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A User’s Guide to Solving Real Business Cycle Models

The typical real business cycle model is based upon an economy populated by identical

infinitely-lived households and firms, so that economic choices are reflected in the decisions made

by a single representative agent.  It  is assumed that both output and factor markets are

characterized by perfect competition.  Households sell capital, k t , to firms at the rental rate of

capital and sell labor, ht , at the real wage rate. Each period firms choose capital and labor subject

to a production function  to maximize profits.   Output is produced according to a constant-returns-

to-scale production function that is subject to random technology shocks.  Specifically

( )y z f k ht t t t= , , where yt  is output and zt  is the technology shock.  (The price of output is

normalized to one.)  Households’ decisions are more complicated; given their initial capital stock,

agents determine how much labor to supply and how much consumption and investment to

purchase.  These choices are made in order to maximize the expected value of lifetime utility.

Households must forecast the future path of wages and the rental rate of capital.  It is assumed that

these forecasts are made rationallyA rational expectations equilibrium consists of sequences for

consumption, capital, labor, output, wages, and the rental rate of capital such that factor and output

markets clear.

While it is fairly straightforward to show that a competitive equilibrium exists, it is

difficult to solve for the equilibrium sequences directly.  Instead an indirect approach is taken in

which the Pareto optimum for this economy is determined (this will be unique given the

assumption of representative agents).  As shown by Debreu (1954), the Pareto optimum as

characterized by the optimal sequences for consumption, labor, and capital in this environment will

be identical to that in a competitive equilibrium.  Furthermore, factor prices are determined by the
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marginal products of capital and labor evaluated at the equilibrium quantities.  (For a detailed

exposition of the connection between the competitive equilibrium and Pareto optimum in a real

business cycle model, see Prescott, 1986 [4].We now provide an example of solving such a model.

I.  DERIVING THE EQUILIBRIUM CONDITIONS

The first step in solving for the competitive equilibrium is to determine the Pareto

optimum.  To do this, the real business cycle model is recast as the following social planner’s

problem:
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where [ ]E1 ⋅  denotes expectations conditional on information at t = 1, 10 << β  is agents’ discount

factor, ct  denotes consumption, ( )1 − ht  is leisure (agents endowment of time is normalized to

one), it  is investment, and 10 << δ  is the depreciation rate of capital.  The exogenous technology

shock is assumed to follow the autoregressive process given in the last equation; the

autocorrelation parameter is 10 ≤≤ ρ  and the innovation to technology is assumed to have a

mean of one and standard deviation σ ε .  The first two constraints in (1) is the economy-wide

resource constraint and the second is the law of motion for the capital stock.

Dynamic Programming Problem
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This infinite horizon problem can be solved by exploiting its recursive structure.  That is,

the nature of the social planner’s problem is the same every period:  given the beginning-of-period

capital stock and the current technology shock, choose consumption, labor and investment.  Note

that utility is assumed to be time-separable; that is  the choices of consumption and labor at time t

do not affect the marginal utilities of consumption and leisure in any other time period.  Because of

this recursive structure, it is useful to cast the maximization problem as the following dynamic

programming problem (for a discussion of dynamic programming, see Sargent (1987)):

state variables at time t:  ( )k zt t, .

control variables at time t:  ( )c h kt t t, , +1 .

                          (2)            
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(Note that investment has been eliminated by using the law of motion for the capital stock.)  A

solution to this problem must satisfy the following necessary conditions and resource constraint:

                                             ( ) ( )[ ]{ }
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Where the notation U ii t, ; ,= 1 2 denotes the derivative of the utility function with respect to the ith

argument evaluated at the quantities ( )c ht t,1 − ; f ii t, ; ,= 1 2  has an analogous interpretation.  N1

represents the intra-temporal efficiency condition (the labor-leisure tradeoff).Iit implies that the

marginal rate of substitution between labor and consumption must equal the marginal product of

labor.  The second condition, N2,  represents the intertemporal efficiency condition.  The left-hand
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side represents the marginal cost in terms of utility of investing in more capital while the right-hand

side represents the expected marginal utility gain; at an optimum these costs and benefits must be

equal.

To simplify the analysis (again, see Prescott (1986 [4]) for a justification), assume the following

functional forms:  

                                       ( ) ( ) ( )U c h c A h f k z z k ht t t t t t t t t, ln ; ,1 1 1− = + − = −α α .

(The assumption that utility is linear in leisure is based on Hansen’s (1985 [8]) model .  Then the

three equilibrium conditions become

                     (3)                          
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A steady-state equilibrium for this economy is one in which the technology shock is

assumed to be constant so that there is no uncertainty, that is zt = 1 for all t, and the values of

capital, labor, and consumption are constant, k k h h c ct t t= = =, , for all t.  Imposing these

steady-state conditions in (3), the steady-state values are found by solving the following steady-

state equilibrium conditions:

                                                 ( ) ( )( )SS c A k h1 1= − −α α α .

                                                 ( ) ( )SS k h y k2 11 1 1β δ α αα α− − −− + = = .

                                                 ( )SS k k h c y c3 1δ α α= − = −− .

In the above expressions, y  denotes the steady-state level of output.

Calibration
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The next step in solving the model is to choose parameter values for the model.  This is

done through calibration: the set of parameters ( )δ β α, , ,A  are chosen so that the steady-state

behavior of the model match the long-run characteristics of the data.  The features of the data

which do not exhibit cyclical characteristics are:

(1)  ( )1 − α = labor’s average share of output.

(2)  β − −1 1 = average risk-free real interest rate.

(3)  Given ( )α β, choose δ  so that the output-capital ratio (from (SS2)) is

consistent with observation.

(4)  The parameter A determines the time spent in work activity.  To see this,

multiply both sides of (SS1) by h  and rearrange the expression to yield:

( )[ ]( )h A y c= −1 α .  But the steady-state resource constraint, (SS3), implies

that 
y

c k

y

=
−









1

1 δ
 so that the output-consumption ratio is implied by the

parameter values chosen in the previous three steps.  Hence, the choice of A

directly determines h .

Typical parameter values based on postwar U.S. data (see Hansen and Wright (1992 [4])  are:

α = 0 36. implying labor’s share is 64%, β = 0 99. implying an annual riskless interest rate of

0.04%, δ = 0 025.  implying the capital-output ratio (where output is measured on a quarterly

basis) of roughly 10, and A = 3 which implies that roughly 30% of time is spent in work activity.

(These values will be used later in Section IV below.)

II.  LINEARIZATION

The solution to the social planner’s problem is characterized by a set of policy functions
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for capital, consumption, and labor; moreover, the solution exists and is unique; (see Prescott (1986

[4]).  There is, however,  no analytical solution.  To make the model operational, therefore, an

approximate numerical solution is found.  One of the simplest methods is to take a linear

approximation (i.e. a first-order Taylor series expansion) of the three equilibrium conditions and

the law of motion of the technology shock around the steady-state values ( )c k h z, , , . Provided the

stochastic behavior of the model does not push the economy too far from the steady-state behavior,

the linear approximation will be a good one.  (The discussion below follows closely that of Farmer

(1994).)  This technique is demonstrated below:1

Intratemporal efficiency condition:

The optimal labor-leisure choice is represented by condition N1:

                ( )[ ]c A z k ht t t t= − −1 α α α .

Linearizing around the steady-state values ( )c k h z, , , :

        (4)
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Note that in the last expression, all variables have been expressed as percentage deviations from the

steady-state (the first two terms modify the respective derivatives while the last term uses the fact

that z = 1  in steady-state).  Consumption can be expressed as a percentage deviation from steady-

state by using the steady-state condition ( )[ ]c A k h= − −1 α α α ; dividing both sides of the

                                                       
1 Recall that the general form for the Taylor series expansion of a function around a point x* is:
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equation by this expression and denoting percentage deviations from steady-state as ~x , eq. (4) can

be written as:

(5)          ~ ~ ~ ~c k h zt t t t= − +α α .

Intertemporal Efficiency Condition:

This efficiency condition is given by N2
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Again, linearizing around the steady-state and expressing all variables as percentage deviations

from steady-state yields:
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Multiplying each side of the equation by c  and using the steady-state condition (SS2) that

       ( )[ ]1 11 1= + −− −β α δα αk h

yields
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Resource Constraint

Following the same procedure as before, linearizing the resource constraint around the steady-state

yields
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            (7)        
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Technology Shock Process

The critical difference between the steady-state model and the real business cycle model is the

assumption that technology shocks are random - the shocks follow the autoregressive process

described in eq. (1). Linearizing the auto-regressive process for the technology shock results in:

   (8)                       ~ ~ ~ .z zt t t+ += +1 1ρ ε

Taking expectations of both sides:

(9)                             ( )E z zt t t
~ ~

+ =1 ρ .

III.  SOLUTION METHOD

The equations that define a rational expectations equilibrium (eqs. 5, 6, 7, 9) can be written as a

vector expectational difference equation.  Let u t

t
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where bold print denotes a vector, then

the linear system of equations can be written as:

                            (10)                         ( )Au B ut t tE= +1 .

The matrices A and B are:
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Premultiplying both sides of eq. (10) by A −1 yields:

         (11)                                         ( )u A B ut t tE= −
+

1
1 .

The matrix A B−1 can be decomposed as (see Hamilton (1994) for details):

         (12)                                              A B Q Q− −=1 1ΛΛ .

where Q is a matrix whose columns are the eigenvectors of A B−1 and ΛΛ is a diagonal matrix

whose diagonal elements are the eigenvalues of A B−1 .  Using this decomposition and

premultiplying both sides of the resulting expression in eq. (11) by Q −1 yields:

       (13)                                ( ) ( )Q u d d Q u−
+

−
+≡ = =1 1

t t t t t tE EΛΛ ΛΛ1 1 .

Note that the elements of the defined (4 x 1) column vector dt  are constructed from a linear

combination of the elements in the rows of the (4 x 4) matrix Q −1  and the elements of the (4 x 1)
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column vector u t .  Since ΛΛ is a diagonal matrix, eq. (13) implies four independent equations:

        (14)                                     ( )d E d ii t i t i t, , ; , , , .= =+λ 1 1 2 3 4

Since the equations in (14) must hold every period, it is possible to recursively substitute the

expressions forward for T periods to yield:

         (15)                                    ( )d E d ii t i
T

t i t T, , ; , , , .= =+λ 1 2 3 4

The λ i are four distinct eigenvalues associated with the four equilibrium conditions (eqs. 5 - 8).

Since one of these conditions is the law of motion for the exogenous technology shock (eq. (8)),

one of the eigenvalues will be ρ −1 .  Also, the first rows of the matrices A and B are determined by

the intratemporal efficiency condition; since this is not a dynamic relationship, one of the

eigenvalues will be zero.  The remaining two eigenvalues will bracket the value of unity as is

typical for a saddle path equilibrium implied by the underlying stochastic growth framework.  As

implied by eq. (15), the stable, rational expectations solution to the expectational difference

equation is associated with the eigenvalue with a value less than one.  That is, if λ i > 1 then

iterating forward implies d i t, → ∞  which is not a permissible equilibrium.  Furthermore, for eq.

(15) to hold for all T (again taking the limit of the right-hand side), in the stable case when λ < 1,

it must be the true that di t, = 0 ; this restriction provides the desired solution.  That is, di t, = 0

imposes the linear restriction on ( )~ ,
~

,
~

, ~c k h zt t t t which is consistent with a rational expectations

solution.  (Recall that d i t,  represents a linear combination between the elements of a particular row

of Q −1  and the elements of the vector u t .)
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IV.  A PARAMETRIC EXAMPLE

In this section, a parameterized version of the RBC model described above is solved.  The

following parameter values are used: ( )β α δ= = = =0 99 0 36 0 025 3. , . , . , A .  These imply the

following steady-state values: ( )c k h y= = = =0 79 10 90 0 29 106. , . , . , . .  Note that these values

imply that agents spend roughly 30% of their time in work activities and the capital-output ratio is

approximately 10 (output is measured on quarterly basis); both of these values are broadly

consistent with US experience (see McGrattan, 1994).

The remaining parameter values determine the behavior of the technology shock.  These are

estimated by constructing the Solow residual2 and then detrending that series linearly.  Specifically,

the Solow residual is defined as ( )Z y k ht t t t= − − −ln ln lnα α1 .  The Zt series can then be

regressed on a linear time trend (which is consistent with the assumption of constant technological

progress) and the residual is identified as the technology shock zt .  Using this procedure on

quarterly data over the period 60.1 - 94.4 resulted in an estimate of the serial correlation of zt  (the

parameter ρ ) to be 0 95. .  The variance of the shock to technology (i.e. the variance of ~ε t  in eq.

(8)) was estimated to be 0.007.  Note that the variance of the technology shock is not relevant in

solving the linearized version of the model -- however, when the solution of the model is used to

generate artificial time series in the simulation of the economy, this parameter value must be

stipulated.

These values generated the following entries into the A and B matrices:

                                                       
2 The use of the Solow residual as a measure of technology shocks is discussed in Hoover and Salyer (1996).
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Following the steps described in the previous section (pre-multiplying by A −1 ) yields the

following:
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The entries in the matrix ΛΛ  (i.e. the eigenvalues of A B−1 ) determine the solution.  Note that the

second diagonal entry is (accounting for rounding error) ρ −1 .  The fourth row of ΛΛ  is associated

with the intratemporal efficiency condition.  These values are proportional to those given in the

first row of the A matrix; consequently dividing all entries by ( )−2 62.  returns the original intra-

temporal efficiency condition.  The remaining two entries in the ΛΛ  matrix are those related to the

saddle path properties of the steady-state solution.  Since a stable rational expectations solution is

associated with an eigenvalue less than unity, the third row of the Q −1  matrix provides the linear

restriction we are seeking.  That is, the rational expectations solution is:



page 13, Hartley, Hoover, Salyer, RBC Models: A User’s Guide

13

− + + + =2 50 136 0 056 110 0. ~ .
~

.
~

. ~c h k zt t t t .

Or,

(16)         ~ .
~

.
~

. ~c h k zt t t t= + +054 0 02 0 44 .

The law of motion for the capital stock (the parameter values are given in the third row of the A

matrix) and the intratemporal efficiency condition provides two more equilibrium conditions:

(17)
~

. ~ .
~

.
~

. ~k c k h zt t t t t+ = − + + +1 0 07 101 0 06 010 .

(18)
~

. ~ ~
. ~h c k zt t t t= − + +2 78 2 78 .

A random number generator can next be used to produce a sequence of technology shocks.  The

above equilibrium equations can then be used to produce time series for capital, consumption,

labor, and output.

V.  ANALYZING OUTPUT FROM THE ARTIFICIAL ECONOMY

The solution to the model is characterized by eqs. (16)- (18) - given initial values for capital, and

next generating a path for the exogenous technology shock ( )~zt , these equations will produce

time-series for ( )~ ,
~

,
~

c k ht t t .  Two other series that most macroeconomists are interested in, namely

output and investment, can be generated by linearizing the production function and the resource

constraint, respectively.

Specifically, for output, linearizing the assumed Cobb-Douglas production function (i.e.

y z k ht t t t= −α α1 and using the calibrated value that α = 0 36. ) yields the following equation:

(19) ~ ~ .
~

.
~

y z k ht t t t= + +0 36 0 64 .

Finally, a linear approximation of the condition that, in equilibrium, output must equal the sum of
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consumption and investment can be expressed in the form as a percentage deviation from the

steady state as:

(20) ~ ~ ~i
y

i
y

c

i
ct t t= − .

Using the steady-state values employed in the numerical solution, the investment equation

becomes:

(21) ~ ~ .

.
~ . ~ . ~i y c y ct t t t t= − = −

1.06

0.27

0 79

0 27
3 92 2 92 .

Hence, equilibrium in this economy is described by the following set of equations
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1

1 ε

To generate the time series implied by the model, it is necessary to first generate a series for the

innovations to the technology shock, i.e ~ε t .  These are assumed to have a mean of zero and a

variance that is consistent with the observed variance for the innovations, which, as mentioned

above, is roughly 0.007.  Then, initializing ~zt = 0  and using a random number generator in order

to generate the innovations, a path for the technology shocks is created.  Next, assuming that all

remaining values are initially at their steady-state (which implies that all initial values are set to

zero), the system of equations above can be solved to produce the time path for the endogenous

variables.



page 15, Hartley, Hoover, Salyer, RBC Models: A User’s Guide

15

We generate artificial  time paths for consumption, output, and investment.  (3000

observations were created and only the last 120 were examined) These are shown in Figure 1.

It is clear from Figure 1, as is also true in the actual data,that, the volatility of investment is

greater than that of output, which is greater than that of consumption.  To see this more precisely,

the standard deviation of consumption, labor, and investment relative to output is reported in Table

1 along with the correlations of these series with output.

            Table 1:  Descriptive Statistics for U.S. and RBC Model3

relative
volatility

Corr(x, y)

consumption
model

U.S. data

0.52

0.49

0.82

0.76

investment
model

U.S. data

2.86

3.02

0.95

0.80

labor
model

U.S. data

0.65

0.96

0.89

0.88

                                                       
3 Statistics for U.S. data are taken from Kydland and Prescott (1990 [21]), Tables I and II, p. 10-11.
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