FOUNDATIONS FOR THE THEORY OF RATIONAL CHOICE
WITH VAGUE PRIORS
Klaus Nehring

Abstract Vagueness of belief is modeled by allowing the decision maker to entertain
(convex) sets of probabilities over the n possible states. Such convex belief sets can be obtained
by dropping the completeness assumption in otherwise standard expected-utility axiomatizations,
as Bewley and others have shown. The task of this paper is to demonstrate that decision
problems with arbitrary belief sets can be reduced to "complete ignorance” problems, ie., to

problems whose belief sets are n-simplexes X" and thus maximally inclusive.

This is formally captured in the condition of "complete ignorance reduction” (CIR). CIR
asserts that any decision problem with vague pricrs (X,P) has an equivalent complete
ignorance problem (Y, X™), whose states correspond to the m extreme points of P, and whose

payoffs in some state are given by the expected utility of the considered act under the extremal
belief associated with that state.

The axioms employed in the derivation of CIR capture the idea that only payoff-relevant
differences in beliefs should matter. They also provide a foundation for the axiom of
"Replication Invariance" (sometimes also called "Invariance with respect to the merger of states")
which is the hallmark of the existing literature on complete ignorance problems. Our paper thus
integrates two approaches to vagueness which so far have lead completely separate lives.

1. INTRODUCTION

This paper attempts to provide the foundations for a general decision theory for vague
beliefs. "Vagueness of belief" is assumed to obtain when the decision-maker is (or should

rationally be) unwilling to commit himself to a unique subjective probability (vector) pe X8,
where Z° denotes the unit simplex of R® and S the set of "possible" states. Vagueness will be
modeled by allowing the decision-maker to entertain convex sets of probabilities P c X 8.

This kind of approach has been forcefully advocated by Levi (1980) among others; it has
received axiomatic support for instance in the work of Bewley (1986) who, building upon Smith
(1961), has characterized convex "belief sets” in terms of incomplete preferences.

A more extensive discussion of the concept of vagueness and its modeling in terms of
belief sets can be found in Nehring (1991a). Nehring (1991b) provides qualified support for the
convexity assumption.

The literature has focused almost exclusively on the limiting cases of vagueness, of a
determinate subjective probability on the one hand ("Bayesian Decision Theory") and of maximal
vagueness on the other ("Complete Ignorance").

‘Harvard University, July 1990.
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"Complete Ignorance” has been characterized in the literature by two axioms of
"Symmetry" and of "Replication Invariance" (also: "Merger of States"); the latter axiom rules
out expected-utility maximization. We show that if Complete Ignorance is represented by

maximally inclusive belief sets P = X5, the classical axioms can be derived from more basic and
general ones.

The major contribution of this paper is to provide an axiomatically justified method
whereby choice-functions defined on the class of "complete ignorance problems" and satisfying
these axioms ("CI-solutions") can be extended to general belief sets. The only restriction is that
the belief sets have to have a finite number of extreme points, i.e., that they must be polyhedra;
it is imposed solely for reasons of tractability.

The method we develop, called "Cl-reduction," is a very simple one. It is shown that any
decision problem with belief sets is equivalent to a CI-problem in which each state corresponds
to an extreme point of the original belief set, and in which acts are identified with the vectors
of expected utilities under these extremal probabilities.

It is important that the method of Cl-reduction allows the extension of arbitrary CI-
solutions. Nehring (1991a) axiomatizes a CI-solution of "Simultaneous Utility Maximization"
("SUM") which is superior to existing solutions and can lay claims to rationality by thoroughly
satisfying the sure-thing principle applied to belief sets. It can be understood as a radicalized
version of the classical "Savage rule."! The applicability of Cl-reduction to arbitrary CI-
solutions is crucial to ensure the extendability of SUM.

The only other work that seeks to develop a reasonably general decision theory for belief
sets is Jaffray’s (1988, 1989). His idea is also to extend CI-solutions, but his method is rather
different. It has two serious drawbacks which our method avoids: its domain is still severely
limited (to belief sets that can be characterized in terms of "belief functions"). Moreover, it has
to be formulated in terms of preferences rather than choice-functions, and is thereby incompatible
with SUM or the Savage rule.

2. FRAMEWORK AND NOTATION

Let S~ denote an (infinite) "universe of states," and let S be the class of its finite subsets.

A belief set is a closed convex set P contained in some X%, the unit simplex of RS, "Pc X"
simply means that the decision maker attributes probability zero (unambiguously) to all state of

S~\S. Let P® be the class of belief sets with a finite number of extreme points.?
An act x is an element of RS. Its consequences are to be interpreted as "payoffs" in terms of

cardinal utility; the existence of a cardinal utility could be derived without difficulty by the
standard "horse-lottery" technique due to Anscombe and Aumann (1963).

Treated at length in the second half of Savage’s "Foundations of Statistics” (1972%).

?Recall that p is called an extreme point of P if and only if it is not a convex combination of two different
elements of P.
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Choice sets X are subsets of RS. X5 is the class of such sets; it may or may not be
restricted by conditions such as compactness or convexity.

& (P) , the set of extreme points of P.

CH X ., the convex hull of X

X°p , the scalar product of x and p: X'p==g %P,
x_ € RSN , the vector of non-s components of x.

At the heart of this paper lies the notion that decision problems can often be described
in different but equivalent ways by eliminating payoff-irrelevant aspects of the original
description. As plain as it seems, it turns out to have remarkably strong consequences in the
context of belief sets.

The possibility of redescription can be captured formally by introducing partitions of the
set of possible states, as follows:

Let IF be the set of some partitions of some S € §.
For any partition F ={F,},_, of S into "events" F_, let R be the #F-dimensional linear

iiel

subspace of acts which are constant on the elements of partition, i.e.

R}f:{xe R*|x, =x ifs,teF, Vs,teS§, ieI},anddeﬁne
X§={xe X% | XcR;}.

If Xe Xg, the payoff-structure may be specified without loss of information in terms of
F; X may thus be redescribed as a subset of RF. The redescribed choice-set X F is defined as
v (X)), where VF is the canonical bijection from R} to RF, with vF (x)p = x,, foranyse F,

and ie I. We will typically write vF(x) = xF.

For any P e PPS, the marginal belief set P¥ < XF induced by P on F is specified in the
natural way, elementwise:

pf ={pF|peP}, with pF(F,) = seZF p, for F e F.

Note that since the mapping p» p * is linear, the marginals of polyhedra are polyhedra.
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Abbreviate DF - XF x PF, and let D" = {DF | F is a partition of some Se §}, the
class of all problems "under general description”. Similarly, D ={ DS |Se S }cD". Also,
letD "¢ = {(X,ZF)e D" and DC! ={(X,Z2%)e D).

A solution is a mapping C : D™ — RF such that C(X,P) cX V(X,P)e D~.

Fe R

3. DERIVATION OF REPLICATION INVARIANCE

Choices should not be affected by redescription, if the redescription preserves all the
relevant information. This leads to the following condition RDI; in it, the qualifying condition
is captured by the requirement that the belief set in the redescribed problem is the marginal of
the original belief set plus an extreme point clause. For the purpose of reading this paper, take
this clause simply as a matter of technical expediency, to allow to prove the "if-part” of
proposition 2 below. In Nehring (1991b, section 1) it is explained as the result of a
misspecification of the true logical structure of vague beliefs as sets rather than as equivalence
classes of such sets.

DEF Redescription Invariance (RDI):
For any (X,P)e X35 x P® such that &(P)F = &(PF):C(X,P)F = C(XF,PF).

Remark: The crucial issue concerning the validity of the axiom is that of "information
preservation” mentioned above; the occurrence of an extreme-point clause shows its non-triviality.
In Nehring (1991b, section 2 and 3) it is argued that the DM’s belief attitudes "about F" are
indeeed fully summarized by the marginal belief set P¥, given the satisfaction of the extreme-
point condition.

RDI becomes powerful in conjunction with a condition of "General Isomorphism" (ISO).
ISO asserts that belief set and choice set determine the optimal choice completely; the identity

of the event {Fi} is irrelevant. In particular, it does not matter whether the events are

iel

“atomic” (F;, = {s}) or "composite" (#F, > 1).

With any bijection ¢ : F—F’ associate a bijection ® : RF — RF ' by
®(x)yq, =X; VGeF.

DEF General Isomorphism (ISO):
For any (X,P)e XF x P¥ ,F, F € F and any bijection ¢ : F—>F’ :

C(®(X),®(P)) = @(C(X,P)).

Remark: The axiom of "General Isomorphism" is stronger than that of purely "Formal"
Isomorphism ISO’, which is ISO restricted to problems in state-specification. Only ISO’ is
explicitly invoked in the literature, often under the name "invariance with respect to the labeling
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of states". ISO needs, and is capable of, stronger justification: it reflects the principle of
"consequentialist” rationality that the choice-worthiness of an act is fully determined by the
valuation of its consequences and the estimate of their occurrence.

RDI and ISO together have a strong implication, the "Replication Invariance” axiom which has
been the hallmark of the literature on complete ignorance problems. It may be stated thus:

DEF Replication Invariance (RI):

Forany Xe X3 with F = {{t} | te §,t#s,s’ ) Uf(s,s"})}:
C(X_,Z%%) = C(X,Z5)

In words: If a CI-problem has two states s,s’ € S with identical payoffs for any act,
elimination of one of the replicated states should not affect the optimal choice.

Denoting the restriction of RDI to D~ by RDI €, it is easy to show that

Proposition 1: ISO = (RDI © & RI).

Proof: Take any X e X3 with F = {{t} | {teS,t #s,5") U {s,s’).

Define d : F—>S \sbyd ({s,t})=tand ¢ (i) =ifori= {s,t]}.
ISO implies

C(X_S,ES\S)=<D(C(XF,ZF)). 1)
Suppose C satisfies RDI ¢! as well.

Then also C(XF,XF) =C(X, Z9F,

and thus ~ C(X_ ,Z%%) = d(C(X,Z%)F) =C(X,Z%)__.

This proves ISO = (RDI€! = RI).

Conversely, suppose that RI holds besides 1SO.

Then C(X __,Z5%) = C(X,Z%)_ , implying with 1)
C(XF,ZF) =@ (C(X,Z%)_ ) = C(X,X5"

Repeating this argument for general F if necessary shows

ISO = (RI =RDI®). O

Remark: We have emphasized the importance of both assumptions for proposition 1. By

contrast, the focus of the literature is on RDI !, used as a verbal argument for RI. ISO does
not appear explicitly in the standard treatment; it is implicit in the notation, as if the equivalence

3 Note that "invariance with respect to labeling” has to refer to the labeling of states, since events are not
independently "labeled” but rather named as sets of states.
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of states s€ Se S and events F, € Fe F was a purely formal matter. But strong conclusions
require strong premises; the camouflage of ISO makes R1I appear as a rabbit jumping out of the
magician’s hat.

The second advance in the understanding of RI beyond the literature consists in the

formulation of RDI in terms of (arbitrary) belief sets, and thereby making the issue of its
validity explicitly one of "informational equivalence”.

4. REDUCTION TO COMPLETE IGNORANCE PROBLEMS

We now want to tackle the second part of our task, to show that any decision problem
can be reduced to a CI-problem "in expected utilities".

Let T be any set of states with #T = #&(P) and B:T —»&(P) a one-to-one map.
Define (¥(X),XT), the "Clreduction" of (X,P)e DF under B and y, by

¥: RF 5RT, ¥(x) = (GXE:F xGBG(t)J ,and ¥ (X) = { ¥(x)| xeX }.

eT

DEF: CI-Reduction (CIR)

For any Cl-reduction (¥ (X),Z") of (X,P)eDF,
C(X,P)={xeX|¥(x)eC (P(X),XT)}.

In words: An act x is optimal in (X,P) if its extremal expected utility vector ¥ (x) is optimal
in the associated CI-problem in extremal expected utilities (¥(X), 2 7).

Example

Let C on D! be the maximin rule MM, defined by
MM(X) = {xe X | min x, 2 min, y Vye X}.
CIR extends MM uniquely to D, yielding the "maximum of expected utilities" (MMEU ) rule,
with
MMEU (X,P) ={{xeX | min { x-p|peP }2min { y-p|peP} Vye X}

- Note that in the case of MMEU, extreme points play no special role, since

min {x-p|peP} = min {x-p|pe &(P)}. MMEU has been proposed by Gaerdenfors/Sahlin
(1980) and - from a very different perspective than the present one - axiomatized by
Gilboa/Schmeidler (1989).

An example of a choice-rule proposed in the literature that satisfies 1ISO and RDI but violates
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CIR is Levi’s "two-tier rule"*:

LEVI (X,P) = MM (4(X,P)),
where 4 (X,P) ={xeX |3 peP VyeX: xp =2 y-p}.

LEVI differs from MMEU in the following problem

(X°,P% e X3 x P3, for instance, with
X0=cH { (2,0,0),(1,1,-1) },
P®=cH { (1-¢,0,e),(0,1-e,e) }, withO<e < .
A(X°,P°% =X°, hence LEVI (X°,P°%) =(2,0,0) .
On the other hand, for all xe X:
(0,1-e,e)e argmin{p-x | pe P }; hence MMEU (X°,P°%) =(1,1,-1).
To derive CIR, a new axiom is needed:

DEF Expected-Utility Equivalence (EUE):

For any (X,P),(X’,P)e DS’ such that, for some mapping 0 from X to X/,
VxeX,VpeP:p-x =p-0(x):
xe C(X,P) ®0(x)eC (X',P).

In words: Replacement of acts x by other acts 0(x ) that are equivalent in terms of expected
utility, under any acceptable probability p € P, should affect the optimal choice only by the
corresponding replacement 6.

Proposition 2: ISO & RDI & EUE <> CIR & RI .

The proof comes in four parts:

Part 1: ISO & RDI = RI.

This is implied by proposition 1. [

Part 2: ISO & RDI & EUE = CIR.

Fix some (X,P)e D%, Se F. ByISO, w.log. Se S.

Again by ISO it suffices to show for some JeS and B :J & (P) (with associated ¥) that
C(X,P) ={xeX | ¥(x)e C(¥(X),Z') ).

We proceed by constructing three auxiliary problems and exploit appropriate invariance-
conditions to determine their solution given C (X,P ); the last problem in the chain will be a CI-
reduction of (X,P),(¥(X),X’).

*As in Levi (1980), ch.7.
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Step 1: Take any S’ € S with #8' = #S -#& (P).
S’/ will be written as S X L.
I will be used as a set of payoff-irrelevant background states. Its function is to allow the

specification of a belief-set Q on S x I of a particular structure whose marginal Q * on S is P.
The belief set Q to be defined can be charaterized by two conditions:

1) For all i€ I, there is agreement among the q € Q that the conditional probability
on {Sxi}is P(i).
i) There is complete ignorance about which 1 obtains.

Q can thus be interpreted as "complete-ignorance mixture of the extremal probabilities of P".

Formally, define v : R*—R% by y(x),; = X, and let X’/ = y(X). Also, let
J= {Sx (i} }, ;€ F and fixa bijection P:J »&(P) ;B will also be referred to as a
function of ieI.
Define q'e X5*! by q.; =PB(i),, and q,,; = 0for j=*i.

Let Q,={q'};,; and Q= CHQ,.
Thanks to ISO, the partition { sx1 }oes CAN be identified with S.

Assertion 1: xeC (X,P) & y(x) e C (X',Q).

Verification:

During the proof of part 1, we shall refer a number of times to the following elementary
mathematical fact’:

Fact 1: If P is a compact convex subset of RS, P=cH &(P).

Clearly (q*)% = B (i), and thus Qs=Z(P). 1)
Since Q_ =& (Q) according to 9) below, it follows that also & (Q )$ = &(P). 2)
Moreover, due to fact 1, Q3= ( ¢H Q. )°= cH QL= P. 3)
Thanks to 2) and 3), RDI can be applied (in combination with ISO) to yield
xeC (X,P) & y(x)eC (X',Q). 4)

Step 2: We now exploit the agreement about conditional probabilities to take conditional
expectations using EUE.

Define 6 :RS*! RS by 6(x),; | = tgzs B(i), x,,
and set X” = 0(X').

Assertion 2: x’'e C (X/,Q) @6(x’)e C (X" ,Q).

SSee Rockafellar (1970, p.167), Corollary 18.5.1.
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Verification: For qe &(Q), i.e. q=q '
P _ . _ . Y : il
q 9(X)-SZ€:S B(l)se(x)i,,—(S§SB(l.)s)(tesﬁ(l)lxi_,)-q X. 5)

By the linearity of expectation and fact 1, Vqe Q, xe RS*': q+0 (x) = q -x. 6)
EUE yields x’ e C (X/,Q) & 6 (x/)eC (X”,Q). 7

Step 3: The taking of conditional expectations in step 2 has made se€ S payoff-irrelevant, i.e.
X"e X3*IL (X”,Q) can thus be redescribed in terms of J as CI-problem in expected
utilities. Setting Y = v (X”), we get from RDI

Assertion 3: xe C (X”,Q) oV’ (x)e C (Y,Z’).

Verification: Clearly, Q. =& (X’). 8)
By the linearity of the mapping v : q » q’, # &(Q) 2 #& Q') = # J.
From &(Q)cQ,, it follows that in fact &(Q) = Q.. 9)
hence that &(Q)’ = &(X’) from 8), and 10)
therefore also Q’= X/ by fact 1. 11
10) and 11) allow to apply RDI again, yielding

xeC (X',Q) &V’ (x)e C (Y,27). 12)

Step 4: Now v o @ oy = ¥: R5SR’, with ¥ (x ) = ( S§S B(j), x
it follows that Y =¥ (X).
Combining the assertions 1,2, and 3, we obtain
xeC(X,P)e¥Y(x)e C(Y,Z7). ad 11)
Part 3: i) CIR = EUE .
ii) CIR = ISO .
i) is true simply because any Cl-reduction of (X,P) is also a Cl-reduction of (X’,P) if

X and X’ satisfy the presupposition of EUE.
The analogous argument works for ISO as well. [J

s)jeJ;

Part 4: CIR & RI - RDI .

Take any (X,P)e DS such that X e X3 and &(P)" = &(PT). It has to be shown that
CEX,PYr=C(XT,PT),

Let (Y,ZX') be a Cl-reduction of (X,P) under B and ¥, with Y = ¥ (X).

Let J be the partition of I into equivalence classes [i] defined by the following equivalence
relation ~ : ‘

i~jiff ()T = BT D
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Lemma 2: i) YcR;.
ii) (Y’,Z')is the Cl-reduction of (X T PT) under (B/,¥') defined by
B :[i]=PBGi)Tand ¥ :ix = (BT X)),
iiiy Forallxe R} :¥(xT) =¥ (x)"

i) Fory = W(x)e Yandi~j:y, =y, because y; = B(i)T-x =BG -x=y;:
the outer equalities are true by definition, the inner follows from 1) and the fact that any

x € X is constant by assumption within elements of T. Hence YC:R}.
i) Forany XeRS : W (xT) = (B ([i1)"x™) oy = (B (1) x)ier = ¥ ().
i)  Byiil), P(XT) =¥ X)) =Y.
By definition B’ is one-to-one and B/ (J) = &(P)"; since by assumption
E(P)"=&(P"),pJ)=&PT). O

Proposition 1 and Part 3, ii) imply CIR & RI = RDI ¢'; we can therefore conclude that

xe C(X,P) iff ¥(x)e C(Y,E! by CIR
iff ¥(x)'e C(Y,2")’ by lemma 2,1)
iff ¥(x)'e C(Y',Z7) by RDI® and 1)
iff ¥ (xT)e C(Y',Z7) ‘ by iii)
iff xTe C(XT,PT) by CIR and ii). |

The role of CIR is summarized by

Lemma 3: A choice-function C on D! can be extended to D~ satisfying CIR if and only

if C satisfies ISO on D€L, The extension is unique.

Proof: Uniqueness is trivial.

The "only-if" part holds because "isomorphic" CI-problems are CI-reductions of each other. The
"if" part follows from the fact that Cl-reductions of the same problem must be isomorphic to
each other. O

Proposition 2 and lemma 3 imply directly

Proposition 3: A choice-function C on D! can be extended to D~ satisfying ISO, RDI

and EUE if and only if C satisfies ISO and RI on D%,
The extension is unique.
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The extension of solutions for CI-problems to "Cl-mixtures of probabilities” is nothing
new. It has been proposed by Hurwicz (1951) and Milnor (1954) and has been axiomatized by
Cohen and Jaffray (1985). Whereas Cohen and Jaffray extend CI-solutions in one step with the
help of a "conditional-preference axiom", we decompose this extension into two steps (steps two
and three of part 1), avoiding reference in the axioms to either preferences or conditional
probabilities and without relying on any separability argument.

But the key innovation is step 1 in which general decision problems with belief sets are
interpreted as problems with complete ignorance about the extremal probabilities.

The extension to CI-mixtures has a certain obviousness; in our treatment (steps 2 and 3)
this is reflected in the fact that only a weak version of RDI is being used, in which the mapping

ppF is required to be invertible on P ("RDI '"1").  On the other hand, step 1 utilizes
Redescription Invariance in its strong general form RDI, and has therefore much more meat.
Whereas RDI'™! fails to restrict CI-solutions, even combined with ISO, RDI has a very strong
implication for CI-problems, Replication Invariance.

A different line of attack is Jaffray’s (1988, 1989) "mixture-approach", to our knowledge
the only work that attempts to develop a reasonably general axiomatic decision theory for belief
sets. It can be seen as "dual” to our approach in step 1, by interpreting decision-problems as
mixtures of CI-problems rather than as CI-mixtures of probabilistic problems as we do.

Jaffray’s approach is limited in two major ways: it can deal only with a special class of
belief sets, those characterizable on terms of "belief-functions"; this class does not include ClI-
mixtures of probabilities, among others! Moreover, the theory has to be formulated in terms of
preferences rather than choice-functions; this prejudices the search for a rational CI-solution
decisively, as we argue in Nehring (1991a) which develops a theory of "Simultaneous Expected
Utility Maximization" that violates standard choice-consistency conditions; it is shown there that
any candidate for a rational solution has to do so.
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