.

In justifying the key axioms via the PPB, we have frequently
appealed to the decision maker’'s “prior”, “hypothetically given”
preference relatiorR. This “priority” is to be understood logic-
ally, not temporally. In particular, there is no presumption that the
decision maker comes already fully equipped with an incomplete
preference relation. On the contrary: to know what preferences to
adopt (in particular: when to suspend judgment), the decision maker
needs to know thehoice contenbf preference judgments. Indeed,
in view of the extreme nature of SIMEU choices under Complete
Ignorance and their apparent contrariness to common sense, it will
rarely if ever be reasonable to assert Complete Ignorance prefer-
encesky, even in situations in which there seems to be no tangible
evidence at alf® Contemplating what rationally would have to be
chosen if onaverecompletely ignorant brings to light that one gen-
erally has beliefs over many events, that is: that one is prepared to
bet if betting one must.

6. APPENDIX

6.1. Extension of Theorems 1 and 2 to finite universes

To derive versions of Theorems 1 and 2 for finite universes, one has
to interpret¥ as a class of conceivable “universds'described by
finite sets of “states” (atomic events); eaEhmay be thought of as
a “framework of description” related by the common “language”

A Cl-problem is now defined as a piX, R}) such thatF € F
andX is a compact convex subset[@f 1]°. Let D = {(X, R}) |
X C [0, 1]1F}; a solution is defined on the class of such problems
D = Upcy DF. The axioms are now applied to each subdomain
separately.
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The subdomains can be linked by an embedding condition.

AXIOM 5 (EMB). If X < [0,1]F and G is a refinement ofF,
C(X,R[)=C(X,RY).

EMB can be read as saying that if a given frameith complete
ignoranceRéV is refined toG, that refinement should not affect the
chosen set per se, i.e., as long as no preference is asserted beyond
those affirmed bng and implied by the consistency axioms on
preferences. Following the terminology of Walley (1991, ch. 3.1),
this may be described as “Natural Extension” property. Noting that
forany F, G € ¥ there existdH € ¥ thatis a refinement of both
F andG, EMB implies that

C(X, R}) = C(X, Ry), wheneverX C [0, 11" N[0, 11°.

C may thus be viewed as defined &nonly, and, with EMB in

place, the axioms defined ok ) D turn out to be equivalent to
Fe¥F
those defined ot x {Ry}. It follows that Theorems 1 and 2 carry

over.

RemarkAlthough one now needs to refer to Cl-problems that reside
in different hypothetical universes of events, just as the traditional
Cl-literature does, the present approach still has the significant con-
ceptual advantage that it does not make the assumption that the
frame of reference is irrelevant. Such an assumption is implicit in
the traditional treatment of events as “generic events without names”
which can be formalized in the current setting by the following
condition:

“For all F,G € ¥ and any one-to-one map : F — G :
®(C(X, R))) = C(P(X), R))".

6.2. Proofs

For future reference, a sat C [0, 1]¢ is callednormalizedif, for
all w C @, proj, cl A(X) = [0, 1] or proj, cl A(X) = {1}.

Proof of Proposition 1:



A THEORY OF RATIONAL CHOICE UNDER IGNORANCE 229

Since LM and o¢! agree on normalized choice-sets, it evid-
ently suffices to prove the Proposition fbiM. Let F € & be any
partition such thakX is F-measurable.

For G C F, define u(X,G) = maxex Mingeg xs and
MM (X, G) = argmaxcy mingeg xs. The key to the proof is the
following lemma.

LEMMA 1. If X is convex, then there exis® € G such that, for
alx e X:xe MM(X, G) = xr = u(X, G).

Proof of Lemma:
The following simple fact will be used repeatedly:

Foranyx e MM (X, G) andS € G : x5 > u(X, G). (1)

Suppose the claim of the lemma to be false, i.e. that for every
T € G there existg” € MM (X, G) such thatZ>u(X, G). Then,

settingz’ = Y. =z’ (¢ X by convexity), in view of (1),
TeG
Minseg 25> (X, G), a contradiction. O

Let F(0) = F, X© = X, andn = #F.

For k = O0,...n — 1, define inductively X*+1 =
MMX®, F®O) and F*D = FO\(s®}) whereS® is any
T e F® satisfying the property asserted in the lemma for
(X(k), F(k)).

It is easily verified by induction that for atl < n — 1 X® is non-
empty, compact and convex. Fix sogne X1 and consider any
y € X\{&}.

We will show that

mina):éw#_yw Ep > minwzéw;éyw Yo- (2)

This impliesy ¢ LM (X), and, sincey is arbitrary andL M (X)
is non-empty, indeed. M (X) = {&}, from which the asserted
properties of.. M follow in view of (2).

To show (2), assume that > &g for someS € F; otherwise (2)
is satisfied trivially. Letv =mingcp{&s | &5 < ys}, and letk* be the
largest integek such tha€gw < v.

We will show that for somek < k*, ygw<€sw. From this
(2) follows, sincek < k' implies, for anyk, k', w(X%®, F®) <
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w(X® | F®) (by definition) which in turn impliegge < &g by
Lemmal.
Suppose that the last claim is false, i.e. that

forall k <k*, ygu > Egw. (3)

Letz® = e-y+ (1—¢)-£&. For sufficiently small but strictly positive
g, the following three properties are satisfied:

() 25w = &gw, forallk < k*.
(i) z%u>Esw, for somek < k*.
(iii) 2 >v, for all k>k*.

(i) is straightforward from (3); (ii) follows from the definition of
k* and (3); (iii) finally follows from the fact thas(k)>v, for all k>k*
if ¢ is chosen sufficiently small.

() and (i) imply z¢ € X%, for all k < k*. But then (i)
contradicts Lemma 1, the desired contradiction. O

Proof of Theorem 1.:

Necessity of the first three properties is straightforward, and that
of WAREP is implied by part (ii) of Proposition 1.

To show sufficiency, note first that WAREP implies the following
property IDA (“Independence of Dominated Alternatives”):

(IDA) AX)=AX)=>CX)=C(X') VX, X' €X.

It thus involves no loss of generality to restrict attention to
normalized choice-sets. A choice st C [0, 1]F will be called
F-comprehensivé x’ < x , x € Y, andx’ € [0, 1]F imply x” € Y.

Essential to the proof are the following two lemmas:

LEMMA 2. If Y is F-measurable and is symmetric with respect to
all ®:[0,1]F — [0,1]F that leave events outsidg C F invariant
(i.e. such thatd(x)7 = x7 VT € F\ g), thenanyx € C(X) is
constant orJG.

Proof. By CISO and IDA,Y can assumed to be normalized and
F-comprehensive. The proof is by contradiction: supposedli#
contains an act that is not constant onG. Letv = minges &s,
and letSp be anyS € G such thatg = v. Also, letF’ € ¥ be any
partition obtained fronF by splitting Sp into {S1, S} : F/ = {S €
F 1S # S5} U {81, S2}.
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Definen : [0, 1]1F — [0, 1] by

minTGG XT if §= S1,
nx)sg =13 xs, if $ =35>,
Xs otherwise,

define:Z < [0, 11" as
Z = co ({n(x) |x € Y}UeSl),

and letY’ = {x € [0,1)|x < y for somey € Y}, the “F’-
comprehensive hull” of .
Z has the following properties:
(i) EezCy’.
(i) VS € F’': projs cl A(Z) = projs cl A(Y) = projs cl A(Y') =
[0, 1].
(iii) Z is symmetric w.r.t. all event-isomorphisnds : [0, 1] —
[0, 1]¥" that leave all events I6F\ g) U{S1} invariant.

Note that (i) follows from the definition ofg, (ii) hinges on
the inclusion ofest in Z, and (iii) follows from the symmetry
assumption ory.

SinceA(Y') = A(Y), from IDA,

EeCy). (4)
Hence, using properties (i) and (ii) @, by WAREP also
£eC(2). (5)

Since¢ is non-constant, for som&s € G : &5, < &s,. Let ¢ :
F — F permuteSy and S3, leaving other events invariant, and let
¢’ : F' — F'permuteS,; andSs, leaving other events invariant, with
associatedb respectively®’. By property (iii) of Z, ®'(Z) = Z;
using SY, it thus follows from (5) that

' (£) € C(Z). (6)
By WAREP, from (4), (6) and properties (i) and (ii) @falso
@' () € C(Y)). (7)



232 KLAUS NEHRING

However, by the symmetry assumption &n Y and hencer’
contain also® (§). Noting @ (&), = &s; > &5, = @' (§)s, and
O (&)_5, = D' (§)_g,, One hasd (§) > P’ (). By admissibility,
®' (§) ¢ C(Y'), in contradiction to (7). O

LEMMA 3. Consider any normalizef, y € X, and F such thatX
is F-measurable. If there existse X such that:

() zs>0 VSeF,
(i) zisconstantorsS € F | zs # ys}, and
(i) forsomesS € F : z5>ys,

then W C(X).

Proof. Take anyX, F andy, z € X with the properties assumed
in the statement of the lemma. Partitiéhinto the following three
collections of events, fixing som® such that >y .

F/:{S/}’
F'"={Se F\{S}|zs # ys}, and
F" ={S € F|zs=ys}

It is clear that events§ such that #prgj X = 1 make no differ-
ence; hence, assume w.l.0.g. that there are no such events. Take any
sufficiently large integersandm such that

4F .
and 1> " 8)

m > -
ming zs (zs — ys)

Let G € F be a refinement of” such thatS’ is “replicated”

[ times (i.e. such that{f ¢ G | T C S’} = 1) and anyS #
S’ is replicatedm times. Also, letG’ (resp G”, G”’) denote the
corresponding refinement &f (resp.F”, F").

Let ¢* be the class of permutatiorgs of G that leave events
outsideG’ U G” invariant (i.e. events such thd@t ¢ G’ U G” =
¢(T) = T). Likewisg let o** be the class of those permutatiahs
of G suchthat, forall" € g, ¢(T) isa“replica” of the same event
in F asT (i.e.suchtha¥T € g,VSe F:S2T = S 2 ¢(T)),
and letd*, &** denote the associated classes of event-isomorphisms
@ : [0,1]1° — [0, 11°.
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Define a choice-set as follows:

Z = co ({z} U{® (y)}oecor UE),
with E = {ef! |H = Ty U T» for someTy, Tr € G, Th # T»} .

If F”/ = ¢, the claim follows directly from admissibility; assume
thus F” # ¢ which implieszy < 1 in view of assumption (ii).
Hence anye” e E such thatd N S’ # @ is admissible, which
implies proy 4A(Z) = [0,1] VT e G. Z is thus range-equivalent
to X.

Takew € C(Z) and express as convex combination:

w=2z+ Y ho®()+ Y rpel.
Ded* elleE

For anyS € F, Z is symmetric under all permutatiogs: G —
G leaving events outside S invariant. By Lemmau2must thus be
constant on each € F, i.e. F-measurable.

It is also not difficult to verify that, for any F-measurable act

X, X = <1>2¢; #q,%Cb(x), and, in view of (8), thatz>%eQ >
ok
Y i) foralle € E.
Ded**

Thus, by the admissibility ofv, Ay = 0 for all H such that
et € E (for otherwisew<(h; + Y ,icp An)Z + D peqr Ao ® (1),
contradicting the admissibility ab).

This showsw € Z' = co ({z}U {®(Y)}pecd*).

By the admissibility ofw in Z’, the fact that for any € Z’:
X_u(G'uG”y = Z-uG'uc”), and the convexity of’, it follows from
a standard supporting-hyperplane argument thatust maximize

> wrxr in Z' for appropriate non-negative coefficients.
TeG'UG”

SinceZ’ is symmetric under all permutatiogse ¢* by construc-

tion, w must be constant dn(G’ U G”) by Lemma 2; moreover, the
7 can assumed to be constaat 1) as well; it follows thatw must

in fact maximize Y~ xr in Z’. Since this is uniquely done by
TeG'UG”
z in view of the assumption ohin (8), it follows C(Z) = {z}, and



234 KLAUS NEHRING

in particulary ¢ C(Z). Sincez € X, the claim then follows from
WAREP. O

Proof of Theorem 1, ctdEix any F such thatX is F-measurable.
By IDA, X can be assumeB-comprehensive. Let¢/(X) = {£}.
Take anyy # &, and define; by

7, = Yo !f Yo = &
@ MmNy y &, Ew 1y, # o

By Proposition 1, for som& € F, zg>ys.Sincez < & and
by the F—comprehensiveness o, it follows thatz € X. Thus
X, vy, z, F satisfy the properties assumed by Lemma 3 which yields
y ¢ C(X). It follows thatC (X) = o“/(X) by the non-emptiness of
C. O

Proof of Theorem 2:
Theorem 2 can be demonstrated using a significantly simplified
version of the proof of the Theorem 1. O
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NOTES

1. Noncomparability is distinguished from genuine indifference byatk of
transitivity. Indeed, non-comparability is typically robust with respect to small
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(unambiguous) changes in the value of the alternatives. This is a typical fea-
ture of “hard” choices. For example, if you find it difficult to decide whether
to accept a job-offer at a salary of x dollars per year or to stay put, you will
find it just as difficult to decide at + 1 dollars, probably also at + 100,
maybe even at + 10, 000 dollars. (While you will probably be able to tell
the difference betweenandx + 10, 000 dollars, this may not settle the matter
for you, as money may simply not be the real issue.)

2. This follows from standard representation theorems, e.g. Smith (1961) and
Bewley (1986). Partial orders with the assumed structure have received a
mathematically comprehensive and conceptually profound treatment in Wal-
ley’s monograph “Statistical Reasoning with Imprecise Probabilities” (1991).
Belief-functions and upper-and lower probabilities, other frequently endorsed
generalizations of the probability calculus, can be viewed as special (and re-
strictive) instances of assessing such partial orders (see Walley 1991, ch. 4,
especially pp. 182-184 and 197-199).

3. The classical reference is de Finetti (1937); for a discussion of exchangeability
in the context of partial orders, see Walley (ch. 9.5).

4. MML can be viewed as applying the maximin solution after normalizing con-
sequence utilities by subtracting, for each state, the maximal achievable utility
in that state.

5. Under Complete Ignorance, i.e. requiring Symmetry, these exhaust the set
of all preference maximizing choice rules, as shown in Arrow and Hurwicz
(1972).

6. In the literature on statistical decision theory, this is often phrased as violation
of the “likelihood principle” (Barnard 1949, Birnbaum 1962).

7. And of its extension to convex sets of priors often referred tb-asinimax
loss rule.

8. These can be derived from a standard representation theorem (cf. Section 3).

9. Note that in the limiting case of Complete Ignorance, the parallelogram of
Figure 1 becomes a rectangle whose sides are parallel to the axes.

10.£ provides an easy way to thematize the role of extremal priors. A plaus-
ible alternative to the definition of SIMEU as would be aso*° (X, IT) =
£(X, co TI); this is discussed in detail in Nehring (1991, ch. 2.5), with argu-
ments suggesting the superiority of the adopted specification of SIMBU as
For the moment, just note that while in higher dimensions the two specific-
ations may differ, in two dimensions they are always identical; this has been
shown in Nehring (1991, ch. 2), Proposition 6.

11. WARP is formally defined in Section 4.

12. l.e., for eactF € F and each #-tuple of natural numbers:{)scr, there
exists a refinemen of F in ¥ suchthat# € G|T C S} = n;.

13. For an exposition of the theory that does not assume (but effectively reduces
to) [0,1]-valued consequences, see Nehring (1995).

14. Note that otherwise uncertainty-averse choice rules such as maximin and
SIMEU may recommend giving up significant amounts of utility for access
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to a random device. If the pure acts are (1,0) and (0,1) (in natural “partition
notation”), for example, randomization would be worth up to 0.5 utiles for a
decision-maker using either of these rules.

15. An actx is F-measurableff it is constant on each celf € F.

16. With[0, 1]* being endowed with the product topology; sifel]” is com-
pact in this topology (by Tychonoff's Theorem), so is any simple choice-set
X e X.

17. 1 owe this fact to the intervention of a referee; note that it would clearly be
false for non-conveX.

18. Note that..(x) is F-measurable whenevef < [0, 117, hence simple; note
also thatf{w : A, (x) # Ao(V)} = {0 : X0 # Yol

19. Taking anyF such thatX < [0, 117, and viewing[0, 117 as afinite-
dimensionalunit-cube, the proposition also implies that, fmnvexX, the
uniqguex € LM (X) coincides with the lexicographic maximin act as defined
ordinarily for finite-dimensional Euclidean spaces.

20. Dating back to the nineteenth century, there has been a long tradition of
criticisms of the principldan its Laplacian formwhich has been revived in
recent years under the name of “non-informative Bayesian priors”; see Berger
(1985, ch. 3) for a review and Walley (1991, ch. 5) for an extended critique of
non-informative priors.

21. For the terminology, see Section 5.3.

22. Two remarks on the technical definition of WAREP:

1. One might consider defining range-equivalence alternatively Yy: &

Q : proj,X = proj,X’ . However, this would make the choice rule highly
dependent on the addition or deletion of strictly dominated acts. The present
formulation avoids this, implying the conditionA(X) = A(X') = C(X) =

C(X) VX, X'".

2. It would be preferable to specify range-equivalence without using the to-
pological concept of closure, i.e., a8 € Q: proj, A(X) = proj, A(X")".

This is not possible in general, since compactness &ils to imply that of
A(X) in more than two dimensions (see Arrow et al. 1953). Compactness of
A(X) is guaranteed, on the other handXiis a polyhedron.

23. The two theorems are also the first in the literature that make Symmetry and
strict Admissibility compatible without aad-hocqualification of the axioms.

The problem of their apparent incompatibility has in fact been (at least impli-
citly) a major issue of the Cl-literature in the 1980s. Maskin (1979) imposes
anad-hocrestriction on the applicability of “Column Duplication”, Barbera-
Jackson (1988) in effect restrict the requirement of preference completeness,
and Cohen-Jaffray (1980, 1983) demand only “approximate satisfaction” of
certain conditions.

24. | thank Louis Makowski for articulating a skepticism along this line.

25. This is the property of “negative introspection” in the language of epistemic
logic. Complete ignorance in the sense of this paper has therefore nothing to
do with “unawareness” in the sense of the recent literature on that topic, for
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which violation of negative introspection is deemed essential (cf. Modica—
Rustichini 1994, Dekel-Lipman—Rustichini 1998.

26. For a good exposition of the distinction between an exhaustive and a partial
eliciation interpretation, see Walley (1991, Section 2.10).

27. Elster also supports the “Solomonic” use of randomization in situations of
ignorance.

28. From the point of view of a bargaing theoretic interpretation, the example
shows the relevance of both the imputed ideal and disagreement points.

29. Indeed, it assumes perhaps too much context-independence. A/(the?) “per-
fectly rational” theory will probably need to replace WAREP by some
subtler set of conditions, presumably at the price of substantially increased
complexity.

30. The technical details are omitted; generalizing the two-state case presented
in Section 2, it should suffice to think of the partial ord®&®s intersections
(unanimity relations) of sets of expected-utility ord&g;, with = denoting
a probability measure of2 and

xRy & [xpdn = [ yodr.
Such classes can be axiomatized along the lines of standard representation
theorems in the literature; see Smith (1961), Bewley (1986) and in great
generality Walley (1991), as well as Nehring (1995) for a statement directly
appropriate to SIMEU theory.

31. We say “of the followingtyp€’, since the domain of the choice-function
C(X, R) has not been formally defined.

32. The motivation for imposing this additional structure is expositional and tech-
nical: Symmetry and CISO are independently interpretable, and they are what
matters mathematically. Conceptually, the formulation of a general, integrated
“invariance under preference-isomorphism” seems desirable and non-trivial
and is left to future research.

33. This property is unique tRy and reflects the extreme richness in symmetries
of Ry which makes EISO/Symmetry so powerful.

34. Since justified acceptance of CISO relies on the PPB, it must be accompanied
by acceptance of EISO. Thus, the class of bargaining solutions that make
sense in the present context is severely restricted; in particular, EISO im-
plies that the solution cannot depend on the number of players with identical
preferences, as for instance adaptations of the Nash solution would imply.
When WAREP is assumed in addition, the lexicographic Kalai-Smorodinsky
solution is already uniquely singled out.

35. See Nehring (1992), for a brief published statement, and Nehring (1991), ch. 2
for a more extensive discussion; it is also effectively shown there (in a slightly
different setting) that a choice rule defined on the class of ClI problems has a
CIR extension if and only if it satisfies EISO.

36. We note that CIR strengthens the case for CISO. Specifically, it is shown in
Nehring (1991, ch. 1), that in the presence of CIR, CISO is equivalent to
condition STP (“sure-thing principle”) which determines for a simple class of



238 KLAUS NEHRING

decision problems how choices respond to the “conditioning” of preferences
that results from a partial resolution of the uncertainty.

37. For example, it has been shown in Nehring (1999) that Choquet Expec-
ted Utility maximization with convex capacities (which includes the class
of maxmin-preference orderings based on belief-functions) imposes severe
restrictions on the familiy of “unambiguous events” (those for which the
capacity of an event and its complement add up to one).

38. In line with this conclusion, Complete Ignorance has been defined here in
terms of the preference relation, without reference to an informal epistemic
notion of “total absence of information”. This contrasts both with the classical
literature on Complete Ignorance and with more recent viewpoints such as
Walley’s (1996, p. 4).
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