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Abstract

The neoclassical growth model is used to identify the short run effects of two tech-
nology shocks. Neutral shocks affect the production of all goods homogeneously, and
investment-specific shocks affect only investment goods. The paper finds that previous
estimates, based on considering only neutral technical change, substantially understate
the effects of technology shocks. When investment-specific technical change is taken
into account, the two technology shocks combined account for 40-60% of the fluctua-
tions in output and hours at business cycle frequencies. The two shocks also account
for more than 50% of the forecast error of output and hours over an eight year horizon.
The investment-specific shocks account for the majority of these short run effects.
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1. Introduction

This paper investigates the short run effects on output and hours of neutral and investment-

specific technical change. Permanent neutral technology shocks can be identified, if they

are the only source of long run changes in labor productivity. Using this assumption, Galí

(1999) and a growing literature find that technology shocks have only small short run effects.1

Because this finding is very robust, it would seem to pose a significant challenge to the view

that technology shocks are a major source of short run fluctuations.2 However, neutral shocks

are not the only potential source of technology shocks. Greenwood, Hercowitz and Krusell’s

(1997) finding that investment-specific technical change is the major source of economic

growth, suggests it could be important for short run fluctuations as well. This paper argues

that when both neutral and investment-specific technical change are taken into account,

technology shocks matter a lot, and investment-specific shocks matter more than neutral

shocks.

Introducing investment-specific technical change into a conventional real business cycle

model motivates three long run identification assumptions. First, investment-specific change

is an additional source of permanent shocks to labor productivity. Second, the model predicts

that investment-specific change is the unique source of the secular trend in the real price of

investment goods. These two assumptions exactly identify the short-run effects of both kinds

of technical change. Finally, the model predicts that investment-specific technical change

raises labor productivity in the long run by a fixed fraction of its long run impact on the

investment good price. I show how this prediction can be imposed as a new kind of long run

restriction, and use it to refine my estimates.

1Figure 6, p. 268 is the clearest indication in Gali (1999) that technology shocks do not matter. Recent
papers by Francis and Ramey (2003), Christiano, Eichenbaum and Vigfusson (2004), and Galí and Rabanal
(2004) confirm the finding. This research builds on Blanchard and Quah (1989), King, Plosser, Stock and
Watson (1991), and Shapiro and Watson (1988).

2While the real business cycle literature finds that transitory neutral shocks matter, these results are likely
overstated. Real business cycle studies traditionally rely on Solow residuals to identify transitory shocks. It
is widely accepted that Solow residuals are an error-ridden measure of neutral technology over short horizons.
Under this view, the technology shocks driving most real business cycle models are implausibly large. See
Basu, Fernald and Kimball (2004) for a recent discussion of Solow residuals.
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When the methodology is applied to US data, neutral and investment-specific technology

shocks combined account for 40-60% of the fluctuations in output and hours at business cycle

frequencies. These shocks also account for more than 50% of the forecast errors in output

and hours over an eight year horizon. The majority of these effects are accounted for by

investment-specific shocks. The findings are robust to many perturbations of the analysis,

and the identified shocks are unrelated to other variables, including those which might have

long run effects on labor productivity and the real investment price.

The next section uses a simple real business cycle model to derive the identification

assumptions at the heart of the analysis. Section 3 shows how these assumptions can be

used to identify the effects of technology shocks. After this, the data are discussed, the main

findings are presented, and the robustness of these findings is evaluated. The last section

summarizes the findings and suggests directions for future research.

2. Theory

This section derives the long run identifying assumptions exploited in the empirical analysis

from a neoclassical growth model. The model is deliberately stripped down to make the

discussion as transparent as possible. Short run implications of the model are also discussed,

to motivate the analysis and to help verify the plausibility of the empirical findings.

2.1. The Model

The model is adapted from the competitive equilibrium growth model of Greenwood, et. al.

(1997). In this model the welfare theorems hold, so it is sufficient to explain the problem of

the social planner. The planner chooses consumption, Ct, investment, Xt, hours worked, Ht

and next period’s capital stock, Kt+1 to solve

max E0
∞X
t=0

βtU(Ct, Ht) (1)
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subject to

Ct +Xt ≤ AtKα
t H

1−α
t , α ∈ (0, 1) (2)

Kt+1 ≤ (1− δ)Kt + VtXt, K0 given, δ ∈ (0, 1) (3)

and
At = exp(γ + εat)At−1, γ ≥ 0
Vt = exp(ν + εvt)Vt−1, ν ≥ 0

[εat, εvt]
0 ∼ N(0, D), D diagonal.

(4)

Here E0 is the expectations operator conditional on time t = 0 information, U(·, ·) is the
utility function of the representative agent, assumed to be consistent with balanced growth,

β is the planner’s discount factor, At is the level of neutral technology, Vt is the level of

investment-specific technology, and εat and εvt denote time t innovations to neutral and

investment-specific technology.3

The model simplifies the one in Greenwood, et. al. (1997) by incorporating one capital

good instead of two. This difference is not crucial to the analysis. A second difference is that

the exogenous technologies have stochastic instead of deterministic trends. This difference

is substantial because it drives the permanent effects of technology. Permanent technology

shocks are easily motivated. Many authors, including Galí (1999), view permanent technol-

ogy shocks to be the natural way to model purely technological disturbances. Alvarez and

Jermann (2002) present an empirical motivation. They find that it is impossible to resolve

data on asset prices with economic theory without a permanent component to consump-

tion. Nevertheless, a plausible interpretation of the neutral technology is that it represents

many factors which influence production possibilities, such as taxes, regulations and market

3An equivalent way to state this model replaces the inequality in (2) with Ct/Zt+ X̃t/Ṽt ≤ Kα
t H

1−α
t , the

inequality in (3) with Kt+1 ≤ (1− δ)Kt + X̃t, and specifies Zt and Ṽt analogously to (4). This equivalence
is seen by setting At = Zt, Vt = Ṽt/Zt and Xt = X̃t/Ṽt. The specifications each have an equivalent
representation as a two-sector model, with identical factor shares in the consumption good and investment
good sector, and sector-specific technology terms given by At and AtVt, or Zt and Ṽt. It is natural to
assume that innovations to the technology terms in the two sectors are correlated. The specification in the
main text permits this even under the assumption of a diagonal covariance matrix for the innovations. For
the technologies to be correlated in the alternative specification, the innovation covariance matrix must be
non-diagonal.
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structure. Disturbances to these variables might be transitory. Since the effects of transitory

productivity shocks are not considered, the analysis delivers a lower bound on the magnitude

of the short run effects of technology shocks broadly conceived.

2.2. Long Run Effects of Technology Shocks

Consider the model’s predictions for the long run or permanent impact of technical change

on labor productivity, Yt/Ht, and the real consumption good price of an investment good,

Pt. It is straightforward to confirm that along a balanced growth path the following variables

are stationary:

Yt/Zt, Ct/Zt, Xt/Zt, Kt+1/(ZtVt), (Yt/Ht)/Zt, and Ht, (5)

where Yt = Ct + Xt and Zt = A
1/(1−α)
t V

α/(1−α)
t . Along a balanced growth path, the con-

sumption value of output, consumption, investment and labor productivity each grow, on

average, at the rate (γ + αν)/(1 − α), the capital stock grows at the rate (γ + ν)/(1 − α),

and per capita hours is stationary. From (5) it is immediate that positive innovations to

both neutral and investment-specific technology increase labor productivity in the long run.

That is, at any date t

lim
j→∞

∂ lnYt+j/Ht+j
∂ευt

=
α

1− α
> 0 and lim

j→∞
∂ lnYt+j/Ht+j

∂εat
=

1

1− α
> 0. (6)

This implication is clearly different from the assumption in Galí (1999) that only neutral

technical change influences labor productivity in the long run.

An implication of (2) and (3) is that the number of consumption units that must be

exchanged to acquire an efficiency unit of the investment good is 1/Vt. Therefore, in the

competitive equilibrium of this economy, the real price of an investment good is Pt = 1/Vt.

It follows trivially that only investment-specific technology shocks have permanent effects

on the real investment good price. Neutral technical change has no impact on the marginal

rate of transformation between consumption goods and investment goods and therefore on
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the real price of investment. At any date t,

lim
j→∞

∂ lnPt+j
∂ευt

= −1 < 0 and lim
j→∞

∂ lnPt+j
∂εat

= 0. (7)

The model can be extended to include additional exogenous shocks. As long as these

shocks are transitory effects, the model will continue to satisfy (5) and Pt = 1/Vt. This leads

to another useful implication of the model:

lim
j→∞

∂ lnYt+j/Ht+j
∂εxt

= 0 and lim
j→∞

∂ lnPt+j
∂εxt

= 0, (8)

for all other shocks εxt.

The final implication of the model exploited in the empirical analysis is that innovations to

the investment-specific technology have a predictable long run impact on labor productivity

relative to the real investment good price. Specifically, from (6) and (7), it follows that a unit

innovation to the investment-specific technology lowers the real price of investment goods

by a unit, and raises labor productivity by α/(1− α),

lim
j→∞

∂ lnPt+j
∂ευt

+
1− α

α
lim
j→∞

∂ lnYt+j/Ht+j
∂ευt

= 0 (9)

The specific constant of proportionality in (9) depends on the model having one sector

and one capital good. However, versions of (9) with different constants of proportionality

continue to hold for models with multiple capital goods and multiple sectors.4

Implications (6)-(9) are quite general, since they follow from the assumptions on prefer-

ences and technology necessary for balanced growth.5 So, models with additional endogenous

variables and propagation mechanisms, including models with nominal rigidities, are consis-

4For example, in the two capital good model with equipment-specific and neutral technical change studied
by Greenwood, Hercowitz and Krusell (1997), the constant of proportionality associated with a permanent
equipment-specific shock is (1 − αe − αs)/αe, where αe and αs are the factor shares for equipment and
structures.

5For balanced growth to be feasible, it must be possible to express technical change as labor-augmenting.
With investment-specific technical change, then, balanced growth requires that the production function be
Cobb-Douglas.
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tent with (6)-(9). As an example, consider the model’s implication that the real investment

price is determined exogenously by investment-specific technical change. A more realistic

model would have curvature in the transformation frontier for producing investment and

consumption goods, e.g. the two-sector model studied by Boldrin, Christiano and Fisher

(2001). In such a model, the real investment good price is endogenous over short horizons.

Yet, as long as the model is consistent with balanced growth, is subject to neutral and

investment-specific technical change, and technical innovations have a permanent impact on

the production possibilities frontier, it will continue to satisfy (6)-(9).

2.3. Short Run Effects of Technology Shocks

It is useful to discuss the short run responses of endogenous variables to technology shocks

in the model. These responses are not used to identify the effects of technology shocks, but

they do help to motivate the study of investment-specific shocks and assess the plausibility

of the responses identified from the data.

Figure 1 plots the responses of various model variables to one percent positive innova-

tions in the neutral technology (solid lines) and the investment-specific technology. The

figure shows the responses of the real investment price, labor productivity, per capita hours,

output, investment in units of capital (VtXt), and consumption. Output and productivity

are measured in consumption units. These plots are based on the following assumptions:

U(Ct,Ht) = ln(Ct)−Ht, α = 1/3, δ = 0.025, β = 0.99, ν = −0.0046, and γ = 0.0026. The

technology growth parameters ν and γ are consistent with the data used in the empirical

analysis. The other parameter selections and the functional form for the utility function are

consistent with much of the real business cycle literature.

The responses of the investment price follow directly from the fact that the price equals

the inverse of the investment-specific technology, Vt. To understand the other responses it

is helpful to focus on hours worked. These responses are both positive, with the strongest

response coming from the investment-specific shock (I-shock). The response of hours to

a neutral technology shock (N-shock) is well understood. It is due to the intertemporal

6



substitution of current leisure and consumption for future consumption. The household is

willing to do this because of the high returns to working and saving.

These intertemporal substitution effects operate after an I-shock as well, but they are

amplified and so also is the response of hours worked.6 This amplification is due to the shock

affecting only the production of investment goods. Consequently, current consumption is

even more expensive relative to future consumption, compared to the N-shock case. This

difference drives the stronger response of investment to an I-shock, and the fact that the

consumption response to an I-shock always lies below its response to an N-shock. The

response of productivity to an N-shock is well-understood. With an I-shock, productivity

initially drops, before slowly rising to its long run level. This response arises from the

immediate positive response of hours, the slow response of capital, and the fact that the

shock does not directly affect output’s consumption value.

The hours and productivity responses illustrate why estimates of the effects of technology

shocks assuming that only neutral technology shocks affect productivity in the long run might

be misleading. According to the aggregation theorem in Blanchard and Quah (1989, p. 670),

the effects of technology shocks derived from vector autoregressions in productivity and hours

are robust to the presence of additional technology shocks which affect productivity in the

long run if and only if the responses to the individual technology shocks are sufficiently

“similar.” The specific condition is that the ratio of the hours and productivity responses

must be invariant to the source of the technology shock. If this condition holds, then the

estimated response of hours to a one standard deviation technology shock is the sum of the

hours responses to one-standard deviation shocks to each of the technology shocks. Figure

1 shows that Blanchard and Quah’s necessary and sufficient condition is not satisfied here.

With a neutral shock, productivity rises faster than hours in the period of the shock and

thereafter. With an investment-specific shock, hours initially rise faster than productivity,

before productivity catches up and overtakes it. These considerations suggest the short run

6See Greenwood, Hercowitz and Huffman (1988) for a model without intertemporal substitution effects
on labor supply in which hours responds positively to an investment-specific shock.
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effects of technology shocks found in the previous literature might not be robust to the

presence of investment-specific technical change.7

Taken together, the responses in figure 1 indicate that the simple neoclassical model is

qualitatively consistent with many characteristics of the U.S. business cycle, such as the

pro-cyclicality of hours, consumption and investment.8 Consequently the two technology

shocks could, in principle, account for a large or a small fraction of short run fluctuations,

and I-shocks could be more, less or equally as important as N-shocks. The actual effects of

the technology shocks predicted by the model depend on the magnitudes of the two shocks.

The real business cycle literature studies investment-specific technical change and finds

that it might have large short run effects. The earliest paper is Greenwood, Hercowitz

and Huffman (1988). Other papers include Campbell (1998), Christiano and Fisher (1998),

Fisher (1997), and Greenwood, Hercowitz and Krusell (2000). The effects of technology

shocks derived from these studies depend on the specifics of the propagation mechanism

imbedded in the model under consideration. The advantage of the econometric approach

described in the next section is that it takes a weaker stand on the nature of the propagation

mechanism.

3. Econometric Strategy

The econometric strategy is based on three assumptions which summarize the long run

implications of models for which (6)-(9) hold. These are summarized as follows.

Assumption 1. Only investment-specific technology shocks affect the real investment price

in the long run.

7For the calibrated model underlying figure 1, it is straightforward to derive the probability limit of
the response of hours one would obtain from a vector autoregression in productivity and hours under the
(false) assumption that neutral shocks are the only shock to affect productivity in the long run. The result-
ing response lies substantially below the true average response of hours to neutral and investment-specific
shocks. This confirms the theoretical possibility that the previous literature understates the contribution of
technology shocks to short run fluctuations.

8The response of consumption in the first few periods after an I-shock can be made positive by the
addition of habit persistence to the model.
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Assumption 2. Only neutral or investment-specific technology shocks affect labor produc-

tivity in the long run.

Assumption 3. Exogenous investment-specific technology shocks which lower (raise) the

real investment good price by an amount x, raise (lower) labor productivity in a known fixed

proportion to x.

This section describes how to use these assumptions to identify variables’ dynamic responses

to exogenous neutral and investment-specific technology shocks.9

The linear approximation to the equilibrium of the economic model has a moving average

representation,

yt = Φ(L)εt (10)

where yt is an n × 1 vector of states and controls and εt is a vector of fundamental shocks

with εvt and εat as the first two elements, Eεtε0t = Ω, where Ω is a diagonal matrix, Φ(L) is a

matrix of polynomials in the lag operator L. The elements of yt are [∆pt,∆at, ht, qt]0, where

pt is the log of the real investment price, at is the log of labor productivity, ht is the log of

per capita hours worked (this could be the first difference of log per capita hours, or some

other stationary transformation of hours), qt is a vector of other endogenous variables in the

model, and ∆ ≡ 1− L.
Assume that Φ(L) is invertible and that its inverse is well-approximated by a finite order

lag polynomial.10 The (approximate) vector-autoregressive representation of (10) can be

written,

Ayt = Γ(L)yt−1 + εt, (11)

where Γ(L) is an N ’th order matrix lag polynomial and A is a matrix conformable with yt,

9The estimation strategy borrows from Shapiro and Watson (1988). See Basu and Fernald (1998) for
a different strategy for identifying neutral technology shocks which does not rely on long run restrictions.
Basu, Fernald, Fisher and Kimball (2005) show how to extend this methodology to identify sector-specific
technology shocks.
10Fernandez-Villaverde, Rubio-Ramirez and Sargent (2004) demonstrate that a calibrated version of the

model described in the previous section is indeed invertible. They also show that the infinte order vector-
autoregressive representation of the two variable system with ∆pt and ∆at is almost identical to the repre-
sentation with just one lag.
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normalized to have ones along the diagonal. With estimates of A and Γ(L), (11) is simulated

to derive the impulse response functions of interest. Equation (11) is estimated using a series

of instrumental variables (IV) regressions.

The first equation of (11) is

∆pt = Γpp(L)∆pt−1 + Γpa(L)∆at + Γph(L)ht + Γpq(L)qt + εvt, (12)

where the Γxy(L)’s here and below are the relevant lag polynomials. According to (12),

the contemporaneous effects of all non-εvt shocks influence ∆pt through ∆at, ht and qt.

Assumption 1 implies that the long run multipliers from these variables to the real price

are zero. Imposing this restriction is the same as imposing a unit root in each of the lag

polynomials associated with ∆at, ht and qt. That is each Γpj(L), j = a, h, q can be written,

Γpj(L) = Γ̃pj(L)(1− L). It follows that (12) becomes

∆pt = Γpp(L)∆pt−1 + Γ̃pa(L)∆
2at + Γ̃ph(L)∆ht + Γ̃pq(L)∆qt + εvt. (13)

Innovations to the real investment price affect the contemporaneous values of ∆at, ht and

qt. Consequently (13) cannot be estimated by ordinary least squares. However, given that

εvt is exogenous, this shock is orthogonal to all variables dated t− 1 and earlier. So (13) is
estimated by IV, using N lags of yt as instruments. The coefficients of the first equation of

(11) are found by unravelling the resulting regression coefficients. The residuals from (13)

are the estimates of εvt, ε̂vt.

Now consider the second equation of (11). By a similar argument to before, assumption

2 implies the long run multipliers from ht and qt to ∆at are zero. It follows that the second

equation of (11) can be written,

∆at = Γap(L)∆pt + Γaa(L)∆at−1 + Γ̃ah(L)∆ht + Γ̃pq(L)∆qt + εat, (14)

where the Γ̃aj(L), j = h, q are defined in the same way as the similar terms in (13). As
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before, this equation is estimated by IV and the resulting coefficient estimates are used to

assign values to the second row of coefficients in (13). The instruments are ε̂vt and N lags

of yt. The residuals from (14), ε̂at, are the estimates of εat. Including ε̂vt as an instrument

ensures ε̂at is orthogonal to the investment-specific shock within the sample period. These

steps toward estimating the effects of the neutral shock differ from Galí’s (1999) widely used

method because the real price is included in (14) and the residuals from (12) are included in

the instrument list.

The first two equations of (11) are exactly identified. It is straightforward to show

that there exists a family of parameterizations of the remaining rows of (11) in which the

estimated responses to εat and εvt are invariant. An element of this family is chosen by

estimating the remaining equations of (11) sequentially by IV, using the residuals from the

previously estimated equations and N lags of yt as instruments. Following this procedure

does not impose any restrictions on the impulse responses of interest.

So far, assumption 3 has not been used. Indeed, it is possible to identify variables’

responses to the two technology shocks using only assumptions 1 and 2. There are two

reasons to use assumption 3. First, it is a way to test the model. Using auxiliary information

about the share of capital in production, assumption 3 and the viability of the identification

strategy can be tested. Second, imposing an overidentifying restriction should improve the

precision of the estimates.

The Appendix shows that, under assumptions 1 and 2, assumption 3 implies a simple

linear restriction on the coefficients of the second equation of (11). To state this restriction,

define C(L) = A− Γ(L)L and let the ij’th element of C(1) be denoted cij. In the context

of the model described in section (2.1), the restriction is

1− α

α
c21 − c22 = 0. (15)

In practice, (15) is rarely rejected at conventional significance levels. With the baseline

dataset discussed in the next section, the marginal significance levels range from 16% to
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60%. Consequently, unless otherwise noted, the results involve estimates of (11) in which

(15) has not been rejected and is imposed.

It is important to address the statistical properties of this methodology. Cooley and

Dwyer (1998), Erceg, Guerrieri and Gust (2004), and most recently Christiano, Eichenbaum,

and Vigfussen (2005) discuss situations in which long run restrictions might yield misleading

results. Obviously, if assumptions 1-3 do not hold then the analysis might be invalid. Less

obvious is how well the methodology works in small samples when the assumptions do hold.

Christiano, et. al. (2005) document the small sample properties of a business cycle model

with a neutral technology shock. They find that empirical standard errors accurately reflect

the true uncertainty in their estimates, and that including variables such as the real interest

rate or the investment-output ratio is useful for eliminating small sample bias. The previ-

ous literature only considers exactly identified empirical models. Thus, the overidentifying

restriction proposed here, (15), should improve the methodology’s performance.

4. Data

This section describes the data. The Appendix contains a more detailed description.

4.1. The Real Price of Investment

Clearly, the real investment price is a crucial input to the analysis. This price is measured

as the ratio of an investment deflator and a consumption deflator. The consumption deflator

corresponds to nondurable and service consumption, the service flow from consumer durables

and government consumption, and is derived directly from the National Income and Product

Accounts (NIPA). Greenwood, Hercowitz and Krusell (1997) emphasize the lack of quality

adjustment in the NIPA investment deflators. Their estimate of the contribution to growth

of investment-specific technical change is based on Gordon’s (1989) deflator for producer

durable equipment. Gordon argues that the NIPA equipment deflators at the time his book

was written were seriously mismeasured because of their treatment of quality change. As

described in Moulton (2001), the NIPAs currently incorporate hedonic methods to quality
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adjust computers, semiconductors, software and digital telephone switching equipment, but

they do not quality adjust other types of capital equipment. Consequently, there is still

quality bias in the NIPA equipment deflator, especially in the years prior to 1980 when the

share of investment in quality adjusted equipment is relatively small. Residential structures

investment is extensively quality adjusted, but non-residential structures investment is not.

Greenwood, et. al. (1997) show that the real price of producer durable equipment derived

from Gordon’s deflator has a pronounced downward secular trend. Using a model similar

to the one in section 2.1, they find that the implied investment-specific technical change

accounts for 58 percent of output growth between 1954 and 1990.11 Greenwood, et. al.

(1997) arrive at their estimates by extending Gordon’s original sample, which ends in 1983,

with a rough bias adjustment to the NIPA data. Cummins and Violante (2002) calculate a

more systematic update of the Gordon data. For component deflators not already quality

adjusted in the NIPAs, they estimate econometric models of the bias adjustment in Gordon’s

deflators. They combine the deflators estimated with these models with the quality-adjusted

NIPA deflators to construct a deflator which extends to 2000 for all of producer durable

equipment. Their findings confirm the Greenwood, et. al. (1997) result that investment-

specific technical change is a major source of growth.

Four investment deflators are considered. The first measure is “equipment.” It is just the

GCV equipment deflator. The second is “total investment,” a broader measure constructed

with the GCV deflator and the NIPA deflators for non-residential and residential structures,

consumer durables and government investment. This deflator corresponds to the measure of

investment often used in real business cycle studies. The deflators must be quarterly series for

the econometric analysis. Since the GCV series is an annual series, it must be interpolated.

The appendix describes in detail how this is done. Briefly, the procedure maintains the year-

11Greenwood, et. al. (1997) consider and reject several mechanisms which in principle might account
for the secular trend in the real investment price instead of investment-specific technological change. One
important example is different factor shares for the investment and consumption good sectors in a two-sector
model. If these shares are of the right magnitude then there could be a secular trend in the real price
without one in investment-specific technology. Greenwood, et. al. (1997) argue that this hypothesis requires
implausible parameter values.
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to-year trends in the more accurate GCV series, and uses the corresponding NIPA deflator

to derive within year fluctuations. The two other deflators used in the analysis are the

NIPA-only counterparts to the GCV-based deflators.

Figure 2 displays the two GCV-based and NIPA-based investment deflators and the

associated real investment prices for the sample period 1955:I-2000:IV.12 In each plot the solid

line corresponds to the GCV based measure and the dashed line corresponds to the NIPA

measures, both in logs. This figure is helpful for making three points. First, the quality bias in

the NIPA deflators is quite large, suggesting that they might not be reliable for constructing

real prices. It does not seem that a single adjustment to the average growth rate accurately

reflects the nature of the mismeasurement. Second, consistent with Cummins and Violante

(2002) and Greenwood, et. al. (1997), equipment-specific technical change is substantial

after 1955. There is a 200 percent drop in the real equipment price.13 Third, the real total

investment price declines by much less, but still has a secular trend. The weaker trend in

this price might be due to a slower rate of quality change in non-equipment investment, or

it may be due to the fact that the deflators for these investment goods embody less quality

adjustment. For example, Gort, Greenwood, and Rupert (1999) estimate significant quality

bias in the NIPA deflators for non-residential structures.

Figure 3 provides intuition for why the real investment price might be important for

understanding macroeconomic dynamics (similar plots appear in Greenwood, et. al. (1997,

2000).) The top plot reproduces the GCV-based real equipment price from figure 2 along with

the log ratio of the quantity of equipment in units of capital to GDP in consumption units.

This plot shows that the real price decline coincides with a large increase in the relative

quantity of investment goods produced, illustrating the importance of investment-specific

12There are three reasons to exclude data before 1955. First, the real business cycle literature often focuses
on the post-Korean war era (see for example, Prescott 1986). Second, the interpolations of the equipment
deflator before 1955 are questionable because the quality bias in the NIPA data is much stronger than later
in the sample. Third, estimates of neutral technology shocks are sensitive to including variables associated
with monetary policy. This suggests the sample should begin after the Treasury Accord of 1951.
13The changes in the real equipment price in 1973-74 are partly an artifact of the Nixon wage and price

controls (see Cummins and Violante 2002). Since this is a transitory phenomenon it should not affect the
estimation of the investment-specific technology shocks.
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technical change for capital accumulation and growth.14

The bottom plot in figure 3 displays the business cycle components of real equipment

and GDP.15 This shows a clear negative relationship between the GCV-based real equipment

price and output, strongly suggesting a role in short run fluctuations for shocks to the cost

of producing investment goods. The unconditional contemporaneous correlation is strongly

significant with a point estimate of -0.54 and standard error of 0.09. This correlation is even

stronger with the NIPA real equipment price, and is somewhat weaker, but still significantly

negative, with total investment prices. Some of the latter difference is probably due to

residential investment having a strong “demand”-driven component.

Overall, figure 3 strongly suggests that investment-specific technology shocks play a key

role in both short- and long-run fluctuations. Still, the short-run correlations might be driven

at least partly by factors other than technical change, such as time-varying mark-ups. As

Ramey (1996) argues, mark-ups might play a role in the long run dynamics as well. The

long run identifying restrictions are intended to extract just the technology-driven component

from the short run movements in the real investment price. This strategy is robust to trends

in mark-ups, if there is no tendency for mark-ups to decline more in producing investment

goods than in producing consumption goods.

4.2. Baseline Dataset

This subsection describes the baseline set of variables used in the analysis. To measure

the effects of technology shocks on hours and output, the econometric model in section 3

requires only variables measuring the growth rate of the real investment price, the growth

rate of average labor productivity, and per capita hours worked. The GCV real equipment

price is the baseline measure of the real investment price because it contains more quality

adjustment than its NIPA counterpart or either total investment price. The main findings

14The model predicts the nominal share of investment is stationary. Equipment is not consistent with this,
but total investment is.
15Business cycle components are derived using Christiano and Fitzgerald’s (2002) implementation of the

band-pass filter, excluding frequencies higher than one and a half years and lower than eight years.
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are robust to using the GCV-based total investment price and the NIPA counterparts to the

GCV prices. The Appendix presents these findings.

Labor productivity is measured by the non-farm business series published by the Bureau

of Labor Statistics (BLS). This measure is used by Galí (1999). To retain consistency with

the growth model, labor productivity is expressed in consumption units using the same con-

sumption deflator as that underlying the baseline real investment price. The literature also

considers another BLS productivity measure which includes the farm sector. The implica-

tions of using this series are discussed in section 6.

The way in which hours should be included in the analysis is not settled in the literature.

The baseline results are based on including per capita hours in log levels. The baseline

measure of per capita hours is the BLS hours worked series corresponding to the baseline

productivity measure, divided by the civilian non-institutionalized population over the age

of 16 years. The literature considers several other ways of including hours. The main

alternatives and the impact using them has on the findings is discussed in section 6.

Considering other variables in the analysis is important for assessing the findings’ robust-

ness. Erceg, Guerrieri and Gust (2004) and Christiano, Eichenbaum and Vigfusson (2005)

argue that the small sample properties of long run identifying schemes can be improved by

including additional variables. Christiano, et. al. (2004) argue that the business cycle contri-

bution of neutral technical change might be overstated by excluding certain variables. These

papers motivate including inflation, a nominal interest rate, and the nominal expenditure

shares of consumption and investment. Inflation is measured with the baseline consumption

deflator and the nominal interest rate is the 3-month Treasury Bill rate. The expenditure

shares are constructed using nominal non-farm business output, nominal consumption cor-

responding to the baseline consumption deflator, and nominal total investment as described

in section 4.1.
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5. Baseline Results

This section describes the findings based on the baseline dataset. The first sub-section focuses

on the parsimonious systemwith the real price, productivity and hours. Given the connection

of the methodology with the previous literature, these findings are compared with the same

system without the real price, under the assumption that only neutral technology shocks

have permanent effects on productivity. The second sub-section discusses the implications of

adding variables to the two parsimonious systems. Up to this point, the estimates are based

on the full sample from 1955:I to 2000:IV. The third sub-section discusses reasons to split the

sample around 1980, and the implications of doing this. All the estimates are based on four

lags in (11). Throughout, assumption 3 is imposed with a value of capital’s share, α, equal

to 1/4 in (15). This is a compromise between assuming the equipment price is a proxy for

the price of total investment, or that it only applies to equipment in a production function

which also includes structures. The results are not sensitive to reasonable perturbations of

α. Regardless of the number of variables in the empirical model, or whether the sample is

split, the results show an important role for technology shocks in short run fluctuations, and

that investment-specific technology shocks are more important than neutral shocks.

5.1. Parsimonious Specifications

Figure 4 displays estimated dynamic responses of the real investment price, labor produc-

tivity, hours and output to the two technology shocks using the parsimonious specifications.

As before “I-shock” stands for “investment-specific shock” and “N-Shock” stands for “neu-

tral technology shock.” The term “one-technology” is used to indicate estimates under the

neutral-technology-only hypothesis and the term “two-technology” is used to indicate esti-

mates under the hypothesis that investment-specific technical change is also present. The

responses are to one-standard deviation positive innovations in period 1. In figure 4 the

solid lines are responses to I-shocks, the short-dashed lines are responses to N-shocks using

the two-technology model, and the dotted lines are responses to N-shocks using the one-
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technology model. The solid circles and open circles denote significance at the 5% and 10%

levels, respectively.16

The responses to the I-shock are large and significant. The peak response of hours is

1.0% and the response is almost always significant at the 5% level. After an initial increase,

the response of productivity declines below zero before rising to its long run positive value.

It becomes significantly positive after 5 years. Output responds similarly to hours and is

always significant. The price response is smaller in the short run than in the long run, but it

is always significant at the 5% level. The qualitative nature of these responses is consistent

with the theoretical responses in figure 1.

The response of hours to the N-shock in the two-technology model is about a third of its

response to the I-shock, while the output response is a little stronger. The output response

is always significant, but the hours response is never significant. The two-technology iden-

tification has the advantage of yielding the response of the investment price to an N-shock,

and this rises significantly after an N-shock. This is consistent with a simple extension of

the model in section 2.1 with curvature in the production possibilities frontier for consump-

tion and investment, adding support to the interpretation of the N-shocks as being genuine

neutral technology shocks.

The responses to an N-shock in the one-technologymodel are similar to the two-technology

case. The productivity response is close to its comparable two-technology response, but the

hours and output responses are always below. The hours response is only a quarter of the

response to an I-shock and is never significant. The responses of hours and productivity in

the two-technology case show that the assumptions of Blanchard and Quah’s (1989) aggre-

gation theorem do not hold empirically. Consequently, it should not be surprising that the

response of hours in the one-technology model is not the average of the N-shock and I-shock

responses in the two-technology model.17

16Statistical significance is calculated by the bootstrap method using Hall (1992) “other-percentile” confi-
dence intervals. Killian (1999) finds that Hall confidence intervals have good classical coverage probabilities,
compared to other bootstrap confidence intervals.
17Including real investment price growth in the one-technology model has little effect on the estimated

responses (not shown.)
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The similarity of the two-technology responses with their theoretical counterparts sup-

ports the view that the estimated shocks are genuine. So it makes sense to consider the

shocks’ contribution to short run fluctuations. Consider the behavior of hours. The weak

and insignificant response of hours to an N-shock suggests this shock is not important for

short run fluctuations. On the other hand, the large and statistically significant response

of hours to an I-shock suggests this shock is important. These conjectures are verified by

examining the left-hand column of figure 5. This shows actual hours and the historical

decompositions of hours derived from the two-technology model, assuming only one of the

technology shocks is operational over the sample.18 The first row shows that I-shocks ac-

count for a large part of the variation in hours worked, particularly around recessions. They

account for much of the boom of the 1990s, which is consistent with a common interpretation

of this time period. N-shocks are less related to the business cycle. (the decomposition under

the one-technology identification, not shown, is similar).

The right-hand column of figure 5 presents the business cycle components of actual hours

(solid lines) and hours corresponding to the historical decompositions. The variation in hours

due to N-shocks in the second row is small. This is consistent with the previous finding in

the literature that N-shocks are unimportant for the short run. In contrast, the I-shock (first

row) generates a large amount of business cycle variation.

Tables 1 and 2 quantify the findings in figure 5 and provide additional information about

output. Table 1 displays the forecast error decomposition of hours and output implied by

the estimated two-technology model. The connection between forecast error decompositions

and contributions to the business cycle is not direct. Table 2 displays the ratio of the

variance of the business cycle components of the technology-shock-only driven data (such as

is displayed in the right-hand column of figure 5) to the variance of actual hours and output.

Point estimates are in bold and 95% confidence intervals are in parenthesis below.

18The predicted time path of hours for a given model and shock is based on simulating (11) using the
estimated shocks and the actual data in the first four periods of the sample to initialize the simulation. The
deterministic component of hours (the path of hours predicted by the initial conditions) is removed from the
left-hand plots.
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According to Table 1, from one to eight years 54% to 74% of the forecast error of hours is

accounted for by technology shocks. These contributions are statistically significant. I-shocks

are much more important than N-shocks for hours. An even greater fraction of the forecast

error of output is due to the technology shocks, never lower than 88%. These contributions

are always statistically significant. For output, N-shocks account for about two thirds of the

overall technology contribution.

Table 2 indicates that at business cycle frequencies, technology shocks are very important

for both hours and output.19 Technology shocks account for 68% of the variation of hours

and 79% for output, and both of these contributions are statistically significant. I-shocks

account for almost all the effects of technology on hours. In contrast to the forecast error

decomposition, I-shocks are more important than N-shocks for output as well. The statistical

significance of the variance ratios of hours and output strongly suggest a major role for

technology shocks, in particular I-shocks, in driving the business cycle.

5.2. Adding Variables to the Analysis

Now consider adding the expenditure shares, inflation and the interest rate to the parsimo-

nious systems. In the seven variable system, the main findings are similar to those for the

three variable model. However, adding variables does complicate the analysis somewhat.

Fisher (2003) shows that when Assumption 3 is not imposed, the long run response of

labor productivity to an I-shock is small, and only turns positive after about 20 years. It is

not surprising that productivity initially declines, but it seems implausible that it takes so

long for it to turn positive.20 In results not reported here, adopting assumption 3 has little

impact on the time for productivity’s response to turn positive after an I-shock. This finding

19The total contribution of technology shocks is exactly equal to the sum of the contributions of the two
shocks if the estimated shocks are exactly orthogonal to each other at all leads and lags. The estimation
procedure guarantees that the two shocks are orthogonal contemporaneously. In practice, there are slight
correlations at various leads and lags. Differences between the sum of the contributions and entries in the
first column of table 1 (and table 2, below) reflect these slight correlations.
20Hornstein and Krusell (1996) argue that investment-specific technical change can lead to a long negative

impact on productivity due in part to learning-by-doing factors. According to their analysis a twenty year
negative response of productivity is implausible.
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and the one in Fisher (2003) might suggest that the technology shocks are not accurately

estimated in the seven variable system.

To address this possibility, the seven variable system is estimated with an additional

restriction. Specifically, the estimation strategy involving assumptions 1-3 is appended to

include:

Assumption 4. The response of productivity to an I-shock is positive after 8 years.

Imposing assumptions 3 and 4 means that the estimation involves two overidentifying re-

strictions on (11). These two restrictions are not rejected at conventional significance levels

using the baseline dataset.21 Figure 6 displays the resulting dynamic responses for the same

variables as in figure 4, as well as consumption and investment. This figure also displays

responses based on the comparable one-technology model without the investment price.

Including the additional variables has a noticeable impact on the I-shock responses. The

magnitudes of the peak responses of hours and output are similar to before. However,

now the hours response has two humps, and output and investment have an initial hump

before rising to their long run values. The only variable which behaves like its theoretical

counterpart in figure 1 is consumption, which rises slowly to its long run value. Productivity

has been restricted to be zero at 32 quarters, but is never very significant before then. The

price response is quite close to the same response in the three-variable system. With the

exception of the productivity response, most of the I-shock responses are significant for about

half of the 32 quarters.

The one- and two-technology N-shock responses of the investment price, labor produc-

tivity, hours and output are similar in magnitude and shape to the comparable responses

in figure 4. The main differences are that these variables rise more slowly to their peaks

21Unlike assumption 3, which is a linear restriction on a single equation, assumption 4 is a cross-equation
restriction, which means the equations of the model must be estimated simultaneously. This is accomplished
using the generalized method of moments subject to assumption 3 and the restriction that the response of
productivity to an I-shock is exactly zero at 32 quarters after a shock. In practice, the second condition is
sufficient for assumption 4 to hold. The Hansen (1982) J−statistic can be used to test the two overidentifiying
restrictions. Using the baseline dataset the J−statistic is 3.39. The probability that a Chi-squared random
variable with two degrees of freedom exceeds this value is 18.4 percent.
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and take longer to attain their long run values. So, as with the parsimonious systems,

the two strategies for identifying N-shocks seem to be identifying roughly the same shock.

Consumption rises gradually to its long run value and investment is hump-shaped. The

responses of productivity under the one-technology identification and the investment price

under two-technologies are only significant initially after an N-shock. Hours responds sig-

nificantly under the one-technology identification, but like investment, it is not significant

under the two-technology scheme. The remaining responses are mostly significant at the 5%

level.

As before, the plausibility of the responses in figure 6 can be assessed by comparing them

with the theoretical counterparts in figure 1. Since the responses to N-shocks of productivity,

hours and output are similar to those with the three variable system, these responses are

not at odds with theory. The consumption and investment responses to N-shocks are also

broadly consistent with the theory. The responses of hours, output and investment to an

I-shock are qualitatively different from those in figure 1, but they might be valid. Consider

an economy subject to costly reallocation across sectors. The first humps may be due to an

initial burst of activity as firms seek to exploit the new technology. Some of these firms fail,

and a costly and time consuming reallocation of resources toward successful firms ensues.

The second hump in hours and the gradual rise in output and investment might follow this

reallocation as the successful firms finish implementing the new technology. This description

seems consistent with the commercial development of the internet. Gort and Klepper (1982)

report that many industries developed from the invention of new products go through initial

stages of entry by large numbers of firms, followed by a “shake-out” which leads to large

number of firms exiting the industry, then relatively stable market conditions. Jovanovic

and MacDonald (1994) describe a model to address this empirical evidence.22 For now, the

results are taken to be valid.

Figure 7 and tables 2 and 3 show the contributions of the technology shocks to short

22Beaudry and Portier (2004) identify responses to innovations in the stock market which have the two-
hump feature as well.
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run fluctuations. They essentially confirm the main findings from the three variable system.

Figure 7 is somewhat different from figure 5, with hours due to I-shocks tracking actual

hours less closely, and hours due to neutral shocks mainly a-cyclical. The combined effect

of the shocks seems large and I-shocks are clearly more important for short run fluctuations

than N-shocks. A notable difference with the three variable system is that here there is more

room for monetary policy to play a role during the 1979-1982 period. In addition, I-shocks

now track the business cycle component of hours quite closely in the 1990s.

The quantitative results in Table 3 show that the two technology shocks combined account

for a large and statistically significant part of the forecast error in both hours and output.

I-shocks are more important for hours and N-shocks are more important for output. Table 2

shows that the combined contribution to business cycle fluctuations of the technology shocks

is lower than with the three variable system, but is still large and statistically significant

for I-shocks. I-shocks are more important over business cycle frequencies than N-shocks, for

both output and hours.

5.3. Should the Sample be Split?

There are several reasons to consider splitting the sample. First, the character of the impulse

response functions based on the full sample displayed in figure 6 might be suspect. In

particular, they might indicate a misspecification due to a structural break in the data

which renders estimation over the full-sample invalid. Second, the average rate of investment-

specific technical change might have changed over the sample. Third, some observers view

the conduct of monetary policy to have changed substantially after 1980. Finally, there has

been a substantial decline in the volatility of many macroeconomic variables which may be

due to a structural shift.

Cummins and Violante (2002), Greenwood and Yorukoglu (1997), and Hornstein and

Krusell (1996) argue that the average rate of decline of the real equipment price changes after

1970. Figure 2, where the four measures of the investment price are plotted, suggests such a

break may have occurred in the early 1980s, when the personal computer began to be widely
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used in business. Formal tests of a structural break in the growth rate of the baseline real

investment price, using the Bai and Perron (1998, 2003) methodology, suggest exactly one

of them occurred, in 1982.23 Before 1982 the mean rate of decline in the baseline equipment

deflator is 0.84%, and after 1982 it is 1.49%. The difference is statistically significant.

Clarida, Galí and Gertler (2000) argue that there was a change in the conduct of monetary

policy during Paul Volker’s chairmanship at the Federal Reserve. They find statistically

significant differences in estimates of a Taylor rule for monetary policy before and after

Volker’s tenure. Other supporting evidence is presented by Galí, López-Salido and Vallés

(2003) who find that the response of hours to a neutral technology shock before Volker is

different from after that time. They estimate hours drop for several quarters after a neutral

technology shock in the pre-Volker period, but using data in the Volker-Greenspan era they

rise. Consistent with Clarida, et. al. (2000), they interpret these findings as arising from an

increased emphasis on price stability at the Fed during the Volker-Greenspan period.

Stock and Watson (2002, 2003) document the substantial decline in volatility of many

macroeconomic aggregates after 1984. The decline in volatility of residential investment is

particularly large. This leads Stock and Watson to speculate that legislation in the early

1980s to reintegrate mortgage markets with other capital markets might have caused struc-

tural changes which account for the decline in aggregate volatility. Campbell and Hercowitz

(2004) argue that the structure of mortgage contracts has changed since the regulatory

changes. They show in a real business cycle model how such changes reduce the amplitude

of hours and output responses to neutral technology shocks.

These considerations all suggest that the sample should be split. Under a change in

monetary policy or regulatory regime, individual decision rules change, and consequently

so do the coefficients in (11). This is also true for the trend-break case, since the Lucas

critique applies to structural change due to changes in technology as well to changes in the

23The estimate for the baseline real investment price is 1982:IV, for the NIPA-based equipment price is
1982:II, and for the GCV annual equipment price is 1982. Bai-Perron tests of the null of no change in the
mean growth of the real price against the alternative of at least one change in this mean are rejected at
conventional significance levels with these series.
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government’s policy rule. Since the point estimate of the trend break in the investment price

is near the time of the policy changes and the onset of the decline in aggregate volatility, it is

natural to split the sample to accommodate all three factors. Galí, et. al.’s (2002) split dates

accomplish this: the first sub-sample is 1955:I-1979:II and the second is 1982:III-2000:IV.

The limited size of the two sub-samples means that estimating a seven variable system is

problematic. Given the potential importance of monetary policy, the nominal interest rate

and inflation are included. Consequently, the two nominal expenditure share variables are

dropped from the seven variable system, and the resulting five-variable system is considered.

This is essentially the system estimated in Galí, et. al. (2002) appended to include the

investment price.

Figures 8 and 9 display the responses of the real price, labor productivity, hours and

output for the two sub-samples. As before, responses to N-shocks in the comparable one-

technology model without the investment price are also displayed. Consistent with the

structural break hypothesis, there are noticeable differences across the two sub-samples.

The differences are the most dramatic with hours. In the first sub-sample, in response to

either shock, hours responds by immediately falling, before recovering vigorously and turning

positive after about a year. The fall and subsequent increase in hours after both the I- and

N-shock are statistically significant. In the second sub-sample, the hours response to an I-

shock is hump shaped, and qualitatively similar to the full-sample estimates. The amplitude

of this response is clearly lower in the second sub-sample compared to the first, but it is

still significant. The two-technology hours response to the N-shock is not significant in the

second sub-sample. The other variable to display large differences across sub-samples is the

real price. This goes from rising significantly after an N-shock in the first sub-sample to

being essentially unresponsive in the second-subsample, which might suggest the economy

has become more flexible in factor reallocation. The responses in the first sub-sample suggest

the model of section 2.1 might miss something. However, the initial decline in hours in the

first sub-sample suggests that productivity should rise initially, as indeed it does for both

shocks. Overall, the responses seem broadly consistent with the theoretical model in the
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second-subsample.

An important difference between the two sub-samples, is the decline in the amplitude

of the responses in the second sub-sample compared to the first. This is mostly due to the

fact that the shocks are estimated to be much less volatile in the second sub-sample. In

the first sub-sample the estimated standard deviations are 0.68% and 1.1% for the I-shock

and N-shocks, while in the second subsample they are 0.25% and 0.45%.24 This decline in

the volatility of the two technology shocks helps explain the lower aggregate volatility in the

post-1984 period documented by Stock and Watson.

Figure 10 and tables 4-6 show the contribution of technology shocks to short-run fluctu-

ations in the two sub-samples. The historical decompositions of hours in figure 10 confirm

the previous findings. I-shocks continue to track the boom of the late 1990s quite closely.

Because of the short samples, the business cycle decomposition should be viewed with some

caution, especially for the second sub-sample. Table 5 shows that the contribution of technol-

ogy shocks to the forecast errors of hours are smaller than those in table 3, but are still large.

Except for output in the first sub-sample, I-shocks contribute more to the forecast errors than

N-shocks. Table 6 shows that for business cycle frequencies, I-shocks are more important

than N-shocks. The total contribution of technology shocks to business cycle fluctuations in

hours is cut in half in the second sub-sample, but for output it almost doubles.

To conclude, under the structural-break hypothesis the same main results emerge as with

estimation over the full sample: technology shocks are important for short run fluctuations

and investment-specific shocks matter more than neutral shocks. By splitting the sample, a

new finding also emerges. Namely, the post-1984 decline in aggregate volatility is at least

partly due to a decline in the volatility of the two technology shocks.

24For the full sample the standard deviation of the I-shock is 0.99% and for the N-shock is 0.51%.
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6. Other Approaches to Including Hours in the Analysis

The previous section reports findings using the baseline data set, in which hours are measured

by the level of per capita non-farm business hours. Per capita hours have some low frequency

variation, and there is little agreement in the literature about how to deal with this. As

discussed by Galí and Rabanal (2004), a key result depends on how the low frequency

movements are addressed. If hours are included in levels and shocks are identified under the

one-technology assumption, then hours tend to respond positively to an N-shock. If hours

are included in first-differences, then hours tend to respond negatively. In both cases labor

productivity responds positively. If hours respond negatively to a shock which raises labor

productivity, then the technology shock view of business cycles is seriously challenged. While

the hours response to an N-shock depends on how hours are included, the conclusion that

N-shocks have small short run effects does not. This section argues that the main findings

here are similarly robust to how hours are included.

Four transformations of per capita hours and two measures of total hours are consid-

ered. The four transformations are log levels, first differences, quadratic detrending, and an

adjustment to account for government purchases. Christiano, et. al. (2004) argue for the

levels specification over the alternatives. The first difference specification is considered by

several authors, including Francis and Ramey (2003) and Galí and Rabanal (2004). Galí

and Rabanal (2004) also consider quadratic detrending. The government spending adjust-

ment is motivated by Francis and Ramey (2004), and is discussed below. Total hours are

measured by the Bureau of Labor Statistics’ (BLS) non-farm business and private business

hours series, both of which have been considered in the literature.25 When the latter hours

25Non-farm hours might be a more reliable measure of hours because private business hours is affected
by measurement bias in the early part of the sample. Per capita private business hours, which include the
farm sector, drifts down from 1947 to the early 1960s, but there is hardly any drift in non-farm hours. This
difference is due to the surveys underlying farm and non-farm hours. Primarily, farm hours is based on a
household survey and non-farm hours is based on a survey of establishments. As discussed by Eldridge,
Manser and Otto (2003, pp.3-4), measures of hours worked are biased upward in the household survey
compared to the establishment survey. As the farm sector’s employment share has declined, the share of
private business hours measured using the household survey has also declined, leading to an apparant secular
decline in private business hours’ measurement bias.

27



measure is used, the corresponding measures of productivity and output are substituted for

their baseline counterparts.

Francis and Ramey (2004) argue that various demographic, economic and social trends

induce non-stationarity in per capita hours. Real business cycle models do not take this into

account, which leads Francis and Ramey to consider several adjustments to per capita hours.

One adjustment addresses the fact that both BLS measures of hours exclude the government.

Francis and Ramey use a version of section 2.1’s model with exogenous government spending

to show that hours devoted to producing goods for the government acts like a drain on

the time endowment of the representative agent. They use this to argue for a particular

adjustment to per capita hours. This section considers the government adjustment because

it is fits naturally into the paper’s theoretical framework.26

To conserve on space, this section focuses on point estimates of the hours responses only,

in figures 11-13, and the business cycle decompositions of hours and output, in tables 7-

9. In results not reported, the forecast error decompositions lead to conclusions similar to

the business cycle decompositions. The first-difference private business specification of the

seven-variable model is explosive. So, for this case, there is no response for hours in figure

11 and there are no entries in table 7. The figures and tables indicate that the findings with

the full sample estimates depend somewhat on the way hours are included, but when the

sample is split there is much less dependence.

Figure 11, based on the full sample, shows that the log levels and government adjustment

cases are similar, but that differences emerge when hours are first-differenced or quadratically

detrended. With private business hours, the relative magnitude of responses to I-shocks

and N-shocks is reversed. In contrast to the previous literature, the hours responses are

mostly positive, although sometimes with a delay. Figures 12 and 13 show that most of the

differences just described disappear when the sample is split. The levels and government

adjustment specifications are still the closest, but now most of the other transformations

26Francis and Ramey (2004) also consider adjustments for rates of school attendance and the labor force
participation of the elderly. This section does not consider these adjustments since it is not as obvious how
to incorporate such life-cycle considerations into my infinite horizon model.
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imply responses similar to these. The biggest differences are in the second sub-sample,

where the response to an I-shock with quadratic detrending, and to an N-shock with first-

differencing, are outliers.

There are two key observations to make from the tables. First, the total contribution of

technology shocks to the business cycle is generally large when the sample is split. For non-

farm hours, all the split sample specifications imply a large combined technology contribution

for hours and usually for output as well. With private business hours, the business cycle

contributions are similar to the baseline when the sample is split. Over the full sample,

private business hours suggest a weaker role for technology shocks than the baseline. Second,

more often than not, I-shocks are more important for the business cycle than N-shocks when

the sample is split. The main exception is for the quadratic specifications in the second sub-

sample. One reason to discount these last results is that the quadratic specification implies

hours worked are only marginally above trend in the latter half of the 1990s.

These findings suggest the conclusion that technology shocks play a key role in short-run

fluctuations is robust to how hours are included in the analysis if the sample is split.27 The

same is true for the conclusion that I-shocks are more important than N-shocks. These

findings might be viewed as further evidence in favor of splitting the sample.

7. Are the Shocks Technology?

This section assesses the plausibility of the identified technology shocks by subjecting them

to additional tests. Francis and Ramey (2003), following Evans (1992), propose examining

the quality of technology shocks by testing whether other variables Granger-cause them. If

the shocks are truly due to exogenous technological innovations, then other variables should

not predict them. This section considers whether the Federal Funds rate, Hoover and Perez’s

(1994) oil shock dates, changes in the log of real military spending, and changes in the average

27Gali (2004) displays results on the contribution of I-shocks and N-shocks based on a three variable system
estimated over the full sample, including non-farm business hours in first-differences, and not imposing
assumption 3. He finds smaller short run effects of technology shocks than those reported here.
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capital tax rate Granger-cause the baseline identified technology shocks. The first three

variables are included because they are commonly associated with short run fluctuations.

The fourth variable is included since theory predicts that such changes might have affects

on labor productivity and the real investment price. In a version of section 2.1’s model

with a proportional capital income tax, a permanent increase in the capital tax lowers labor

productivity in the long run. If the model is extended to include separate consumption and

investment good sectors, with capital’s share in the consumption sectors higher than in the

investment sector, then a permanent increase in the capital tax raises the real investment

price in the long run. Since average capital taxes vary a lot over the sample period, it is

possible that the identified shocks reflect permanent movements in capital taxes.

Table 10 reports marginal probabilities associated with F-tests, each based on a regression

of the indicated technology shock on a constant and current and four lags of the variable

in question, except for the Federal Funds rate, where no current value is included because

monetary policy can respond swiftly to shocks within a quarter. The null hypothesis is that

all of the coefficients on the variable in question are jointly equal to zero. The asterisks for

the oil dates in the second subsample indicate that no test is conducted, because there are

only two dates in this period.

The table indicates that in only two cases is the null hypothesis of no Granger-causality

rejected at the 5% percent significance level. It is never rejected for the capital tax and

the Federal Funds rate. Granger causality is marginally rejected at the 5% level for the oil

dates on the I-shocks in the second subsample, and at the 1% level for military spending

on N-shocks in the full sample. The oil shock result might not be surprising. Suppose an

exogenous increase in the price of oil induces substitution toward equipment which the US

is not good at producing, such as high mileage cars. If this is the case, then the real price

of equipment rises. From this perspective, an oil shock is very much like an I-shock. The

military spending result is overturned when the sample is split. This might be another reason

to prefer the split sample findings.
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8. Conclusion

This paper argues that, by taking into account investment-specific technical change, previous

findings which suggest technology shocks are unimportant for short run fluctuations, are

overturned. Neutral and investment-specific technology shocks combined account for 40-60

percent of the business cycle variation in hours and output, and for more than 50% of the

forecast error in these variables over an eight year horizon. The majority of these effects are

due to the investment-specific shock. When the sample is split to account for a change in

the average growth of the investment-specific technology and changes in policy, these main

findings are confirmed. The technology shocks are much less variable in the second half of

the sample, which helps to explain the decline in aggregate volatility in the post-1984 period.

Since the results are based on a procedure which abstracts from transitory technology

shocks, they should be viewed as representing a lower bound on the overall contribution

of technology shocks to short run fluctuations. Therefore, the results strongly suggest that

technology shocks, or more generally, shocks to the efficiency of producing goods, are im-

portant for understanding short run fluctuations. Since investment-specific shocks account

for the majority of the effects, business cycle research might benefit from being directed

toward studying these shocks and other factors which influence the efficiency of producing

investment goods but not consumption goods.
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9. Appendix

This appendix describes the data, derives the linear restriction associated with assumption
3, and describes some results based on using different measures of the real investment price.

9.1. The Data

Since the GCV equipment deflator is an annual series, it must be interpolated. There is no
generally agreed on method of interpolation. This paper uses the popular approach due to
Denton (1971). As shown by Fernandez (1981), this method fits within the generalized least
squares interpolation-by-related-series class of interpolation schemes introduced by Chow and
Lin (1971). Interpolation-by-related-series uses information in a higher frequency indicator
variable to interpolate a better quality but lower frequency variable. Denton’s version of
this method minimizes the squared differences of successive ratios of the interpolated to the
indicator series subject to the constraint that the sum or average of the interpolated series
equals the value in the annual series.28

The GCV equipment-specific deflator is the annual GCV deflator interpolated with the
NIPA equipment deflator under the assumption that the average price for the year must
equal the GCV annual deflator. The GCV total investment deflator is derived by using the
NIPAs chain-weighting procedure to combine the GCV equipment-specific deflator with the
NIPA deflators for non-residential structures, residential structures, consumer durables, and
government investment. The NIPA equipment deflator is taken directly from the national
accounts. The NIPA total investment deflator is the same as the GCV total investment de-
flator except that the interpolated GCV equipment series is replaced by the NIPA equipment
deflator.
Gordon (1989) estimates an annual quality adjusted consumer durables deflator which

also indicates considerable quality bias in the corresponding NIPA deflator. The consumer
durable deflator is used in the construction of the total investment deflator and is the price
used for the service flow from durables in the consumption deflator. The annual Gordon
consumer durable deflator is interpolated using the NIPA deflator as the related series for
the period 1947-1983 and this is spliced to the NIPA deflator for the remaining years of the
sample. In the last few years where there is overlap between the Gordon series and the NIPA
series, the growth rates of the series are virtually identical.
For each data series below, there is a brief description of its construction. In cases where it

is relevant, the data codes from the Haver Analytics Database where the series was obtained
are displayed in parenthesis. To be consistent with the GCV equipment deflator, the NIPA
series are those prior to the 2004 revisions, available as of October, 2002.

• Nominal consumption is nondurables consumption (CN) plus services consumption
(CS) plus government consumption (the sum of GFDE, GFNE and GSE) plus the ser-
vice flow from consumer durables (chain-weighted real service flow obtained from David

28Denton’s method is used by the IMF in their official statistics. When the related series is a good indicator,
the practical differences among the available methods are small. An extensive discussion of alternative
interpolation methods can be found in Handbook of Quarterly National Accounts Compliation. This can be
currently viewed at www.imf.org/external/pubs/ft/qna/2000/Textbook/index.htm
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Reifschneider at the Board of Governors, converted to nominal terms with the price in-
dex for durable consumption goods described above, where the NIPA durables deflator
is CD/CDH). Real consumption is the chain-weighted sum of the components of nomi-
nal consumption using the deflators for nondurables consumption (CN/CNH), services
consumption (CS/CSH), chain-weighted government consumption (the price indexes
for the components of government consumption are GFDE/GFDEH, GFNE/GFNEH,
GSE/GSEH). The consumption deflator is the ratio of nominal to real consumption.

• Per-capita non-farm hours is non-farm business hours (LXNFH) divided by the non-
institutional civilian population 16 years and over (LN16N, adjusted at the Federal
Reserve Bank of Chicago to smooth out various discrete revisions made by the Census
Bureau). Per-capita private business hours is private business hours (LXBH) divided
by the non-institutional civilian population 16 years and over.

• Nominal non-farm business output is non-farm business output (LXNFO) multiplied
by the deflator for that output (LXNFI). Non-farm business labor productivity in
consumption units is non-farm labor productivity (LXNFA) multiplied by the deflator
for non-farm business output (LXNFI) divided by the consumption deflator. Nominal
private business output is private business output (LXBO) multiplied by the deflator
for that output (LXBI). Private business labor productivity in consumption units is
private labor productivity (LXBA) multiplied by the deflator for non-farm business
output (LXBI) divided by the consumption deflator.

• Nominal total investment is private non-residential structures investment (FNS) plus
private equipment investment (FNE) plus private residential structures investment
(FR) plus expenditures on consumer durables (CD) and government investment (the
sum of GFDI, GFNI and GSI). Real total investment is the chain-weighted sum of
the components of nominal total investment using the deflators for non-residential
structures (FNS/FNSH), the GCV equipment deflator described above, residential
structures (FR/FRH), the durables consumption deflator described above, and chain-
weighted government investment (the price indexes for the components of government
investment are GFDI/GFDIH, GFNI/GFNIH, GSI/GSIH). The total investment de-
flator is the ratio of nominal to real total investment. The real total investment price
is the ratio of the total investment deflator and the consumption deflator. The real
equipment price is the ratio of the GCV equipment deflator described above and the
consumption deflator.

• The NIPA equipment deflator is nominal equipment expenditures (FNE) divided by
real equipment expenditures (FNEH). The NIPA consumption deflator is the same
as the consumption deflator described above except that the consumer durables price
index is taken from the NIPA (CD/CDH). The NIPA total investment deflator is the
same as the baseline total investment deflator except the equipment and consumer
durables deflators are replaced with their NIPA counterparts.

• The interest rates used are the Federal funds rate (FFED) and the yield on 3-month
Treasury Bills (FTBS3).
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• The Ramey and Francis (2004) government adjustment is calculated by the author
according to the steps described in the appendix to that paper. The capital tax series
is from Burnside, Eichenbaum and Fisher (2003).

9.2. Restricting Labor Productivity’s Response to an I-Shock

Recall the moving average representation of the model is

yt = Φ(L)εt (16)

= C(L)−1εt, (17)

where C(L) ≡ A − Γ(L)L. The long run effects of innovations to the fundamental shocks
are given by Φ(1) = C(1)−1. Assumptions 1 and 2 imply

C(1)−1 =



a11 0 0 0 · · · 0
a21 a22 0 0 · · · 0
a31 a32 a33 a34 · · · a3n
...

...
...

...
. . .

...
an1 an2 an3 an4 · · · ann

 ,

where the aij terms are real scalars. Assumption 3 implies a11/a21 = −(1− α)/α.
Let the ij’th element of C(1) be denoted cij. Recall that the ij’th element of the inverse

of a matrix equals (−1)i+jMji divided by the determinant of the matrix to be inverted, where
Mji is the minor of the ji’th element of the matrix to be inverted. Using this formula, we
have

c21 = −det


a21 0 0 · · · 0
a31 a33 a34 · · · a3n
...

...
...

. . .
...

an1 an3 an4 · · · ann

 = −a21 det

a33 a34 · · · a3n
a43 a44 · · · a4n
...

...
. . .

...
an3 an4 · · · ann


and

c22 = det


a11 0 0 · · · 0
a31 a33 a34 · · · a3n
...

...
...

. . .
...

an1 an3 an4 · · · ann

 = a11 det

a33 a34 · · · a3n
a43 a44 · · · a4n
...

...
. . .

...
an3 an4 · · · ann


Notice that the determinants on the right hand side of these two sets of equalities are

identical. This means
−a11
a21

=
c22
c21
.

It follows that assumption 3 holds if and only if

1− α

α
c21 − c22 = 0.
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9.3. Other measures of the real investment price

This section investigates the implications of using the GCV-based total investment, NIPA
equipment and NIPA total investment deflators. A complete set of results is available from
the author upon request. Mirroring other results in the paper, some differences emerge
when the seven-variable system is estimated using the alternative price measures over the
full sample, but most of these differences disappear when the sample is split.
Over the full sample, the combined effects of the two technology shocks are smaller.

For example, technology shocks account for 41% and 37% of the business cycle volatility of
hours and output with the baseline measure of the real price, but with the NIPA equipment
measures the estimated contributions are only 16% and 22%. The differences in the forecast
errors are much less pronounced for the total effects of technology. For the NIPA equipment
series, the N-shocks matter more than I-shocks.
When the sample is split the differences with the baseline results essentially disappear,

with one exception. In the first sub-sample using the NIPA equipment series, N-shocks
matter more than I-shocks. However, the total contribution of technology shocks is similar
to that for the GCV equipment series. The usual results continue to hold with the NIPA
equipment series in the second subsample.
These findings are explained as follows. As discussed in section 4.1, at the annual fre-

quency, the GCV series incorporates all the component NIPA deflators which are already
quality adjusted by the BEA. Only those component deflators which have not already been
quality adjusted by the BEA are estimated by Cummins and Violante. The biggest differ-
ences between the NIPA- and GCV-based series are before 1980, when the share of investment
that the BEA quality adjusts is small. Therefore, over the full sample, the average quality
bias is not constant. When the sample is split, however, the bias is much closer to being
constant within the two subsamples. This explains why the NIPA and GCV results are much
closer when the sample is split than over the full sample.
Finally, if the NIPA equipment deflator is used to measure the real investment price, the

second sub-sample can be extended to 2004:IV. When this is done the findings for the second
sub-sample are almost identical to those based on the shorter sample.
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Table 1. Forecast Error Decompositions in the Three Variable Model, 1955:I-2000:IV

Hours Output
All All

Horizon Technology Investment Neutral Technology Investment Neutral
1 0.28 0.25 0.03 0.89 0.16 0.73

(0,0.53) (0,0.50) (0,0.06) (0.79,1) (0,0.32) (0.49,1)
4 0.54 0.46 0.09 0.88 0.33 0.56

(0.24,0.97) (0.08,0.90) (0,0.17) (0.78,1) (0,0.64) (0.15,0.91)
8 0.67 0.55 0.12 0.94 0.35 0.58

(0.43,1) (0.23,1) (0,0.24) (0.88,1) (0.02,0.69) (0.21,0.91)
12 0.71 0.57 0.14 0.95 0.35 0.61

(0.50,1) (0.26,1) (0,0.26) (0.91,1) (0.04,0.67) (0.26,0.93)
16 0.73 0.58 0.14 0.96 0.33 0.63

(0.52,1) (0.27,1) (0.0.27) (0.93,1) (0.03,0.65) (0.29,0.95)
32 0.74 0.59 0.15 0.98 0.32 0.66

(0.54,1) (0.28,1) (0,0.28) (0.96,1) (0,0.62) (0.35,0.99)

Table 2. Business Cycle Effects of Technology Shocks, 1955:I-2000:IV
Three Variable Model Seven Variable Model

All All
Statistic Technology Investment Neutral Technology Investment Neutral

σ2Hm/σ2Hd 0.68 0.55 0.07 0.41 0.42 0.03
(0.39,1) (0.20,1) (0,0.10) (0.06,0.70) (0.21,0.80) (0,0.04)

σ2Ym/σ
2
Y d 0.79 0.42 0.31 0.37 0.27 0.15

(0.54,1) (0.11,0.79) (0,0.46) (0,0.59) (0.11,0.51) (0,0.28)
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Table 3. Forecast Error Decompositions in the Seven Variable Model, 1955:I-2000:IV

Hours Output
All All

Horizon Technology Investment Neutral Technology Investment Neutral
1 0.30 0.31 0.00 0.48 0.03 0.44

(0.17,0.60) (0.26,0.61) (0,0) (0.31,0.84) (0,0.07) (0.27,0.82)
4 0.57 0.54 0.02 0.63 0.23 0.40

(0.42,1) (0.53,1) (0,0.04) (0.46,1) (0.09,0.45) (0.07,0.76)
8 0.60 0.55 0.05 0.62 0.16 0.45

(0.44,1) (0.50,1) (0,0.08) (0.41,0.97) (0,0.31) (0.14,0.80)
12 0.58 0.49 0.09 0.65 0.11 0.54

(0.40,0.94) (0.40,0.94) (0,0.16) (0.46,0.99) (0,0.21) (0.29,0.88)
16 0.58 0.45 0.13 0.69 0.08 0.61

(0.40,0.91) (0.33,0.87) (0,0.24) (0.53,1) (0,0.16) (0.40,0.97)
32 0.67 0.49 0.17 0.81 0.09 0.72

(0.51,0.93) (0.38,0.96) (0,0.29) (0.70,1) (0,0.17) (0.56,1)

Table 4. Forecast Error Decompositions in the Five Variable Model, 1955:I-1979:II

Hours Output
All All

Horizon Technology Investment Neutral Technology Investment Neutral
1 0.44 0.29 0.16 0.15 0.03 0.12

(0.14,0.87) (0.01,0.58) (0,0.31) (0,0.29) (0,0.06) (0,0.24)
4 0.39 0.24 0.15 0.09 0.04 0.05

(0.09,75) (0,0.47) (0,0.30) (0,0.15) (0,0.07) (0,0.10)
8 0.35 0.20 0.14 0.34 0.14 0.20

(0.03,0.62) (0,0.39) (0,0.28) (0,0.57) (0,0.26) (0,0.38)
12 0.39 0.25 0.15 0.58 0.26 0.32

(0.12,0.69) (0,0.47) (0,0.28) (0.38,1) (0,0.51) (0,0.61)
16 0.43 0.28 0.14 0.68 0.31 0.37

(0.16,0.75) (0,0.53) (0.0.28) (0.51,1) (0,0.59) (0.04,0.71)
32 0.45 0.30 0.15 0.79 0.34 0.45

(0.15,0.78) (0,0.58) (0,0.28) (0.67,1) (0,0.66) (0.09,0.86)
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Table 5. Forecast Error Decompositions in the Five Variable Model, 1982:III-2000:IV

Hours Output
All All

Horizon Technology Investment Neutral Technology Investment Neutral
1 0.03 0.03 0.002 0.84 0.02 0.82

(0,0.06) (0,0.07) (0,0.01) (0.70,1) (0,0.04) (0.69,1)
4 0.13 0.06 0.07 0.69 0.16 0.53

(0,0.22) (0,0.11) (0,0.13) (0.45,1) (0,0.31) (0.25,0.99)
8 0.26 0.19 0.06 0.76 0.34 0.42

(0,0.46) (0,0.37) (0,0.12) (0.57,1) (0,0.66) (0.07,0.79)
12 0.40 0.34 0.05 0.83 0.49 0.34

(0,0.68) (0,0.65) (0,0.10) (0.70,1) (0.21,0.90) (0,0.60)
16 0.45 0.39 0.06 0.84 0.57 0.27

(0.07,0.76) (0,0.73) (0.0.11) (0.72,1) (0.35,1) (0,0.46)
32 0.52 0.46 0.06 0.90 0.65 0.25

(0.17,0.86) (0.09,0.84) (0,0.11) (0.82,1) (0.46,1) (0,0.41)

Table 6. Business Cycle Effects of Technology Shocks in the
Five Variable Model with a Break in the Sample

All
Statistic Technology Investment Neutral

Panel A: 1955:I-1979:II
σ2Hm/σ2Hd 0.73 0.47 0.21

(0.59,1) (0.22,0.92) (0,0.39)
σ2Ym/σ

2
Y d 0.44 0.42 0.08

(0.12,0.83) (0.22,0.83) (0,0.13)

Panel B: 1982:III-2000:IV
σ2Hm/σ2Hd 0.38 0.36 0.15

(0,0.66) (0,0.64) (0,0.22)
σ2Ym/σ

2
Y d 0.80 0.67 0.33

(0.32,1) (0.43,1) (0,0.59)
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Table 7. Business Cycle Effects of Technology Shocks in the Seven
Variable Model for Various Ways of Modelling Hours, 1955:I-2000:IV

Non-Farm Business Hours Private Business Hours
All All

Statistic Technology Investment Neutral Technology Investment Neutral
Log-Levels

σ2Hm/σ2Hd 0.41 0.42 0.03 0.14 0.10 0.09
σ2Ym/σ

2
Y d 0.37 0.27 0.15 0.23 0.11 0.18

First-Differences(i)

σ2Hm/σ2Hd 0.32 0.10 0.17 * * *
σ2Ym/σ

2
Y d 0.45 0.05 0.35 * * *

Quadratic
σ2Hm/σ2Hd 0.21 0.16 0.04 0.09 0.04 0.04
σ2Ym/σ

2
Y d 0.12 0.13 0.03 0.06 0.04 0.02

Francis and Ramey (2004) Government Spending Adjustment
σ2Hm/σ2Hd 0.27 0.25 0.05 0.09 0.06 0.04
σ2Ym/σ

2
Y d 0.19 0.19 0.04 0.15 0.07 0.11

Notes: (i) In these specifications A4 need not be imposed explicitly for nonfarm business
hours since productivity after an I-shock turns positive before 8 years. The (*) for private
business hours indicates the linear model for which A3 is imposed is non-stationary and so
is inadmissible. Note that the nonfarm business hours estimates yield extremely persistent
responses and both technologies have large permanent effects on hours.
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Table 8. Business Cycle Effects of Technology Shocks in the Five
Variable Model for Various Ways of Modelling Hours, 1955:I-1979:II

Non-Farm Business Hours Private Business Hours
All All

Statistic Technology Investment Neutral Technology Investment Neutral
Log-Levels

σ2Hm/σ2Hd 0.73 0.47 0.21 0.81 0.61 0.14
σ2Ym/σ

2
Y d 0.44 0.42 0.08 0.61 0.56 0.06

First-Differences
σ2Hm/σ2Hd 0.28 0.17 0.10 0.25 0.17 0.08
σ2Ym/σ

2
Y d 0.12 0.10 0.03 0.11 0.11 0.02

Quadratic
σ2Hm/σ2Hd 0.73 0.08 0.67 0.69 0.15 0.53
σ2Ym/σ

2
Y d 0.38 0.07 0.32 0.38 0.12 0.25

Francis and Ramey (2004) Government Spending Adjustment
σ2Hm/σ2Hd 0.67 0.26 0.38 0.69 0.53 0.11
σ2Ym/σ

2
Y d 0.37 0.25 0.14 0.49 0.48 0.04

Table 9. Business Cycle Effects of Technology Shocks in the Five
Variable Model for Various Ways of Modelling Hours, 1982:III-2000:IV

Non-Farm Business Hours Private Business Hours
All All

Statistic Technology Investment Neutral Technology Investment Neutral
Log-Levels

σ2Hm/σ2Hd 0.38 0.36 0.15 0.47 0.42 0.18
σ2Ym/σ

2
Y d 0.80 0.67 0.33 0.99 0.84 0.32

First-Differences
σ2Hm/σ2Hd 0.38 0.32 0.20 0.38 0.36 0.10
σ2Ym/σ

2
Y d 0.65 0.57 0.24 0.75 0.63 0.20

Quadratic
σ2Hm/σ2Hd 0.25 0.23 0.39 0.26 0.24 0.44
σ2Ym/σ

2
Y d 0.67 0.41 0.59 0.58 0.40 0.66

Francis and Ramey (2004) Government Spending Adjustment
σ2Hm/σ2Hd 0.36 0.33 0.16 0.40 0.36 0.19
σ2Ym/σ

2
Y d 0.77 0.61 0.35 0.87 0.71 0.33
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Table 10. Granger-Causality Tests
Capital Tax Federal Funds Hoover-Perez Military Spending

Technology Shock Changes Rate Oil Dates Changes

Panel A: 1955:I 2000:IV
Investment-Specific 0.10 0.99 0.30 0.96
Neutral 0.09 0.73 0.53 0.01

Panel B: 1955:I-1979:II
Investment-Specific 0.07 0.93 0.046 0.17
Neutral 0.82 0.82 0.15 0.23

Panel C: 1982:III-2000:IV
Investment-Specific 0.55 0.97 * 0.14
Neutral 0.17 0.91 * 0.42

Note: The table reports probabilities that an F-distributed random variable exceeds the
F-statistic associated with the variable in question. The F-test is based on a regression of
the identified technology shock on a constant and current and four quarterly lags of the
variable in question, except the federal funds rate, where no current value is included. The
null hypothesis is that all of the coefficients on the variable in question are jointly equal to
zero. The asterisks denote that there are not enough observations of the variable in question
to compute a meaningful test.
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