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Abstract 

We consider statistical inference for regression when data are grouped into clusters, with 
regression model errors independent across clusters but correlated within clusters. Examples 
include data on individuals with clustering on village or region or other category such as 
industry, and state-year differences-in-differences studies with clustering on state. In such 
settings default standard errors can greatly overstate estimator precision. Instead, if the number 
of clusters is large, statistical inference after OLS should be based on cluster-robust standard 
errors. We outline the basic method as well as many complications that can arise in practice.  
These include cluster-specific fixed effects, few clusters, multi-way clustering, and estimators 
other than OLS.  
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I. Introduction 
In an empiricist’s day-to-day practice, most effort is spent on getting unbiased or 

consistent point estimates. That is, a lot of attention focuses on the parameters (�̂�). In this 
paper we focus on getting accurate statistical inference, a fundamental component of which is 
obtaining accurate standard errors (𝑠𝑒, the estimated standard deviation of �̂�). We begin with 
the basic reminder that empirical researchers should also really care about getting this part 
right. An asymptotic 95% confidence interval is �̂� ± 1.96 × 𝑠𝑒, and hypothesis testing is 
typically based on the Wald “t-statistic” 𝑤 = (�̂� − 𝛽0)/𝑠𝑒 . Both �̂�  and 𝑠𝑒  are critical 
ingredients for statistical inference, and we should be paying as much attention to getting a 
good 𝑠𝑒 as we do to obtain �̂�.  

In this paper, we consider statistical inference in regression models where observations 
can be grouped into clusters, with model errors uncorrelated across clusters but correlated 
within cluster. One leading example of “clustered errors” is individual-level cross-section data 
with clustering on geographical region, such as village or state. Then model errors for 
individuals in the same region may be correlated, while model errors for individuals in 
different regions are assumed to be uncorrelated. A second leading example is panel data. Then 
model errors in different time periods for a given individual (e.g., person or firm or region) may 
be correlated, while model errors for different individuals are assumed to be uncorrelated.  

Failure to control for within-cluster error correlation can lead to very misleadingly 
small standard errors, and consequent misleadingly narrow confidence intervals, large 
t-statistics and low p-values. It is not unusual to have applications where standard errors that 
control for within-cluster correlation are several times larger than default standard errors that 
ignore such correlation. As shown below, the need for such control increases not only with 
increase in the size of within-cluster error correlation, but the need also increases with the size 
of within-cluster correlation of regressors and with the number of observations within a cluster. 
A leading example, highlighted by Moulton (1986, 1990), is when interest lies in measuring the 
effect of a policy variable, or other aggregated regressor, that takes the same value for all 
observations within a cluster.  

One way to control for clustered errors in a linear regression model is to additionally 
specify a model for the within-cluster error correlation, consistently estimate the parameters of 
this error correlation model, and then estimate the original model by feasible generalized least 
squares (FGLS) rather than ordinary least squares (OLS). Examples include random effects 
estimators and, more generally, random coefficient and hierarchical models. If all goes well 
this provides valid statistical inference, as well as estimates of the parameters of the original 
regression model that are more efficient than OLS. However, these desirable properties hold 
only under the very strong assumption that the model for within-cluster error correlation is 
correctly specified.  

A more recent method to control for clustered errors is to estimate the regression model 
with limited or no control for within-cluster error correlation, and then post-estimation obtain 
“cluster-robust” standard errors proposed by White (1984, p.134-142) for OLS with a 
multivariate dependent variable (directly applicable to balanced clusters); by Liang and Zeger 
(1986) for linear and nonlinear models; and by Arellano (1987) for the fixed effects estimator 
in linear panel models. These cluster-robust standard errors do not require specification of a 
model for within-cluster error correlation, but do require the additional assumption that the 
number of clusters, rather than just the number of observations, goes to infinity.  

Cluster-robust standard errors are now widely used, popularized in part by Rogers 
(1993) who incorporated the method in Stata, and by Bertrand, Duflo and Mullainathan (2004) 
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who pointed out that many differences-in-differences studies failed to control for clustered 
errors, and those that did often clustered at the wrong level. Cameron and Miller (2011) and 
Wooldridge (2003, 2006) provide surveys, and lengthy expositions are given in Angrist and 
Pischke (2009) and Wooldridge (2010).  

One goal of this paper is to provide the practitioner with the methods to implement 
cluster-robust inference. To this end we include in the paper reference to relevant Stata 
commands (for version 13), since Stata is the computer package most often used in applied 
microeconometrics research. And we will post on our websites more expansive Stata code and 
the datasets used in this paper. A second goal is presenting how to deal with complications such 
as determining when there is a need to cluster, incorporating fixed effects, and inference when 
there are few clusters. A third goal is to provide an exposition of the underlying econometric 
theory as this can aid in understanding complications. In practice the most difficult 
complication to deal with can be “few” clusters, see Section VI. There is no clear-cut definition 
of “few”; depending on the situation “few” may range from less than 20 to less than 50 clusters 
in the balanced case.  

We focus on OLS, for simplicity and because this is the most commonly-used 
estimation method in practice. Section II presents the basic results for OLS with clustered 
errors. In principle, implementation is straightforward as econometrics packages include 
cluster-robust as an option for the commonly-used estimators; in Stata it is the 
vce(cluster) option. The remainder of the survey concentrates on complications that 
often arise in practice. Section III addresses how the addition of fixed effects impacts 
cluster-robust inference. Section IV deals with the obvious complication that it is not always 
clear what to cluster over. Section V considers clustering when there is more than one way to 
do so and these ways are not nested in each other. Section VI considers how to adjust inference 
when there are just a few clusters as, without adjustment, test statistics based on the 
cluster-robust standard errors over-reject and confidence intervals are too narrow. Section VII 
presents extension to the full range of estimators – instrumental variables, nonlinear models 
such as logit and probit, and generalized method of moments. Section VIII presents both 
empirical examples and real-data based simulations. Concluding thoughts are given in Section 
IX.  

II. Cluster-Robust Inference 
In this section we present the fundamentals of cluster-robust inference. For these basic 

results we assume that the model does not include cluster-specific fixed effects, that it is clear 
how to form the clusters, and that there are many clusters. We relax these conditions in 
subsequent sections.  

Clustered errors have two main consequences: they (usually) reduce the precision of �̂�, 
and the standard estimator for the variance of �̂�, V�[�̂�] , is (usually) biased downward from the 
true variance. Computing cluster-robust standard errors is a fix for the latter issue. We illustrate 
these issues, initially in the context of a very simple model and then in the following subsection 
in a more typical model.  

A. A Simple Example 
For simplicity, we begin with OLS with a single regressor that is nonstochastic, and 

assume no intercept in the model. The results extend to multiple regression with stochastic 
regressors.  

Let 𝑦𝑖 = 𝛽𝑥𝑖 + 𝑢𝑖, 𝑖 = 1, . . . ,𝑁, where 𝑥𝑖 is nonstochastic and E[𝑢𝑖] = 0. The OLS 
estimator �̂� = ∑ 𝑥𝑖𝑖 𝑦𝑖/∑ 𝑥𝑖2𝑖  can be re-expressed as �̂� − 𝛽 = ∑ 𝑥𝑖𝑢𝑖𝑖 /∑ 𝑥𝑖2𝑖 , so in general  
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 V[�̂�] =  E[(�̂� − 𝛽)2] = V �� 𝑥𝑖𝑢𝑖
𝑖

� / �� 𝑥𝑖2
𝑖

�
2

. (1) 

 
If errors are uncorrelated over 𝑖, then V[∑ 𝑥𝑖𝑢𝑖𝑖 ] = ∑ V[𝑥𝑖𝑢𝑖]𝑖 = ∑ 𝑥𝑖2𝑖 V[𝑢𝑖]. In the 

simplest case of homoskedastic errors, V[𝑢𝑖] = 𝜎2 and (1) simplifies to V[�̂�] = 𝜎2/∑ 𝑥𝑖2𝑖 .  
If instead errors are heteroskedastic, then (1) becomes 
 

Vhet[�̂�] = �� 𝑥𝑖2E[𝑢𝑖2]
𝑖

� / �� 𝑥𝑖2
𝑖

�
2

, 

 
using V[𝑢𝑖] = E[𝑢𝑖2]  since E[𝑢𝑖] = 0.  Implementation seemingly requires consistent 
estimates of each of the 𝑁 error variances E[𝑢𝑖2]. In a very influential paper, one that extends 
naturally to the clustered setting, White (1980) noted that instead all that is needed is an 
estimate of the scalar ∑ 𝑥𝑖2E[𝑢𝑖2]𝑖 , and that one can simply use ∑ 𝑥𝑖2𝑢�𝑖2𝑖 , where 𝑢�𝑖 = 𝑦𝑖 − �̂�𝑥𝑖 
is the OLS residual, provided 𝑁 → ∞. This leads to estimated variance 
 

V�het[�̂�] = �� 𝑥𝑖2𝑢�𝑖2
𝑖

]� / �� 𝑥𝑖2
𝑖

�
2

. 

 
The resulting standard error for �̂� is often called a robust standard error, though a better, more 
precise term, is heteroskedastic-robust standard error.  

What if errors are correlated over 𝑖? In the most general case where all errors are 
correlated with each other,  

 

V �� 𝑥𝑖𝑢𝑖
𝑖

� = �  
𝑖
� Cov[𝑥𝑖𝑢𝑖 , 𝑥𝑗𝑢𝑗]

𝑗
= �  

𝑖
� 𝑥𝑖𝑥𝑗E[𝑢𝑖𝑢𝑗]

𝑗
, 

 
so 

Vcor[�̂�] = ��  
𝑖
� 𝑥𝑖𝑥𝑗E[𝑢𝑖𝑢𝑗]

𝑗
� / �� 𝑥𝑖2

𝑖
�
2

. 

 
The obvious extension of White (1980) is to use V�[�̂�] = �∑  𝑖 ∑ 𝑥𝑖𝑥𝑗𝑢�𝑖𝑢�𝑗𝑗 ]�/(∑ 𝑥𝑖2𝑖 )2, but this 
equals zero since ∑ 𝑥𝑖𝑢�𝑖𝑖 = 0. Instead one needs to first set a large fraction of the error 
correlations E[𝑢𝑖𝑢𝑗] to zero. For time series data with errors assumed to be correlated only up 
to, say, 𝑚 periods apart as well as heteroskedastic, White’s result can be extended to yield a 
heteroskedastic- and autocorrelation-consistent (HAC) variance estimate; see Newey and West 
(1987).  

In this paper we consider clustered errors, with E[𝑢𝑖𝑢𝑗] = 0 unless observations 𝑖 and 
𝑗 are in the same cluster (such as same region). Then  

 

 
Vclu��̂�� = ��  

𝑖
� 𝑥𝑖𝑥𝑗E�𝑢𝑖𝑢𝑗�𝟏[𝑖, 𝑗 in same cluster]

𝑗
�

/ �� 𝑥𝑖2
𝑖

�
2

, 
(2) 

 
where the indicator function 𝟏[𝐴] equals 1 if event 𝐴 happens and equals 0 if event 𝐴 does 
not happen. Provided the number of clusters goes to infinity, we can use the variance estimate  
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V�clu[�̂�] = ��  

𝑖
� 𝑥𝑖𝑥𝑗𝑢�𝑖𝑢�𝑗𝟏[𝑖, 𝑗 in same cluster]

𝑗
�

/ �� 𝑥𝑖2
𝑖

�
2

. 
(3) 

 
This estimate is called a cluster-robust estimate, though more precisely it is heteroskedastic- 
and cluster-robust. This estimate reduces to V�het[�̂�] in the special case that there is only one 
observation in each cluster.  

Typically V�clu[�̂�] exceeds V�het[�̂�]  due to the addition of terms when 𝑖 ≠ 𝑗 . The 
amount of increase is larger (1) the more positively associated are the regressors across 
observations in the same cluster (via 𝑥𝑖𝑥𝑗 in (3)), (2) the more correlated are the errors (via 
E[𝑢𝑖𝑢𝑗] in (2)), and (3) the more observations are in the same cluster (via 𝟏[𝑖, 𝑗 in same 
cluster] in (3)).  

There are several take-away messages. First there can be great loss of efficiency in OLS 
estimation if errors are correlated within cluster rather than completely uncorrelated. 
Intuitively, if errors are positively correlated within cluster then an additional observation in 
the cluster no longer provides a completely independent piece of new information. Second, 
failure to control for this within-cluster error correlation can lead to using standard errors that 
are too small, with consequent overly-narrow confidence intervals, overly-large t-statistics, 
and over-rejection of true null hypotheses. Third, it is straightforward to obtain cluster-robust 
standard errors, though they do rely on the assumption that the number of clusters goes to 
infinity (see Section VI for the few clusters case).  

B. Clustered Errors and Two Leading Examples 
Let 𝑖  denote the 𝑖𝑡ℎ  of 𝑁  individuals in the sample, and 𝑔  denote the 𝑔𝑡ℎ  of 𝐺 

clusters. Then for individual 𝑖 in cluster 𝑔 the linear model with (one-way) clustering is 
 

 𝑦𝑖𝑔 = 𝒙𝑖𝑔′ 𝜷 + 𝑢𝑖𝑔, (4) 
 
where 𝒙𝑖𝑔 is a 𝐾 × 1 vector. As usual it is assumed that E�𝑢𝑖𝑔|𝒙𝑖𝑔� = 0. The key assumption 
is that errors are uncorrelated across clusters, while errors for individuals belonging to the same 
cluster may be correlated. Thus  
 
 E[𝑢𝑖𝑔𝑢𝑗𝑔′|𝒙𝑖𝑔,𝒙𝑗𝑔′] = 0,  unless 𝑔 = 𝑔′. (5) 
 

1. Example 1: Individuals in Cluster 

Hersch (1998) uses cross-section individual-level data to estimate the impact of job 
injury risk on wages. Since there is no individual-level data on job injury rate, a more 
aggregated measure such as job injury risk in the individual’s industry is used as a regressor. 
Then for individual 𝑖 (with 𝑁 = 5960) in industry 𝑔 (with 𝐺 = 211) 

 
𝑦𝑖𝑔 = 𝛾 × 𝑥𝑔 + 𝒛𝑖𝑔′ 𝜹 + 𝑢𝑖𝑔. 

 
The regressor 𝑥𝑔  is perfectly correlated within industry. The error term will be 

positively correlated within industry if the model systematically overpredicts (or 
underpredicts) wages in a given industry. In this case default OLS standard errors will be 
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downwards biased.  
To measure the extent of this downwards bias, suppose errors are equicorrelated within 

cluster, so Cor[𝑢𝑖𝑔,𝑢𝑗𝑔] = 𝜌 for all 𝑖 ≠ 𝑗. This pattern is suitable when observations can be 
viewed as exchangeable, with ordering not mattering. Common examples include the current 
one, individuals or households within a village or other geographic unit (such as state), 
individuals within a household, and students within a school. Then a useful approximation is 
that for the 𝑘𝑡ℎ regressor the default OLS variance estimate based on 𝑠2(𝑿′𝑿)−1, where 𝑠 is 
the standard error of the regression, should be inflated by  

 
 
 

𝜏𝑘 ≃ 1 + 𝜌𝑥𝑘𝜌𝑢(�̄�𝑔 − 1), (6) 

where 𝜌𝑥𝑘 is a measure of the within-cluster correlation of 𝑥𝑖𝑔𝑘, 𝜌𝑢 is the within-cluster error 
correlation, and �̄�𝑔 is the average cluster size. The result (6) is exact if clusters are of equal 
size (“balanced” clusters) and 𝜌𝑥𝑘 = 1 for all regressors (Kloek, 1981); see Scott and Holt 
(1982) and Greenwald (1983) for the general result with a single regressor.  

This very important and insightful result is that the variance inflation factor is 
increasing in  

1. the within-cluster correlation of the regressor  
2. the within-cluster correlation of the error  
3. the number of observations in each cluster.  

For clusters of unequal size replace (�̄�𝑔 − 1) in (6) by ((V[𝑁𝑔]/�̄�𝑔) + �̄�𝑔 − 1); see Moulton 
(1986, p.387). Note that there is no cluster problem if any one of the following occur: 𝜌𝑥𝑘 = 0 
or 𝜌𝑢 = 0 or �̄�𝑔 = 1.  

In an influential paper, Moulton (1990) pointed out that in many settings the inflation 
factor 𝜏𝑘 can be large even if 𝜌𝑢 is small. He considered a log earnings regression using 
March CPS data (𝑁 = 18,946), regressors aggregated at the state level (𝐺 = 49), and errors 
correlated within state (𝜌�𝑢 = 0.032) . The average group size was 18,946/49 = 387 , 
𝜌𝑥𝑘 = 1  for a state-level regressor, so (6) yields 𝜏𝑘� ≃ 1 + 1 × 0.032 × 386 = 13.3 . The 
weak correlation of errors within state was still enough to lead to cluster-corrected standard 
errors being √13.3 = 3.7 times larger than the (incorrect) default standard errors!  

In such examples of cross-section data with an aggregated regressor, the cluster-robust 
standard errors can be much larger despite low within-cluster error correlation because the 
regressor of interest is perfectly correlated within cluster and there may be many observations 
per cluster.  

2. Example 2: Differences-in-Differences (DiD) in a State-Year Panel 

Interest may lie in how wages respond to a binary policy variable 𝑑𝑡𝑠 that varies by 
state and over time. Then at time 𝑡 in state 𝑠 

 
𝑦𝑡𝑠 = 𝛾 × 𝑑𝑡𝑠 + 𝒛𝑡𝑠′ 𝜸 + 𝛼𝑠 + 𝛿𝑡 + 𝑢𝑡𝑠, 

 
where we assume independence over states, so the ordering of subscripts (𝑡, 𝑠) corresponds to 
(𝑖,𝑔) in (4), and 𝛼𝑠 and 𝛿𝑡 are state and year effects.  

The binary regressor 𝑑𝑡𝑠 equals one if the policy of interest is in effect and equals 0 
otherwise. The regressor 𝑑𝑡𝑠 is often highly serially correlated since, for example, 𝑑𝑡𝑠 will 
equal a string of zeroes followed by a string of ones for a state that switches from never having 
the policy in place to forever after having the policy in place. The error 𝑢𝑡𝑠 is correlated over 
time for a given state if the model systematically overpredicts (or underpredicts) wages in a 
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given state. Again the default standard errors are likely to be downwards-biased.  
In the panel data case, the within-cluster (i.e., within-individual) error correlation 

decreases as the time separation increases, so errors are not equicorrelated. A better model for 
the errors is a time series model, such as an autoregressive error of order one that implies that 
Cor[𝑢𝑡𝑠, 𝑢𝑡′𝑠] = 𝜌|𝑡−𝑡′|. The true variance of the OLS estimator will again be larger than the 
OLS default, although the consequences of clustering are less extreme than in the case of 
equicorrelated errors (see Cameron and Miller (2011, Section 2.3) for more detail).  

In such DiD examples with panel data, the cluster-robust standard errors can be much 
larger than the default because both the regressor of interest and the errors are highly correlated 
within cluster. Note also that this complication can exist even with the inclusion of fixed effects 
(see Section III).  

The same problems arise if we additionally have data on individuals, so that 
 

𝑦𝑖𝑡𝑠 = 𝛾 × 𝑑𝑡𝑠 + 𝒛𝑖𝑡𝑠′ 𝜹 + 𝛼𝑠 + 𝛿𝑡 + 𝑢𝑖𝑡𝑠. 
 
In an influential paper, Bertrand, Duflo and Mullainathan (2004) demonstrated the importance 
of using cluster-robust standard errors in DiD settings. Furthermore, the clustering should be 
on state, assuming error independence across states. The clustering should not be on state-year 
pairs since, for example, the error for California in 2010 is likely to be correlated with the error 
for California in 2009.  

The issues raised here are relevant for any panel data application, not just DiD studies. 
The DiD panel example with binary policy regressor is often emphasized in the cluster-robust 
literature because it is widely used and it has a regressor that is highly serially correlated, even 
after mean-differencing to control for fixed effects. This serial correlation leads to a potentially 
large difference between cluster-robust and default standard errors.  

C. The Cluster-Robust Variance Matrix Estimate 
Stacking all observations in the 𝑔𝑡ℎ cluster, the model (4) can be written as  

𝒚𝑔 = 𝑿𝑔𝜷 + 𝒖𝑔, 𝑔 = 1, . . . ,𝐺, 
where 𝒚𝑔  and 𝒖𝑔  are 𝑁𝑔 × 1  vectors, 𝑿𝑔  is an 𝑁𝑔 × 𝐾  matrix, and there are 𝑁𝑔 
observations in cluster 𝑔. Further stacking 𝒚𝑔, 𝑿𝑔 and 𝒖𝑔 over the 𝐺 clusters then yields 
the model  

𝒚 = 𝑿𝜷 + 𝒖. 
 

The OLS estimator is  
 

𝜷� = (𝑿′𝑿)−1𝑿′𝒚 = �� 𝑿𝑔′ 𝑿𝑔
𝐺

𝑔=1
𝑿𝑔′ 𝑿𝑔�

−1

� 𝑿𝑔′ 𝒚𝑔.
𝐺

𝑔=1
 

 
In general, the variance matrix conditional on 𝑿 is  
 
 V[𝜷�] = (𝑿′𝑿)−1𝑩(𝑿′𝑿)−1, (7) 
 
With 
 
 
 

𝑩 = 𝑿′V[𝒖|𝑿]𝑿. (8) 

Given error independence across clusters, V[𝒖|𝑿] has a block-diagonal structure, and 
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(8) simplifies to  

 𝑩clu = � 𝑿𝑔′ E�𝒖𝑔𝒖𝑔′ |𝑿𝑔�𝑿𝑔
𝐺

𝑔=1
. (9) 

 
The matrix 𝑩clu, the middle part of the “sandwich matrix” (7), corresponds to the numerator of 
(2). 𝑩clu can be written as: 
 

𝑩clu = �  
𝐺

𝑔=1
�  

𝑁𝑔

𝑖=1
� 𝒙𝑖𝑔𝒙𝑗𝑔′ 𝜔𝑖𝑔,𝑗𝑔

𝑁𝑔

𝑗=1
, 

 
where 𝜔𝑖𝑔,𝑗𝑔 = E[𝑢𝑖𝑔𝑢𝑗𝑔|𝑿𝑔] is the error covariance for the 𝑖𝑔𝑡ℎ  and 𝑗𝑔𝑡ℎ  observations. 
We can gain a few insights from inspecting this equation. The term 𝑩 (and hence V[𝜷�]) will 
be bigger when: (1) regressors within cluster are correlated, (2) errors within cluster are 
correlated so 𝜔𝑖𝑔,𝑗𝑔 is non-zero, (3) 𝑁𝑔 is large, and (4) the within-cluster regressor and error 
correlations are of the same sign (the usual situation). These conditions mirror the more precise 
Moulton result for the special case of equicorrelated errors given in equation (6). Both 
examples in Section II had high within-cluster correlation of the regressor, the DiD example 
additionally had high within-cluster (serial) correlation of the error and the Moulton (1990) 
example additionally had 𝑁𝑔 large.  

Implementation requires an estimate of 𝑩clu given in (9). The cluster-robust estimate 
of the variance matrix (CRVE) of the OLS estimator is the sandwich estimate  

 
 V�clu[𝜷�] = (𝑿′𝑿)−1𝑩�clu(𝑿′𝑿)−1, (10) 
 
where  
 

 𝑩�clu = � 𝑿𝑔′ 𝒖�𝑔𝒖�𝑔′ 𝑿𝑔
𝐺

𝑔=1
, (11) 

 
and 𝒖�𝑔 = 𝒚𝑔 − 𝑿𝑔𝜷� is the vector of OLS residuals for the 𝑔𝑡ℎ cluster. Formally (10)-(11) 
provides a consistent estimate of the variance matrix if 
𝐺−1 ∑ 𝑿𝑔′𝑔 𝒖�𝑔𝒖�𝑔′ 𝑿𝑔 − 𝐺−1 ∑ E�𝑿𝑔′ 𝒖𝑔𝒖𝑔′ 𝑿𝑔�𝑔  ⟶

𝑝 𝟎  as 𝐺 → ∞ . Initial derivations of this 
estimator, by White (1984, p.134-142) for balanced clusters and by Liang and Zeger (1986) for 
unbalanced, assumed a finite number of observations per cluster. Hansen (2007a) showed that 
the CRVE can also be used if 𝑁𝑔 → ∞, the case for long panels, in addition to 𝐺 → ∞. Carter, 
Schnepel and Steigerwald (2013) consider unbalanced panels with either 𝑁𝑔  fixed or 
𝑁𝑔 → ∞. The sandwich formula for the CRVE extends to many estimators other than OLS; see 
Section VII.  

Algebraically, the estimator (10)-(11) equals (7) and (9) with E[𝒖𝑔𝒖𝑔′ ] replaced with 
𝒖�𝑔𝒖�𝑔′ . What is striking about this is that for each cluster 𝑔, the 𝑁𝑔 × 𝑁𝑔 matrix 𝒖�𝑔𝒖�𝑔′  is 
bound to be a very poor estimate of the 𝑁𝑔 × 𝑁𝑔 matrix E[𝒖𝑔𝒖𝑔′ ] – there is no averaging 
going on to enable use of a Law of Large Numbers. The “magic” of the CRVE is that despite 
this, by averaging across all 𝐺  clusters in (11), we are able to get a consistent variance 
estimate. This fact helps us to understand one of the limitations of this method in practice – the 
averaging that makes V�[𝜷�] accurate for V[𝜷�] is an average based on the number of clusters 
𝐺.  In applications with few clusters this can lead to problems that we discuss below in Section 
VI.  
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Finite-sample modifications of (11) are typically used, to reduce downwards bias in 
V�clu[𝜷�] due to finite 𝐺. Stata uses √𝑐𝒖�𝑔 in (11) rather than 𝒖�𝑔, with  

 

 𝑐 =
𝐺

𝐺 − 1
𝑁 − 1
𝑁 − 𝐾

≃
𝐺

𝐺 − 1
. (12) 

 
In general 𝑐 ≃ 𝐺/(𝐺 − 1), though see Subsection III.B for an important exception when fixed 
effects are directly estimated. Some other packages such as SAS use 𝑐 = 𝐺/(𝐺 − 1), a simpler 
correction that is also used by Stata for extensions to nonlinear models. Either choice of 𝑐 
usually lessens, but does not fully eliminate, the usual downwards bias in the CRVE. Other 
finite-cluster corrections are discussed in Section VI, but there is no clear best correction.  

D. Feasible GLS 
If errors are correlated within cluster, then in general OLS is inefficient and feasible 

GLS may be more efficient.  
Suppose we specify a model for Ω𝑔 = E[𝒖𝑔𝒖𝑔′ |𝑿𝑔] in (9), such as within-cluster 

equicorrelation. Then the GLS estimator is (𝑿′Ω−1𝑿)−1𝑿′Ω−1𝒚 , where Ω =  Diag [Ω𝑔] . 
Given a consistent estimate Ω� of Ω, the feasible GLS estimator of 𝜷 is 

 

 𝜷�FGLS = �� 𝑿𝑔′ Ω�𝑔−1𝑿𝑔
𝐺

𝑔=1
�
−1

� 𝑿𝑔′ Ω�𝑔−1𝒚𝑔
𝐺

𝑔=1
. (13) 

 
The FGLS estimator is second-moment efficient, with variance matrix  
 
 V�def[𝜷�FGLS] = (𝑿′Ω�−1𝑿)−1, (14) 
 
under the strong assumption that the error variance Ω is correctly specified.  

Remarkably, the cluster-robust method of the previous section can be extended to 
FGLS. Essentially OLS is the special case where Ω𝑔 = 𝜎2𝑰𝑁𝑔. The cluster-robust estimate of 
the asymptotic variance matrix of the FGLS estimator is 

 

 
V�clu�𝜷�FGLS�

= �𝑿′Ω�−1𝑿�
−1
�� 𝑿𝑔′ Ω�𝑔−1𝒖�𝑔𝒖�𝑔′ Ω�𝑔−1𝑿𝑔

𝐺

𝑔=1
� �𝑿′Ω�−1𝑿�

−1
, 

(15) 

 
where 𝒖�𝑔 = 𝒚𝑔 − 𝑿𝑔𝜷�FGLS. This estimator requires that 𝒖𝑔 and 𝒖ℎ are uncorrelated when 
𝑔 ≠ ℎ, and that 𝐺 → ∞, but permits E[𝒖𝑔𝒖𝑔′ |𝑿𝑔] ≠ Ω𝑔. The approach of specifying a model 
for the error variances and then doing inference that guards against misspecification of this 
model is especially popular in the biostatistics literature that calls Ω𝑔 a “working” variance 
matrix (see, for example, Liang and Zeger, 1986).  

There are many possible candidate models for Ω𝑔, depending on the type of data being 
analyzed.  

For individual-level data clustered by region, example 1 in Subsection II.B, a common 
starting point model is the random effects (RE) model. The error in model (4) is specified to 
have two components:  

 
 𝑢𝑖𝑔 = 𝛼𝑔 + 𝜀𝑖𝑔, (16) 
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where 𝛼𝑔 is a cluster-specific error or common shock that is assumed to be independent and 
identically distributed (i.i.d.) (0,𝜎𝛼2), and 𝜀𝑖𝑔 is an idiosyncratic error that is assumed to be 
i.i.d. (0,𝜎𝜀2). Then V[𝑢𝑖𝑔] = 𝜎𝛼2 + 𝜎𝜀2 and Cov[𝑢𝑖𝑔,𝑢𝑗𝑔] = 𝜎𝛼2 for 𝑖 ≠ 𝑗. It follows that the 
intraclass correlation of the error 𝜌𝑢 = Cor[𝑢𝑖𝑔, 𝑢𝑗𝑔] = 𝜎𝛼2/(𝜎𝛼2 + 𝜎𝜀2), so this model implies 
equicorrelated errors within cluster. Richer models that introduce heteroskedasticity include 
random coefficients models and hierarchical linear models.  

For panel data, example 2 in Subsection II.B, a range of time series models for 𝑢𝑖𝑡 may 
be used, including autoregressive and moving average error models. Analysis of within-cluster 
residual correlation patterns after OLS estimation can be helpful in selecting a model for Ω𝑔.  

Note that in all cases if cluster-specific fixed effects are included as regressors and 𝑁𝑔 
is small then bias-corrected FGLS should be used; see Subsection III.C.  

The efficiency gains of FGLS need not be great. As an extreme example, with 
equicorrelated errors, balanced clusters, and all regressors invariant within cluster (𝒙𝑖𝑔 = 𝒙𝑔) 
the FGLS estimator equals the OLS estimator - and so there is no efficiency gain to FGLS. 
With equicorrelated errors and general 𝑿, Scott and Holt (1982) provide an upper bound to the 
maximum proportionate efficiency loss of OLS, compared to the variance of the FGLS 
estimator, of 1/ �1 + 4(1−𝜌𝑢)[1+(𝑁𝑚𝑎𝑥  −1)𝜌𝑢

(𝑁𝑚𝑎𝑥  ×𝜌𝑢)2
�, 𝑁max = max {𝑁1, . . . ,𝑁𝐺}. This upper bound 

is increasing in the error correlation 𝜌𝑢 and the maximum cluster size 𝑁max. For low 𝜌𝑢 the 
maximal efficiency gain can be low. For example, Scott and Holt (1982) note that for 𝜌𝑢 = .05 
and 𝑁max = 20 there is at most a 12% efficiency loss of OLS compared to FGLS. With 
𝜌𝑢 = 0.2 and 𝑁max = 100 the efficiency loss could be as much as 86%, though this depends 
on the nature of 𝑿.  

There is no clear guide to when FGLS may lead to considerable improvement in 
efficiency, and the efficiency gains can be modest. However, especially in models without 
cluster-specific fixed effects, implementation of FGLS and use of (15) to guard against 
misspecification of Ω𝑔 is straightforward. And even modest efficiency gains can be beneficial. 
It is remarkable that current econometric practice with clustered errors ignores the potential 
efficiency gains of FGLS.  

E. Implementation for OLS and FGLS 
For regression software that provides a cluster-robust option, implementation of the 

CRVE for OLS simply requires defining for each observation a cluster identifier variable that 
takes one of 𝐺 distinct values according to the observation’s cluster, and then passing this 
cluster identifier to the estimation command’s cluster-robust option. For example, if the cluster 
identifier is id_clu, then Stata OLS command regress y x becomes regress y x, 
vce(cluster id_clu).  

Wald hypothesis tests and confidence intervals are then implemented in the usual way. 
In some cases, however, joint tests of several hypotheses and of overall statistical significance 
may not be possible. The CRVE V�clu[𝜷�] is guaranteed to be positive semi-definite, so the 
estimated variance of the individual components of 𝜷�  are necessarily nonnegative. But 
V�clu[𝜷�] is not necessarily positive definite, so it is possible that the variance matrix of linear 
combinations of the components of 𝜷� is singular. The rank of V�clu[𝜷�] equals the rank of 𝑩�  
defined in (11). Since 𝑩� = 𝑪′𝑪, where 𝑪′ = [𝑿1′ 𝒖�1⋯𝑿𝐺′ 𝒖�𝐺] is a 𝐾 × 𝐺 matrix, it follows 
that the rank of 𝑩� , and hence that of V�clu[𝜷�], is at most the rank of 𝑪. Since 𝑿1′ 𝒖�1 + ⋯+
𝑿𝐺′ 𝒖�𝐺 = 𝟎, the rank of 𝑪 is at most the minimum of 𝐾 and 𝐺 − 1. Effectively, the rank of 
V�clu[𝜷�] equals min (𝐾,𝐺 − 1), though it can be less than this in some examples such as 
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perfect collinearity of regressors and cluster-specific dummy regressors (see Subsection III.B 
for the latter).  

A common setting is to have a richly specified model with thousands of observations in 
far fewer clusters, leading to more regressors than clusters. Then V�clu[𝜷�] is rank-deficient, so 
it will not be possible to perform an overall F test of the joint statistical significance of all 
regressors. And in a log-wage regression with occupation dummies and clustering on state, we 
cannot test the joint statistical significance of the occupation dummies if there are more 
occupations than states. But it is still okay to perform statistical inference on individual 
regression coefficients, and to do joint tests on a limited number of restrictions (potentially as 
many as min (𝐾,𝐺 − 1)).  

Regression software usually also includes a panel data component. Panel commands 
may enable not only OLS with cluster-robust standard errors, but also FGLS for some models 
of within-cluster error correlation with default (and possibly cluster-robust) standard errors. It 
is important to note that those panel data commands that do not explicitly use time series 
methods, an example is FGLS with equicorrelation of errors within-cluster, can be applied 
more generally to other forms of clustered data, such as individual-level data with clustering on 
geographic region.  

For example, in Stata first give the command xtset id_clu to let Stata know that 
the cluster-identifier is variable id_clu. Then the Stata command xtreg y x, pa 
corr(ind) vce(robust) yields OLS estimates with cluster-robust standard errors. Note 
that for Stata xt commands, option vce(robust) is generally interpreted as meaning 
cluster-robust; this is always the case from version 12.1 on. The xt commands use standard 
normal critical values whereas command regress uses Student’s 𝑇(𝐺 − 1) critical values; 
see Sections VI and VIIA for further discussion.  

For FGLS estimation the commands vary with the model for Ω𝑔. For equicorrelated 
errors, a starting point for example 1 in Subsection II.B, the FGLS estimator can be obtained 
using command xtreg y x, pa corr(exch) or command xtreg y x, re; slightly 
different estimates are obtained due to slightly different estimates of the equicorrelation. For 
FGLS estimation of hierarchical models that are richer than a random effects model, use Stata 
command mixed (version 13) or xtmixed (earlier versions). For FGLS with panel data and 
time variable time, first give the command xtset id_clu time to let Stata know both the 
cluster-identifier and time variable. A starting point for example 2 in Subsection II.B is an 
autoregressive error of order one, estimated using command xtreg y x, pa corr(ar 1). 
Stata permits a wide range of possible models for serially correlated errors.  

In all of these FGLS examples the reported standard errors are the default ones that 
assume correct specification of Ω𝑔 . Better practice is to add option vce(robust) for 
xtreg commands, or option vce(cluster id_clu) for mixed commands, as this yields 
standard errors that are based on the cluster-robust variance defined in (15).  

F. Cluster-Bootstrap Variance Matrix Estimate 
Not all econometrics packages compute cluster-robust variance estimates, and even 

those that do may not do so for all estimators. In that case one can use a pairs cluster bootstrap 
that, like the CRVE, gives a consistent estimate of V[𝜷�] when errors are clustered.  

To implement this bootstrap, do the following steps 𝐵 times: (1) form 𝐺  clusters 
{(𝒚1∗ ,𝑿1∗), . . . , (𝒚𝐺∗ ,𝑿𝐺∗ )} by resampling with replacement 𝐺 times from the original sample of 
clusters, and (2) compute the estimate of 𝜷, denoted 𝜷�𝑏 in the 𝑏𝑡ℎ bootstrap sample. Then, 
given the 𝐵 estimates 𝜷�1, . . . ,𝜷�𝐵, compute the variance of these 
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V�clu;boot[𝜷�] =
1

𝐵 − 1
� (𝜷�𝑏 − 𝜷�)(𝜷�𝑏 − 𝜷�)′

𝐵

𝑏=1
, 

 
where 𝜷� = 𝐵−1 ∑ 𝜷�𝑏𝐵

𝑏=1  and 𝐵 = 400 should be more than adequate in most settings. It is 
important that the resampling be done over entire clusters, rather than over individual 
observations. Each bootstrap resample will have exactly 𝐺 clusters, with some of the original 
clusters not appearing at all while others of the original clusters may be repeated in the 
resample two or more times. The terms “pairs” is used as (𝒚𝑔,𝑿𝑔) are resampled as a pair. 
The term “nonparametric” is also used for this bootstrap. Some alternative bootstraps hold 𝑿𝑔 
fixed while resampling. For finite clusters, if V�clu[𝜷�]  uses √𝑐𝑢�𝑔  in (11) then for 
comparability V�clu;boot[𝜷�] should be multiplied by the constant 𝑐 defined in (12). The pairs 
cluster bootstrap leads to a cluster-robust variance matrix for OLS with rank 𝐾 even if 𝐾 > 𝐺.  

An alternative resampling method that can be used is the leave-one-cluster-out 
jackknife. Then, letting 𝜷�𝑔 denote the estimator of 𝜷 when the 𝑔𝑡ℎ cluster is deleted,  

 

V�clu;jack[𝜷�] =
𝐺 − 1
𝐺

� (𝜷�𝑔 − 𝜷�)(𝜷�𝑔 − 𝜷�)′
𝐺

𝑔=1
, 

 
where 𝜷� = 𝐺−1 ∑ 𝜷�𝑔𝐺

𝑔=1 . This older method can be viewed as an approximation to the 
bootstrap that does not work as well for nonlinear estimators. It is used less often than the 
bootstrap, and has the same rank as the CRVE.  

Unlike a percentile-t cluster bootstrap, presented later, the pairs cluster bootstrap and 
cluster jackknife variance matrix estimates are no better asymptotically than the CRVE, so it is 
best and quickest to use the CRVE if it is available. But the CRVE is not always available, 
especially for estimators more complicated than OLS. In that case one can instead use the pairs 
cluster bootstrap, though see the end of Subsection VI.C for potential pitfalls if there are few 
clusters, or even the cluster jackknife.  

In Stata the pairs cluster bootstrap for OLS without fixed effects can be implemented in 
several equivalent ways including: regress y x, vce(boot, cluster(id_clu) 
reps(400) seed(10101)); xtreg y x, pa corr(ind) vce(boot, reps(400) 
seed(10101)); and bootstrap, cluster(id_clu) reps(400) seed(10101) 
: regress y x. The last variant can be used for estimation commands and user-written 
programs that do not have a vce(boot) option. We recommend 400 bootstrap iterations for 
published results and for replicability one should always set the seed.  

For the jackknife the commands are instead, respectively, regress y x, 
vce(jack, cluster(id_clu)); xtreg y x, pa corr(ind) vce(jack); and 
jackknife, cluster(id_clu): regress y x. For Stata xt commands, options 
vce(boot) and vce(jack) are generally interpreted as meaning cluster bootstrap and 
cluster jackknife; always so from Stata 12.1 on.  

III. Cluster-Specific Fixed Effects 
The cluster-specific fixed effects (FE) model includes a separate intercept for each 

cluster, so  

 𝑦𝑖𝑔 = 𝒙𝑖𝑔′ 𝜷 + 𝛼𝑔 + 𝑢𝑖𝑔 = 𝒙𝑖𝑔′ 𝜷 + � 𝛼𝑔𝑑ℎ𝑖𝑔
𝐺

ℎ=1
+ 𝑢𝑖𝑔, (17) 
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where 𝑑ℎ𝑖𝑔, the ℎ𝑡ℎ of 𝐺 dummy variables, equals one if the 𝑖𝑔𝑡ℎ observation is in cluster 
ℎ and equals zero otherwise.  

There are several different ways to obtain the same cluster-specific fixed effects 
estimator. The two most commonly-used are the following. The least squares dummy variable 
(LSDV) estimator directly estimates the second line of (17), with OLS regression of 𝑦𝑖𝑔 on 
𝒙𝑖𝑔  and the 𝐺  dummy variables 𝑑1𝑖𝑔, . . . ,𝑑𝐺𝑖𝑔 , in which case the dummy variable 
coefficients 𝛼�𝑔 = �̄�𝑔 − �̄�𝑔′ 𝜷�  where �̄�𝑔 = 𝑁𝑔−1 ∑ 𝑦𝑖𝑔𝐺

𝑖=1  and �̄�𝑔 = 𝑁𝑔−1 ∑ 𝒙𝑖𝑔𝐺
𝑖=1 . The within 

estimator, also called the fixed effects estimator, estimates 𝜷 just by OLS regression in the 
within or mean-differenced model 

 
 (𝑦𝑖𝑔 − �̄�𝑔) = (𝒙𝑖𝑔 − �̄�𝑔)′𝜷 + (𝑢𝑖𝑔 − �̄�𝑔). (18) 
 

The main reason that empirical economists use the cluster-specific FE estimator is that 
it controls for a limited form of endogeneity of regressors. Suppose in (17) that we view 
𝛼𝑔 + 𝑢𝑖𝑔 as the error, and the regressors 𝒙𝑖𝑔 are correlated with this error, but only with the 
cluster-invariant component, i.e., Cov[𝒙𝑖𝑔,𝛼𝑔] ≠ 𝟎 while Cov[𝒙𝑖𝑔,𝑢𝑖𝑔] = 𝟎. Then OLS and 
FGLS regression of 𝑦𝑖𝑔  on 𝒙𝑖𝑔 , as in Section II, leads to inconsistent estimation of 𝜷 . 
Mean-differencing (17) leads to the within model (18) that has eliminated the problematic 
cluster-invariant error component 𝛼𝑔. The resulting FE estimator is consistent for 𝜷 if either 
𝐺 ⟶ ∞ or 𝑁𝑔 ⟶ ∞.  

The cluster-robust variance matrix formula given in Section II carries over immediately 
to OLS estimation in the FE model, again assuming 𝐺 ⟶ ∞.  

In the remainder of this section we consider some practicalities. First, including fixed 
effects generally does not control for all the within-cluster correlation of the error and one 
should still use the CRVE. Second, when cluster sizes are small and degrees-of-freedom 
corrections are used the CRVE should be computed by within rather than LSDV estimation. 
Third, FGLS estimators need to be bias-corrected when cluster sizes are small. Fourth, tests of 
fixed versus random effects models should use a modified version of the Hausman test.  

A. Do Fixed Effects Fully Control for Within-Cluster Correlation? 
While cluster-specific effects will control for part of the within-cluster correlation of 

the error, in general they will not completely control for within-cluster error correlation (not to 
mention heteroskedasticity). So the CRVE should still be used. There are several ways to make 
this important point.  

Suppose we have data on students in classrooms in schools. A natural model, a special 
case of a hierarchical model, is to suppose that there is both an unobserved school effect and, 
on top of that, an unobserved classroom effect. Letting 𝑖 denote individual, 𝑠 school, and 𝑐 
classroom, we have 𝑦𝑖𝑠𝑐 = 𝒙𝑖𝑠𝑐′ 𝜷 + 𝛼𝑠 + 𝛿𝑐 + 𝜀𝑖𝑠𝑐 . A regression with school-level fixed 
effects (or random effects) will control for within-school correlation, but not the additional 
within-classroom correlation.  

Suppose we have a short panel (𝑇 fixed, 𝑁 → ∞) of uncorrelated individuals and 
estimate 𝑦𝑖𝑡 = 𝒙𝑖𝑡′ 𝜷 + 𝛼𝑖 + 𝑢𝑖𝑡 . Then the error 𝑢𝑖𝑡  may be correlated over time (i.e., 
within-cluster) due to omitted factors that evolve progressively over time. Inoue and Solon 
(2006) provide a test for this serial correlation. Cameron and Trivedi (2005, p.710) present an 
FE individual-level panel data log-earnings regressed on log-hours example with cluster-robust 
standard errors four times the default. Serial correlation in the error may be due to omitting 
lagged 𝑦 as a regressor. When 𝑦𝑖,𝑡−1 is included as an additional regressor in the FE model, 
the Arellano-Bond estimator is used and even with 𝑦𝑖,𝑡−1  included the Arellano-Bond 
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methodology requires that we first test whether the remaining error 𝑢𝑖𝑡 is serially correlated.  
Finally, suppose we have a single cross-section (or a single time series). This can be 

viewed as regression on a single cluster. Then in the model 𝑦𝑖 = 𝛼 + 𝒙𝑖′𝜷 + 𝑢𝑖 (or 𝑦𝑡 = 𝛼 +
𝒙𝑡′𝜷 + 𝑢𝑡), the intercept is the cluster-specific fixed effect. There are many reasons for why the 
error 𝑢𝑖 (or 𝑢𝑡) may be correlated in this regression.  

B. Cluster-Robust Variance Matrix with Fixed Effects 
Since inclusion of cluster-specific fixed effects may not fully control for cluster 

correlation (and/or heteroskedasticity), default standard errors that assume 𝑢𝑖𝑔 to be i.i.d. may 
be invalid. So one should use cluster-robust standard errors.  

Arellano (1987) showed that V�clu[𝜷�] defined in (10)-(11) remains valid for the within 
estimator that controls for inclusion of 𝐺 cluster-specific fixed effects, provided 𝐺 → ∞ and 
𝑁𝑔 is small. If instead one obtains the LSDV estimator, the CRVE formula gives the same 
CRVE for 𝜷�  as that for the within estimator, with the important proviso that the same 
degrees-of-freedom adjustment must be used – see below. The fixed effects estimates 𝛼�𝑔 
obtained for the LSDV estimator are essentially based only on 𝑁𝑔 observations, so V�[𝛼�𝑔] is 
inconsistent for V[𝛼�𝑔], just as 𝛼�𝑔 is inconsistent for 𝛼𝑔.  

Hansen (2007a, p.600) shows that this CRVE can also be used if additionally 𝑁𝑔 → ∞, 
for both the case where within-cluster correlation is always present (e.g. for many individuals 
in each village) and for the case where within-cluster correlation eventually disappears (e.g. for 
panel data where time series correlation disappears for observations far apart in time). The rates 
of convergence are √𝐺  in the first case and �𝐺𝑁𝑔  in the second case, but the same 
asymptotic variance matrix is obtained in either case. Kézdi (2004) analyzed the CRVE in FE 
models for a range of values of 𝐺 and 𝑁𝑔.  

It is important to note that while LSDV and within estimation lead to identical estimates 
of 𝜷, they can yield different standard errors due to different finite sample degrees-of-freedom 
correction.  

It is well known that if default standard errors are used, i.e. it is assumed that 𝑢𝑖𝑔 in 
(17) is i.i.d., then one can safely use standard errors after LSDV estimation as this correctly 
views the number of parameters as 𝐺 + 𝐾 rather than 𝐾. If instead the within estimator is 
used, however, manual OLS estimation of (18) will mistakenly view the number of parameters 
to equal 𝐾 rather than 𝐺 + 𝐾. (Built-in panel estimation commands for the within estimator, 
i.e. a fixed effects command, should remain okay to use, since they should be programmed to 
use 𝐺 + 𝐾 in calculating the standard errors.)  

It is not well known that if cluster-robust standard errors are used, and cluster sizes are 
small, then inference should be based on the within estimator standard errors. We thank 
Arindrajit Dube and Jason Lindo for bringing this issue to our attention. Within and LSDV 
estimation lead to the same cluster-robust standard errors if we apply formula (11) to the 
respective regressions, or if we multiply this estimate by 𝑐 = 𝐺/(𝐺 − 1). Differences arise, 
however, if we multiply by the small-sample correction 𝑐 given in (12). Within estimation sets 
𝑐 = 𝐺

𝐺−1
× 𝑁−1

𝑁−(𝐾−1)
 since there are only (𝐾 − 1) regressors – the within model is estimated 

without an intercept. LSDV estimation uses 𝑐 = 𝐺
𝐺−1

𝑁−1
𝑁−𝐺−(𝐾−1)

 since the 𝐺 cluster dummies 
are also included as regressors. For balanced clusters with 𝑁𝑔 = 𝑁∗ and 𝐺 large relative to 𝐾, 
𝑐 ≃ 1 for within estimation and 𝑐 ≃ 𝑁∗/(𝑁∗ − 1) for LSDV estimation. Suppose there are 
only two observations per cluster, due to only two individuals per household or two time 
periods in a panel setting, so 𝑁𝑔 = 𝑁∗ = 2. Then 𝑐 ≃ 2/(2 − 1) = 2 for LSDV estimation, 
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leading to CRVE that is twice that from within estimation. Within estimation leads to the 
correct finite-sample correction.  

In Stata the within command xtreg y x, fe vce(robust) gives the desired 
CRVE. The alternative LSDV commands regress y x i.id_clu, vce(cluster 
id_clu) and, equivalently, regress y x, absorb(id_clu) vce(cluster 
id_clu) use the wrong degrees-of-freedom correction. If a CRVE is needed, then use 
xtreg. If there is reason to instead use regress i.id then the cluster-robust standard 
errors should be multiplied by the square root of [𝑁 − (𝐾 − 1)]/[𝑁 − 𝐺 − (𝐾 − 1)] , 
especially if 𝑁𝑔 is large and 𝐺 is small.  

The inclusion of cluster-specific dummy variables increases the dimension of the 
CRVE, but does not lead to a corresponding increase in its rank. To see this, stack the dummy 
variable 𝑑ℎ𝑖𝑔  for cluster 𝑔  into the 𝑁𝑔 × 1 vector 𝒅𝒉𝑔 . Then 𝒅𝒉𝑔′ 𝒖�𝑔 = 𝟎, by the OLS 
normal equations, leading to the rank of V�clu[𝜷�] falling by one for each cluster-specific effect. 
If there are 𝑘 regressors varying within cluster and 𝐺 − 1 dummies then, even though there 
are 𝐾 + 𝐺 − 1 parameters 𝜷, the rank of V�clu[𝜷�] is only the minimum of 𝐾 and 𝐺 − 1. And 
a test that 𝛼1, . . . ,𝛼𝐺 are jointly statistically significant is a test of 𝐺 − 1 restrictions (since the 
intercept or one of the fixed effects needs to be dropped).  So even if the cluster-specific fixed 
effects are consistently estimated (i.e., if 𝑁𝑔 → ∞), it is not possible to perform this test if 
𝐾 < 𝐺 − 1, which is often the case.  

If cluster-specific effects are present then the pairs cluster bootstrap must be adapted to 
account for the following complication. Suppose cluster 3 appears twice in a bootstrap 
resample. Then if clusters in the bootstrap resample are identified from the original 
cluster-identifier, the two occurrences of cluster 3 will be incorrectly treated as one large 
cluster rather than two distinct clusters.  

In Stata, the bootstrap option idcluster ensures that distinct identifiers are used in 
each bootstrap resample. Examples are regress y x i.id_clu, vce(boot, 
cluster(id_clu) idcluster(newid) reps(400) seed(10101)) and, more 
simply, xtreg y x, fe vce(boot, reps(400) seed(10101)) , as in this latter case 
Stata automatically accounts for this complication.  

C. Feasible GLS with Fixed Effects 
When cluster-specific fixed effects are present, more efficient FGLS estimation can 

become more complicated. In particular, if asymptotic theory relies on 𝐺 → ∞ with 𝑁𝑔 fixed, 
the 𝛼𝑔 cannot be consistently estimated. The within estimator of 𝜷 is nonetheless consistent, 
as 𝛼𝑔  disappears in the mean-differenced model. But the resulting residuals 𝑢�𝑖𝑔  are 
contaminated, since they depend on both 𝜷� and 𝛼�𝑔, and these residuals will be used to form a 
FGLS estimator. This leads to bias in the FGLS estimator, so one needs to use bias-corrected 
FGLS unless 𝑁𝑔 → ∞. The correction method varies with the model for Ω𝑔 = V[𝒖𝑔], and 
currently there are no Stata user-written commands to implement these methods.  

For panel data a commonly-used model specifies an AR(p) model for the errors 𝑢𝑖𝑔 in 
(17). If fixed effects are present, then there is a bias (of order 𝑁𝑔−1) in estimation of the AR(p) 
coefficients. Hansen (2007b) obtains bias-corrected estimates of the AR(p) coefficients and 
uses these in FGLS estimation. Hansen (2007b) in simulations shows considerable efficiency 
gains in bias-corrected FGLS compared to OLS.  

Brewer, Crossley, and Joyce (2013) consider a DiD model with individual-level U.S. 
panel data with 𝑁 = 750,127, 𝑇 = 30, and a placebo state-level law so clustering is on state 
with 𝐺 = 50. They find that bias-corrected FGLS for AR(2) errors, using the Hansen (2007b) 
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correction, leads to higher power than FE estimation. In their example ignoring the bias 
correction does not change results much, perhaps because 𝑇 = 30 is reasonably large.  

For balanced clusters with Ω𝑔 the same for all 𝑔, say Ω𝑔 = Ω∗, and for 𝑁𝑔 small, 
then the FGLS estimator in (13) can be used without need to specify a model for Ω∗. Instead 
we can let Ω�∗  have 𝑖𝑗𝑡ℎ  entry 𝐺−1 ∑ 𝑢�𝑖𝑔𝐺

𝑔=1 𝑢�𝑗𝑔, where 𝑢�𝑖𝑔  are the residuals from initial 
OLS estimation. These assumptions may be reasonable for a balanced panel. Two 
complications can arise. First, even without fixed effects there may be many off-diagonal 
elements to estimate and this number can be large relative to the number of observations. 
Second, the fixed effects lead to bias in estimating the off-diagonal covariances. Hausman and 
Kuersteiner (2008) present fixes for both complications.  

D. Testing the Need for Fixed Effects 
FE estimation is accompanied by a loss of precision in estimation, as only 

within-cluster variation is used (recall we regress (𝑦𝑖𝑔 − �̄�𝑔) on (𝒙𝑖𝑔 − �̄�𝑔)). Furthermore, 
the coefficient of a cluster-invariant regressor is not identified, since then 𝑥𝑖𝑔 − �̄�𝑔 = 0. Thus 
it is standard to test whether it is sufficient to estimate by OLS or FGLS, without 
cluster-specific fixed effects.  

The usual test is a Hausman test based on the difference between the FE estimator, 
𝜷�FE , and the RE estimator, 𝜷�RE . Let 𝜷1  denote a subcomponent of 𝜷, possibly just the 
coefficient of a single regressor of key interest; at most 𝜷1 contains the coefficients of all 
regressors that are not invariant within cluster or, in the case of panel data, that are not 
aggregate time effects that take the same value for each individual. The chi-squared distributed 
test statistic is  

 
THaus = (𝜷�1;FE − 𝜷�1;RE)′V�−1(𝜷�1;FE − 𝜷�1;RE), 

 
where V� is a consistent estimate of V[𝜷�1;FE − 𝜷�1;RE].  

Many studies use the standard form of the Hausman test. This obtains V� under the 
strong assumption that 𝜷�RE  is fully efficient under the null hypothesis. This requires the 
unreasonably strong assumptions that 𝛼𝑖 and 𝜀𝑖𝑔 in (16) are i.i.d., requiring that neither 𝛼𝑖 
nor 𝜀𝑖𝑔 is heteroskedastic and that 𝜀𝑖𝑔 has no within-cluster correlation. As already noted, 
these assumptions are likely to fail and one should not use default standard errors. Instead a 
CRVE should be used. For similar reasons the standard form of the Hausman test should not be 
used.  

Wooldridge (2010, p.332) instead proposes implementing a cluster-robust version of 
the Hausman test by the following OLS regression  

 
𝑦𝑖𝑔 = 𝒙𝑖𝑔′ 𝜷 + �̄�𝑔

′ 𝜸 + 𝑢𝑖𝑔, 
 
where 𝒘𝑔  denotes the subcomponent of 𝒙𝑖𝑔  that varies within cluster and �̄�𝑔 =
𝑁𝑔−1 ∑ 𝒘𝑖𝑔

𝐺
𝑖=1 . If 𝐻0:𝜸 = 𝟎 is rejected using a Wald test based on a cluster-robust estimate of 

the variance matrix, then the fixed effects model is necessary. The Stata user-written command 
xtoverid, due to Schaffer and Stillman (2010), implements this test.  

An alternative is to use the pairs cluster bootstrap to obtain V� , in each resample 
obtaining 𝜷�1;FE  and 𝜷�1;RE , leading to 𝐵  resample estimates of (𝜷�1;FE − 𝜷�1;RE). We are 
unaware of studies comparing these two cluster-robust versions of the Hausman test.  
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IV. What to Cluster Over? 
It is not always clear what to cluster over - that is, how to define the clusters - and there 

may even be more than one way to cluster.  
Before providing some guidance, we note that it is possible for cluster-robust errors to 

actually be smaller than default standard errors. First, in some rare cases errors may be 
negatively correlated, most likely when 𝑁𝑔 = 2, in which case (6) predicts a reduction in the 
standard error. Second, cluster-robust is also heteroskedastic-robust and White 
heteroskedastic-robust standard errors in practice are sometimes larger and sometimes smaller 
than the default. Third, if clustering has a modest effect, so cluster-robust and default standard 
errors are similar in expectation, then cluster-robust may be smaller due to noise. In cases 
where the cluster-robust standard errors are smaller they are usually not much smaller than the 
default, whereas in other applications they can be much, much larger.  

A. Factors Determining What to Cluster Over 
There are two guiding principles that determine what to cluster over.  
First, given V[𝜷�] defined in (7) and (9) whenever there is reason to believe that both 

the regressors and the errors might be correlated within cluster, we should think about 
clustering defined in a broad enough way to account for that clustering. Going the other way, if 
we think that either the regressors or the errors are likely to be uncorrelated within a potential 
group, then there is no need to cluster within that group.  

Second, V�clu[𝜷�] is an average of 𝐺 terms that gets closer to V[𝜷�] only as 𝐺 gets 
large. If we define very large clusters, so that there are very few clusters to average over in 
equation (11), then the resulting V�clu[𝜷�]  can be a very poor estimate of V [𝜷�] . This 
complication, and discussion of how few is “few”, is the subject of Section VI.  
These two principles mirror the bias-variance trade-off that is common in many estimation 
problems – larger and fewer clusters have less bias but more variability. There is no general 
solution to this trade-off, and there is no formal test of the level at which to cluster. The 
consensus is to be conservative and avoid bias and use bigger and more aggregate clusters 
when possible, up to and including the point at which there is concern about having too few 
clusters.  

For example, suppose your dataset included individuals within counties within states, 
and you were considering whether to cluster at the county level or the state level. We have been 
inclined to recommend clustering at the state level. If there was within-state cross-county 
correlation of the regressors and errors, then ignoring this correlation (for example, by 
clustering at the county level) would lead to incorrect inference. In practice researchers often 
cluster at progressively higher (i.e., broader) levels and stop clustering when there is relatively 
little change in the standard errors. This seems to be a reasonable approach.  

There are settings where one may not need to use cluster-robust standard errors. We 
outline several, though note that in all these cases it is always possible to still obtain 
cluster-robust standard errors and contrast them to default standard errors. If there is an 
appreciable difference, then use cluster-robust standard errors.  

If a key regressor is randomly assigned within clusters, or is as good as randomly 
assigned, then the within-cluster correlation of the regressor is likely to be zero. Thus there is 
no need to cluster standard errors, even if the model’s errors are clustered. In this setting, if 
there are additionally control variables of interest, and if these are not randomly assigned 
within cluster, then we may wish to cluster our standard errors for the sake of correct inference 
on the control variables.  

If the model includes cluster-specific fixed effects, and we believe that within-cluster 
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correlation of errors is solely driven by a common shock process, then we may not be worried 
about clustering. The fixed effects will absorb away the common shock, and the remaining 
errors will have zero within-cluster correlation. More generally, control variables may absorb 
systematic within-cluster correlation. For example, in a state-year panel setting, control 
variables may capture the state-specific business cycle.  

However, as already noted in Subsection III.A, the within-cluster correlation is usually 
not fully eliminated. And even if it is eliminated, the errors may still be heteroskedastic. Stock 
and Watson (2008) show that applying the usual White (1980) heteroskedastic-consistent 
variance matrix estimate to the FE estimator leads, surprisingly, to inconsistent estimation of 
V[𝜷�] if 𝑁𝑔 is small (though it is correct if 𝑁𝑔 = 2). They derive a bias-corrected formula for 
heteroskedastic-robust standard errors. Alternatively, and more simply, the CRVE is consistent 
for V[𝜷�], even if the errors are only heteroskedastic, though this estimator of V[𝜷�] is more 
variable.  

Finally, as already noted in Subsection II.D we can always build a parametric model of 
the correlation structure of the errors and estimate by FGLS. If we believe that this parametric 
model captures the salient features of the error correlations, then default FGLS standard errors 
can be used.  

B. Clustering Due to Survey Design 
Clustering routinely arises due to the sampling methods used in complex surveys. 

Rather than randomly draw individuals from the entire population, costs are reduced by 
sampling only a randomly-selected subset of primary sampling units (such as a geographic 
area), followed by random selection, or stratified selection, of people within the chosen 
primary sampling units.  

The survey methods literature uses methods to control for clustering that predate the 
cluster-robust approach of this paper. The loss of estimator precision due to clustered sampling 
is called the design effect: “The design effect or Deff is the ratio of the actual variance of a 
sample to the variance of a simple random sample of the same number of elements” (Kish 
(1965), p.258)). Kish and Frankel (1974) give the variance inflation formula (6) in the 
non-regression case of estimation of the mean. Pfeffermann and Nathan (1981) consider the 
more general regression case. The CRVE is called the linearization formula, and the common 
use of 𝐺 − 1 as the degrees of freedom used in hypothesis testing comes from the survey 
methods literature; see Shah, Holt and Folsom (1977) which predates the econometrics 
literature.  

Applied economists routinely use data from complex surveys, controlling for clustering 
by using a cluster-robust variance matrix estimate. At the minimum one should cluster at the 
level of the primary sampling unit, though often there is reason to cluster at a broader level, 
such as clustering on state if regressors and errors are correlated within state.  
The survey methods literature additionally controls for two other features of survey data – 
weighting and stratification. These methods are well-established and are incorporated in 
specialized software, as well as in some broad-based packages such as Stata. Bhattacharya 
(2005) provides a comprehensive treatment in a GMM framework.  

If sample weights are provided then it is common to perform weighted least squares. 
Then the CRVE for 𝜷�WLS = (𝑿′𝑾𝑿)−1𝑿′𝑾𝒚 is that given in (15) with Ω�𝑔−1 replaced by 
𝑾𝑔. The need to weight can be ignored if stratification is on only the exogenous regressors and 
we assume correct specification of the model, so that in our sample E[𝒚|𝑿] = 𝑿𝜷. In that 
special case both weighted and unweighted estimators are consistent, and weighted OLS may 
actually be less efficient if, for example, model errors are i.i.d.; see, for example, Solon, 
Haider, and Wooldridge (2013). Another situation in which to use weighted least squares, 
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unrelated to complex surveys, is when data for the 𝑖𝑔𝑡ℎ observation is obtained by in turn 
averaging 𝑁𝑖𝑔 observations and 𝑁𝑖𝑔 varies.  

Stratification of the sample can enable more precise statistical inference. These gains 
can be beneficial in the nonregression case, such as estimating the monthly national 
unemployment rate. The gains can become much smaller once regressors are included, since 
these can partially control for stratification; see, for example, the application in Bhattacharya 
(2005). Econometrics applications therefore usually do not adjust standard errors for 
stratification, leading to conservative inference due to some relatively small over-estimation of 
the standard errors.  

V. Multi-way Clustering 
The discussion to date has presumed that if there is more than one potential way to 

cluster, these ways are nested in each other, such as households within states. But when clusters 
are non-nested, traditional cluster-robust inference can only deal with one of the dimensions.  

In some applications it is possible to include sufficient regressors to eliminate concern 
about error correlation in all but one dimension, and then do cluster-robust inference for that 
remaining dimension. A leading example is that in a state-year panel there may be clustering 
both within years and within states. If the within-year clustering is due to shocks that are the 
same across all observations in a given year, then including year fixed effects as regressors will 
absorb within-year clustering, and inference then need only control for clustering on state.  

When this approach is not applicable, the one-way cluster robust variance can be 
extended to multi-way clustering. Before discussing this topic, we highlight one error that we 
find some practitioners make, which is to cluster at the intersection of the two groupings. In the 
preceding example, some might be tempted to cluster at the state-year level. A Stata example is 
to use the command regress y x, vce(cluster id_styr) where id_styr is a 
state-year identifier. This will be very inadequate, since it imposes the restriction that 
observations are independent if they are in the same state but in different years. Indeed if the 
data is aggregated at the state-year level, there is only one observation at the state-year level, so 
this is identical to using heteroskedastic-robust standard errors, i.e. not clustering at all. This 
point was highlighted by Bertrand, Duflo, and Mullainathan (2004) who advocated clustering 
on the state.  

A. Multi-way Cluster-Robust Variance Matrix Estimate 

The cluster-robust estimate of V [𝜷�]  defined in (10)-(11) can be generalized to 
clustering in multiple dimensions. In a change of notation, suppress the subscript for cluster 
and more simply denote the model for an individual observation as 

 
 𝑦𝑖 = 𝒙𝑖′𝜷 + 𝑢𝑖 . (19) 
 
Regular one-way clustering is based on the assumption that E [𝑢𝑖𝑢𝑗|𝒙𝑖,𝒙𝑗] = 0 , unless 
observations 𝑖 and 𝑗 are in the same cluster. Then (11) sets 𝑩� = ∑ ∑ 𝒙𝑖𝑁

𝑗=1
𝑁
𝑖=1 𝒙𝑗′𝑢�𝑖𝑢�𝑗𝟏[𝑖, 𝑗 in 

same cluster], where 𝑢�𝑖 = 𝑦𝑖 − 𝒙𝑖′𝜷� . In multi-way clustering, the key assumption is that 
E [𝑢𝑖𝑢𝑗|𝒙𝑖,𝒙𝑗] = 0 , unless observations 𝑖  and 𝑗  share any cluster dimension. Then the 
multi-way cluster robust estimate of V[𝜷�] replaces (12) with  
 

 𝑩� = � � 𝒙𝑖
𝑁

𝑗=1

𝑁

𝑖=1
𝒙𝑗′𝑢�𝑖𝑢�𝑗𝟏[𝑖, 𝑗 share 𝐚𝐧𝐲 cluster]. (20) 
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This method relies on asymptotics that are in the number of clusters of the dimension with the 
fewest number of clusters. This method is thus most appropriate when each dimension has 
many clusters.  

Theory for two-way cluster robust estimates of the variance matrix is presented in 
Cameron, Gelbach, and Miller (2006, 2011), Miglioretti and Heagerty (2006), and Thompson 
(2006, 2011). See also empirical panel data applications by Acemoglu and Pischke (2003), 
who clustered at individual level and at region×time level, and by Petersen (2009), who 
clustered at firm level and at year level. Cameron, Gelbach and Miller (2011) present an 
extension to multi-way clustering. Like one-way cluster-robust, the method can be applied to 
estimators other than OLS.  

For two-way clustering this robust variance estimator is easy to implement given 
software that computes the usual one-way cluster-robust estimate. First obtain three different 
cluster-robust “variance” matrices for the estimator by one-way clustering in, respectively, the 
first dimension, the second dimension, and by the intersection of the first and second 
dimensions. Then add the first two variance matrices and, to account for double-counting, 
subtract the third. Thus 

 
 V�2way[𝜷�] = V�1[𝜷�] + V�2[𝜷�] − V�1∩2[𝜷�], (21) 
 
where the three component variance estimates are computed using (10)-(11) for the three 
different ways of clustering.  

We spell this out in a step-by-step fashion.  
1. Identify your two ways of clustering. Make sure you have a variable that 
identifies each way of clustering. Also create a variable that identifies unique “group 1 
by group 2” combinations. For example, suppose you have individual-level data 
spanning many U.S. states and many years, and you want to cluster on state and on 
year. You will need a variable for state (e.g. California), a variable for year (e.g. 1990), 
and a variable for state-by-year (California and 1990).  
2. Estimate your model, clustering on “group 1”. For example, regress 𝑦 on 𝒙, 
clustering on state. Save the variance matrix as V�1.  
3. Estimate your model, clustering on “group 2”. For example, regress 𝑦 on 𝒙, 
clustering on year. Save the variance matrix as V�2.  
4. Estimate your model, clustering on “group 1 by group 2”. For example, regress 
𝑦 on 𝒙, clustering on state-by-year. Save the variance matrix as V�1∩2.  
5. Create a new variance matrix V�2way  = V�1  + V�2  – V�1∩2 . This is your new 
two-way cluster robust variance matrix for 𝜷�.  
6. Standard errors are the square root of the diagonal elements of this matrix.  
If you are interested in only one coefficient, you can also just focus on saving the 

standard error for this coefficient in steps 2-4 above, and then create se2way  = 
�se12 + se22 −  se1∩22 .  

In taking these steps, you should watch out for some potential pitfalls. With perfectly 
multicollinear regressors, such as inclusion of dummy variables some of which are redundant, 
a statistical package may automatically drop one or more variables to ensure a nonsingular set 
of regressors. If the package happens to drop different sets of variables in steps 2, 3, and 4, then 
the resulting V�′s will not be comparable, and adding them together in step 5 will give a 
nonsense result. To prevent this issue, manually inspect the estimation results in steps 2, 3, and 
4 to ensure that each step has the same set of regressors, the same number of observations, etc. 
The only things that should be different are the reported standard errors and the reported 
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number of clusters.  

B. Implementation 

Unlike the standard one-way cluster case, V�2way[𝜷�] is not guaranteed to be positive 
semi-definite, so it is possible that it may compute negative variances. In some applications 
with fixed effects, V�[𝜷�]  may be non positive-definite, but the subcomponent of V�[𝜷�] 
associated with the regressors of interest may be positive-definite. This may lead to an error 
message, even though inference is appropriate for the parameters of interest. Our informal 
observation is that this issue is most likely to arise when clustering is done over the same 
groups as the fixed effects. Few clusters in one or more dimensions can also lead to V�2way[𝜷�] 
being a non-positive-semidefinite matrix. Cameron, Gelbach and Miller (2011) present an 
eigendecomposition technique used in the time series HAC literature that zeroes out negative 
eigenvalues in V�2way[𝜷�] to produce a positive semi-definite variance matrix estimate.  

The Stata user-written command cmgreg, available at the authors’ websites, 
implements multi-way clustering for the OLS estimator with, if needed, the negative 
eigenvalue adjustment. The Stata add-on command ivreg2, due to Baum, Schaffer, and 
Stillman (2007), implements two-way clustering for OLS, IV and linear GMM estimation. 
Other researchers have also posted code, available from searching the web.  

Cameron, Gelbach, and Miller (2011) apply the two-way method to data from Hersch 
(1998) that examines the relationship between individual wages and injury risk measured 
separately at the industry level and the occupation level. The log-wage for 5960 individuals is 
regressed on these two injury risk measures, with standard errors obtained by two-way 
clustering on 211 industries and 387 occupations. In that case two-way clustering leads to only 
a modest change in the standard error of the industry job risk coefficient compared to the 
standard error with one-way clustering on industry. Since industry job risk is perfectly 
correlated within industry, by result (6) we need to cluster on industry if there is any 
within-industry error correlation. By similar logic, the additional need to cluster on occupation 
depends on the within-occupation correlation of job industry risk, and this correlation need not 
be high. For the occupation job risk coefficient, the two-way and one-way cluster (on 
occupation) standard errors are similar. Despite the modest difference in this example, 
two-way clustering avoids the need to report standard errors for one coefficient clustering in 
one way and for the second coefficient clustering in the second way.  

Cameron, Gelbach, and Miller (2011) also apply the two-way cluster-robust method to 
data on volume of trade between 98 countries with 3262 unique country pairs. In that case, 
two-way clustering on each of the countries in the country pair leads to standard errors that are 
36% larger than one-way clustering an 230% more than heteroskedastic-robust standard errors. 
Cameron and Miller (2012) study such dyadic data in further detail. They note that two-way 
clustering does not pick up all the potential correlations in the data. Instead, more general 
cluster-robust methods, including one proposed by Fafchamps and Gubert (2007), should be 
used.  

C. Feasible GLS 
Similar to one-way clustering, FGLS is more efficient than OLS, provided an 

appropriate model for Ω = E[𝒖𝒖′|𝑿] is specified and is consistently estimated.  
The random effects model can be extended to multi-way clustering. For individual 𝑖 in 

clusters 𝑔 and ℎ, the two-way random effects model specifies 
 

𝑦𝑖𝑔ℎ = 𝒙𝑖𝑔ℎ′ 𝜷 + 𝛼𝑔 + 𝛿ℎ + 𝜀𝑖𝑔ℎ, 
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where the errors 𝛼𝑔, 𝛿ℎ, and 𝜀𝑖𝑔ℎ are each assumed to be i.i.d. distributed with mean 0. For 
example, Moulton (1986) considered clustering due to grouping of regressors (schooling, age 
and weeks worked) in a log earnings regression, and estimated a model with common random 
shock for each year of schooling, for each year of age, and for each number of weeks worked.  

The two-way random effects model can be estimated using standard software for 
(nested) hierarchical linear models; see, for example, Cameron and Trivedi (2009, ch. 9.5.7) 
for Stata command xtmixed (command mixed from version 13 on). For estimation of a 
many-way random effects model, see Davis (2002) who modeled film attendance data 
clustered by film, theater and time.  

The default standard errors after FGLS estimation require that Ω is correctly specified. 
For two-way and multi-way random effects models, FGLS estimation entails transforming the 
data in such a way that there is no obvious method for computing a variance matrix estimate 
that is robust to misspecification of Ω. Instead if there is concern about misspecification of Ω 
then one needs to consider FGLS with richer models for Ω and assume that these are correctly 
specified; see Rabe-Hesketh and Skrondal (2012) for richer hierarchical models in Stata, or do 
less efficient OLS with two-way cluster-robust standard errors.  

D. Spatial Correlation 
Cluster-robust variance matrix estimates are closely related to spatial-robust variance 

matrix estimates.  
In general, for model (19), 𝑩�  in (20) has the form  
 

 𝑩� = � � 𝑤
𝑁

𝑗=1

𝑁

𝑖=1
(𝑖, 𝑗)𝒙𝑖𝒙𝑗′𝑢�𝑖𝑢�𝑗 , (22) 

 
where 𝑤(𝑖, 𝑗) are weights. For cluster-robust inference these weights are either 1 (cluster in 
common) or 0 (no cluster in common). But the weights can also decay from one to zero, as in 
the case of the HAC variance matrix estimate for time series where 𝑤(𝑖, 𝑗) decays to zero as 
|𝑖 − 𝑗| increases.  

For spatial data it is assumed that model errors become less correlated as the spatial 
distance between observations grows. For example, with state-level data the assumption that 
model errors are uncorrelated across states may be relaxed to allow correlation that decays to 
zero as the distance between states gets large. Conley (1999) provides conditions under which 
(10) and (22) provide a robust variance matrix estimate for the OLS estimator, where the 
weights 𝑤(𝑖, 𝑗) decay with the spatial distance. The estimate (which Conley also generalizes 
to GMM models) is often called a spatial-HAC estimate, rather than spatial-robust, as proofs 
use mixing conditions (to ensure decay of dependence) as observations grow apart in distance. 
These conditions are not applicable to clustering due to common shocks which leads to the 
cluster-robust estimator with independence of observations across clusters.  

Driscoll and Kraay (1998) consider panel data with 𝑇 time periods and 𝑁 individuals, 
with errors potentially correlated across individuals (and no spatial dampening), though this 
correlation across individuals disappears for observations that are more than 𝑚 time periods 
apart. Let 𝑖𝑡 denote the typical observation. The Driscoll-Kraay spatial correlation consistent 
(SCC) variance matrix estimate can be shown to use weight 𝑤(𝑖𝑡, 𝑗𝑠) = 1 − 𝑑(𝑖𝑡, 𝑗𝑠)/(𝑚 +
1)  in (22), where the summation is now over 𝑖, 𝑗, 𝑠  and 𝑡 , and 𝑑(𝑖𝑡, 𝑗𝑠) = |𝑡 − 𝑠|  if 
|𝑡 − 𝑠| ≤ 𝑚  and 𝑑(𝑖𝑡, 𝑗𝑠) = 0  otherwise. This method requires that the number of time 
periods 𝑇 → ∞, so is not suitable for short panels, while 𝑁 may be fixed or 𝑁 → ∞. The Stata 
add-on command xtscc, due to Hoechle (2007), implements this variance estimator.  
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An estimator proposed by Thompson (2006) allows for across-cluster (in his example 
firm) correlation for observations close in time in addition to within-cluster correlation at any 
time separation. The Thompson estimator can be thought of as using 𝑤(𝑖𝑡, 𝑗𝑠) = 𝟏[𝑖, 𝑗 share a 
firm, or 𝑑(𝑖𝑡, 𝑗𝑠) ≤ 𝑚]. Foote (2007) contrasts the two-way cluster-robust and these other 
variance matrix estimators in the context of a macroeconomics example. Petersen (2009) 
contrasts various methods for panel data on financial firms, where there is concern about both 
within firm correlation (over time) and across firm correlation due to common shocks.  

Barrios, Diamond, Imbens, and Kolesár (2012) consider state-year panel data on 
individuals in states over years with state-level treatment and outcome (earnings) that is 
correlated spatially across states. This spatial correlation can be ignored if the state-level 
treatment is randomly assigned. But if the treatment is correlated over states (e.g. adjacent 
states may be more likely to have similar minimum wage laws) then one can no longer use 
standard errors clustered at the state level. Instead one should additionally allow for spatial 
correlation of errors across states. The authors additionally contrast traditional model-based 
inference with randomization inference.  

In practice data can have cluster, spatial and time series aspects, leading to hybrids of 
cluster-robust, spatial-HAC and time-series HAC estimators. Furthermore, it may be possible 
to parameterize some of the error correlation. For example for a time series AR(1) error it may 
be preferable to use E�[𝑢𝑡𝑢𝑠] based on an AR(1) model rather than 𝑤(𝑡, 𝑠)𝑢�𝑡𝑢�𝑠 . To date 
empirical practice has not commonly modeled these combined types of error correlations. This 
may become more common in the future.  

VI. Few Clusters 
We return to one-way clustering, and focus on the Wald “t-statistic”  
 

 𝑤 =
�̂� − 𝛽0
𝑠𝛽�

, (23) 

 
where 𝛽 is one element in the parameter vector 𝜷, and the standard error 𝑠𝛽�  is the square root 
of the appropriate diagonal entry in V�clu[𝜷�]. If 𝐺 → ∞ then 𝑤 ∼ 𝑁[0,1] under 𝐻0:𝛽 = 𝛽0. 
For finite 𝐺 the distribution of 𝑤 is unknown, even with normal errors. It is common to use 
the 𝑇 distribution with 𝐺 − 1 degrees of freedom.  

It is not unusual for the number of clusters 𝐺 to be quite small. Despite few clusters, �̂� 
may still be a reasonably precise estimate of 𝛽 if there are many observations per cluster. But 
with small 𝐺 the asymptotics have not kicked in. Then V�clu[𝜷�] can be downwards-biased.  

One should at a minimum use 𝑇(𝐺 − 1)  critical values and V�clu[𝜷�]  defined in 
(10)-(11) with residuals scaled by √𝑐 where 𝑐 is defined in (12) or 𝑐 = 𝐺/(𝐺 − 1). Most 
packages rescale the residuals – Stata uses the first choice of 𝑐 and SAS the second. The use of 
𝑇(𝐺 − 1) critical values is less common. Stata uses the 𝑇(𝐺 − 1) distribution after command 
regress y x, vce(cluster). But the alternative command xtreg y x, 
vce(robust) instead uses standard normal critical values.  

Even with both of these adjustments, Wald tests generally over-reject. The extent of 
over-rejection depends on both how few clusters there are and the particular data and model 
used. In some cases the over-rejection is mild, in others cases a test with nominal size 0.05 
may have true test size of 0.10.  

The next subsection outlines the basic problem and discusses how few is “few” 
clusters. The subsequent three subsections present three approaches to finite-cluster correction 
– bias-corrected variance, bootstrap with asymptotic refinement, and use of the 𝑇 distribution 
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with adjusted degrees-of-freedom. The final subsection considers special cases.  

A. The Basic Problems with Few Clusters 
There are two main problems with few clusters.  First, OLS leads to “overfitting”, with 

estimated residuals systematically too close to zero compared to the true error terms. This leads 
to a downwards-biased cluster-robust variance matrix estimate. The second problem is that 
even with bias-correction, the use of fitted residuals to form the estimate 𝑩�  of 𝑩 leads to 
over-rejection (and confidence intervals that are too narrow) if the critical values are from the 
standard normal or even the 𝑇(𝐺 − 1) distribution.  

For the linear regression model with independent homoskedastic normally distributed 
errors similar problems are easily controlled. An unbiased variance matrix is obtained by 
estimating the error variance 𝜎2  by 𝑠2 = 𝒖�′𝒖�/(𝑁 − 𝐾) rather than 𝒖�′𝒖�/𝑁 .  This is the 
“fix” in the OLS setting for the first problem. The analogue to the second problem is that the 
𝑁[0,1] distribution is a poor approximation to the true distribution of the Wald statistic. In the 
i.i.d. case, the Wald statistic 𝑤  can be shown to be exactly 𝑇(𝑁 − 𝐾)  distributed. For 
nonnormal homoskedastic errors the 𝑇(𝑁 − 𝐾) is still felt to provide a good approximation, 
provided 𝑁 is not too small.  Both of these problems arise in the clustered setting, albeit with 
more complicated manifestations and fixes.  

For independent heteroskedastic normally distributed errors there are no exact results. 
MacKinnon and White (1985) consider several adjustments to the heteroskedastic-consistent 
variance estimate of White (1980), including one called HC2 that is unbiased in the special 
case that errors are homoskedastic. Unfortunately if errors are actually heteroskedastic, as 
expected, the HC2 estimate is no longer unbiased for V[𝜷�] – an unbiased estimator depends on 
the unknown pattern of heteroskedasticity and on the design matrix 𝑿. And there is no way to 
obtain an exact 𝑇 distribution result for 𝑤, even if errors are normally distributed. Other 
proposed solutions for testing and forming confidence intervals include using a 𝑇 distribution 
with data-determined degrees of freedom, and using a bootstrap with asymptotic refinement.  

In the following subsections we consider extensions of these various adjustments to the 
clustered case, where the problems can become even more pronounced.  

Before proceeding we note that there is no specific point at which we need to worry 
about few clusters. Instead, “more is better”. Current consensus appears to be that 𝐺 = 50 is 
enough for state-year panel data. In particular, Bertrand, Duflo, and Mullainathan (2004, Table 
8) find in their simulations that for a policy dummy variable with high within-cluster 
correlation, a Wald test based on the standard CRVE with critical value of 1.96 had rejection 
rates of .063, .058, .080, and .115 for number of states (𝐺) equal to, respectively, 50, 20, 10 
and 6. The simulations of Cameron, Gelbach and Miller (2008, Table 3), based on a quite 
different data generating process but again with standard CRVE and critical value of 1.96, had 
rejection rates of .068, .081, .118, and .208 for 𝐺 equal to, respectively, 30, 20, 10 and 5. In 
both cases the rejection rates would also exceed .05 if the critical value was from the 𝑇(𝐺 − 1) 
distribution.  

The preceding results are for balanced clusters. Cameron, Gelbach and Miller (2008, 
Table 4, column 8) consider unbalanced clusters when 𝐺 = 10 . The rejection rate with 
unbalanced clusters, half of size 𝑁𝑔 = 10 and half of size 50, is . 183, appreciably worse 
than rejection rates of . 126 and . 115 for balanced clusters of sizes, respectively, 10 and 
100. Recent papers by Carter, Schnepel, and Steigerwald (2013) and Imbens and Kolesar 
(2012) provide theory that also indicates that the effective number of clusters is reduced when 
𝑁𝑔 varies across clusters; see also the simulations in MacKinnon and Webb (2013). Similar 
issues may also arise if the clusters are balanced, but estimation is by weighted OLS that places 
different weights on different clusters.  Cheng and Hoekstra (2013) document that weighting 
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can result in over-rejection in the panel DiD setting of Bertrand, Duflo, and Mullainathan 
(2004).  

To repeat a key message, there is no clear-cut definition of “few”. Depending on the 
situation “few” may range from less than 20 clusters to less than 50 clusters in the balanced 
case, and even more clusters in the unbalanced case.  

B. Solution 1: Bias-Corrected Cluster-Robust Variance Matrix 

A weakness of the standard CRVE with residual 𝒖�𝑔 is that it is biased for Vclu[𝜷�], 
since E [𝒖�𝑔𝒖�𝑔′ ] ≠  E [𝒖𝑔𝒖𝑔′ ] . The bias depends on the form of Ω𝑔  but will usually be 
downwards. Several corrected residuals 𝒖�𝑔 to use in place of 𝒖�𝑔 in (11) have been proposed. 
The simplest, already mentioned, is to use 𝒖�𝑔 = �𝐺/(𝐺 − 1)𝒖�𝑔 or 𝒖�𝑔 = √𝑐𝒖�𝑔 where 𝑐 is 
defined in (12). One should at least use either of these corrections.  

Bell and McCaffrey (2002) use 
 

 𝒖�𝑔 = [𝑰𝑁𝑔 − 𝑯𝑔𝑔]−1/2𝒖�𝑔, (24) 
 
where 𝑯𝑔𝑔 = 𝑿𝑔(𝑿′𝑿)−1𝑿𝑔′ . This transformed residual leads to unbiased CRVE in the special 
case that E[𝒖𝑔𝒖𝑔′ ] = 𝜎2𝑰. This is a cluster generalization of the HC2 variance estimate of 
MacKinnon and White (1985), so we refer to it as the CR2VE.  

Bell and McCaffrey (2002) also use 
 

 𝒖�𝑔 = �𝐺 − 1
𝐺

[𝑰𝑁𝑔 − 𝑯𝑔𝑔]−1𝒖�𝑔. (25) 

 
This transformed residual leads to CRVE that can be shown to equal the delete-one-cluster 
jackknife estimate of the variance of the OLS estimator. This jackknife correction leads to 
upwards-biased CRVE if in fact E[𝒖𝑔𝒖𝑔′ ] = 𝜎2𝑰. This is a cluster generalization of the HC3 
variance estimate of MacKinnon and White (1985), so we refer to it as the CR3VE.  

Angrist and Pischke (2009, Chapter 8) and Cameron, Gelbach and Miller (2008) 
provide a more extensive discussion and cite more of the relevant literature. This literature 
includes papers that propose corrections for the more general case that E[𝒖𝑔𝒖𝑔′ ] ≠ 𝜎2𝑰 but has 
a known parameterization, such as an RE model, and extension to generalized linear models.  

Angrist and Lavy (2002) apply the CR2VE correction (24) in an application with 
𝐺 = 30 to 40 and find that the correction increases cluster-robust standard errors by between 
10 and 50 percent. Cameron, Gelbach and Miller (2008, Table 3) find that the CR3VE 
correction (24) has rejection rates of .062, .070, .092, and .138 for 𝐺 equal to, respectively, 30, 
20, 10 and 5. These rejection rates are a considerable improvement on .068, .081, .118, and 
.208 for the standard CRVE, but there is still considerable over-rejection for very small 𝐺.  

The literature has gravitated to using the CR2VE adjustment rather than the CR3VE 
adjustment. This reduces but does not eliminate over-rejection when there are few clusters.  

C. Solution 2: Cluster Bootstrap with Asymptotic Refinement 
In Subsection II.F we introduced the bootstrap as it is usually used, to calculate 

standard errors that rely on regular asymptotic theory. Here we consider a different use of the 
bootstrap, one with asymptotic refinement that may lead to improved finite-sample inference.  

We consider inference based on 𝐺 → ∞ (formally, √𝐺(�̂� − 𝛽) has a limit normal 
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distribution). Then a two-sided Wald test of nominal size 0.05, for example, can be shown to 
have true size 0.05 + 𝑂(𝐺−1) when the usual asymptotic normal approximation is used. For 
𝐺 → ∞ this equals the desired 0.05, but for finite 𝐺 this differs from 0.05. If an appropriate 
bootstrap with asymptotic refinement is instead used, the true size is 0.05 + 𝑂(𝐺−3/2). This is 
closer to the desired 0.05 for large 𝐺, as 𝐺−3/2 < 𝐺−1. Hopefully this is also the case for 
small 𝐺, something that is established using appropriate Monte Carlo experiments. For a 
one-sided test or a nonsymmetric two-sided test the rates are instead, respectively, 0.05 +
𝑂(𝐺−1/2) and 0.05 + 𝑂(𝐺−1).  

Asymptotic refinement can be achieved by bootstrapping a statistic that is 
asymptotically pivotal, meaning the asymptotic distribution does not depend on any unknown 
parameters. The estimator �̂� is not asymptotically pivotal as its distribution depends on V[�̂�] 
which in turn depends on unknown variance parameters in V[𝒖|𝑿]. The Wald t-statistic 
defined in (23) is asymptotically pivotal as its asymptotic distribution is 𝑁[0,1] which does 
not depend on unknown parameters.  

1. Percentile-t Bootstrap 

A percentile-t bootstrap obtains 𝐵 draws, 𝑤1∗, . . . ,𝑤𝐵
∗ , from the distribution of the 

Wald t-statistic as follows. B times do the following:  
1. Obtain 𝐺  clusters {(𝒚1∗ ,𝑿1∗), . . . , (𝒚𝐺∗ ,𝑿𝐺∗ )}  by one of the cluster bootstrap 
methods detailed below.  
2. Compute the OLS estimate �̂�𝑏∗ in this resample.  
3. Calculate the Wald test statistic 𝑤𝑏

∗ = (�̂�𝑏∗ − �̂�)/𝑠𝛽�𝑏∗  where 𝑠𝛽�𝑏∗  is the 
cluster-robust standard error of �̂�𝑏∗, and �̂� is the OLS estimate of 𝛽𝑗 from the original 
sample.  
Note that we center on �̂�  and not 𝛽0 , as the bootstrap views the sample as the 

population, i.e., 𝛽 = �̂�, and the 𝐵 resamples are based on this “population.” Note also that the 
standard error in step 3 needs to be cluster-robust. A good choice of 𝐵 is 𝐵 = 999; this is 
more than 𝐵 for standard error estimation as tests are in the tails of the distribution, and is such 
that (𝐵 + 1)𝛼 is an integer for common choices of test size 𝛼.  

Let 𝑤(1)
∗ , . . . ,𝑤(𝐵)

∗  denote the ordered values of 𝑤1∗, . . . ,𝑤𝐵
∗ . These ordered values trace 

out the density of the Wald t-statistic, taking the place of a standard normal or 𝑇 distribution. 
For example, the critical values for a 95% nonsymmetric confidence interval or a 5% 
nonsymmetric Wald test are the lower 2.5 percentile and upper 97.5 percentile of 𝑤1∗, . . . ,𝑤𝐵

∗ , 
rather than, for example, the standard normal values of −1.96 and 1.96. The p-value for a 
symmetric test based on the original sample Wald statistic 𝑤 equals the proportion of times 
that |𝑤| > |𝑤𝑏

∗|, 𝑏 = 1, . . . ,𝐵.  
The simplest cluster resampling method is the pairs cluster resampling introduced in 

Subsection II.F. Then in step 1. above we form 𝐺  clusters {(𝒚1∗ ,𝑿1∗), . . . , (𝒚𝐺∗ ,𝑿𝐺∗ )}  by 
resampling with replacement 𝐺 times from the original sample of clusters. This method has 
the advantage of being applicable to a wide range of estimators, not just OLS. However, for 
some types of data the pairs cluster bootstrap may not be applicable - see “Bootstrap with 
Caution” below.  

Cameron, Gelbach, and Miller (2008) found that in Monte Carlos with few clusters the 
pairs cluster bootstrap did not eliminate test over-rejection. The authors proposed using an 
alternative percentile-t bootstrap, the wild cluster bootstrap, that holds the regressors fixed 
across bootstrap replications.  

26 
 



2. Wild Cluster Bootstrap 

The wild cluster bootstrap resampling method is as follows. First, estimate the main 
model, imposing (forcing) the null hypothesis 𝐻0 that you wish to test, to give estimate 𝜷�H0. 
For example, for test of statistical significance of a single variable regress 𝑦𝑖𝑔  on all 
components of 𝒙𝑖𝑔 except this variable that has regressor with coefficient zero under the null 
hypothesis. Form the residual 𝑢�𝑖𝑔 = 𝑦𝑖 − 𝒙𝑖𝑔′ 𝜷�H0. Then obtain the 𝑏𝑡ℎ resample for step 1 
above as follows:  

1a.   Randomly assign cluster 𝑔 the weight 𝑑𝑔 = −1 with probability 0.5 and the 
weight 𝑑𝑔 = 1 with probability 0.5. All observations in cluster 𝑔 get the same value 
of the weight.  
1b.  Generate new pseudo-residuals 𝑢𝑖𝑔∗ = 𝑑𝑔 × 𝑢�𝑖𝑔 , and hence new outcome 
variables 𝑦𝑖𝑔∗ = 𝒙𝑖𝑔′ 𝜷�H0 + 𝑢𝑖𝑔∗ .  
Then proceed with step 2 as before, regressing 𝑦𝑖𝑔∗  on 𝒙𝑖𝑔, and calculate 𝑤𝑏

∗ as in step 
3. The p-value for the the test based on the original sample Wald statistic 𝑤 equals the 
proportion of times that |𝑤| > |𝑤𝑏

∗|, 𝑏 = 1, . . . ,𝐵.  
For the wild bootstrap, the values 𝑤1∗, . . . ,𝑤𝐵

∗  cannot be used directly to form critical 
values for a confidence interval. Instead they can be used to provide a p-value for testing a 
hypothesis.  To form a confidence interval, one needs to invert a sequence of tests, profiling 
over a range of candidate null hypotheses 𝐻0:𝛽 = 𝛽0. For each of these null hypotheses, 
obtain the p-value. The 95% confidence interval is the set of values of 𝛽0 for which 𝑝 ≥ 0.05.  
This method is computationally intensive, but conceptually straightforward.  As a practical 
matter, you may want to ensure that you have the same set of bootstrap draws across candidate 
hypotheses, so as to not introduce additional bootstrapping noise into the determination of 
where the cutoff is.  

In principle it is possible to directly use a bootstrap for bias-reduction, such as to 
remove bias in standard errors. In practice this is not done, however, as in practice any bias 
reduction comes at the expense of considerably greater variability. A conservative estimate of 
the standard error equals the width of a 95% confidence interval, obtained using asymptotic 
refinement, divided by 2 × 1.96.  

Note that for the wild cluster bootstrap the resamples {(𝒚1∗ ,𝑿1), . . . , (𝒚𝐺∗ ,𝑿𝐺)} have the 
same 𝑿  in each resample, whereas for pairs cluster both 𝒚∗  and 𝑿∗  vary across the 𝐵 
resamples. The wild cluster bootstrap is an extension of the wild bootstrap proposed for 
heteroskedastic data. It works essentially because the two-point distribution for forming 𝒖𝑔∗  
ensures that E[𝒖𝑔∗ ] = 𝟎 and V[𝒖𝑔∗ ] = 𝒖�𝑔𝒖�𝑔′ . There are other two-point distributions that also 
do so, but Davidson and Flachaire (2008) show that in the heteroskedastic case it is best to use 
the weights 𝑑𝑔 = {−1,1}, called Rademacher weights.  

The wild cluster bootstrap essentially replaces 𝒚𝑔 in each resample with one of two 
values 𝒚𝑔∗ = 𝑿𝜷�H0 + 𝒖�𝑔 or 𝒚𝑔∗ = 𝑿𝜷�H0 − 𝒖�𝑔. Because this is done across 𝐺 clusters, there 
are at most 2𝐺  possible combinations of the data, so there are at most 2𝐺  unique values of 
𝑤1∗, . . . ,𝑤𝐵

∗ . If there are very few clusters then there is no need to actually bootstrap as we can 
simply enumerate, with separate estimation for each of the 2𝐺  possible datasets.  

Webb (2013) expands on these limitations. He shows that there are actually only 2𝐺−1 
possible 𝑡-statistics in absolute value. Thus with 𝐺 = 5 there are at most 24 = 16 possible 
values of 𝑤1∗, . . . ,𝑤𝐵

∗ . So if the main test statistic is more extreme than any of these 16 values, 
for example, then all we know is that the p-value is smaller than 1/16 = 0.0625 . Full 
enumeration makes this discreteness clear.  Bootstrapping without consideration of this issue 
can lead to inadvertently picking just one point from the interval of equally plausible p-values. 
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As 𝐺 gets to be as large as 11 this concern is less of an issue since 210 = 1024.  
Webb (2013) proposes greatly reducing the discreteness of p-values with very low 𝐺  by 
instead using a six-point distribution for the weights 𝑑𝑔  in step 1b. In this proposed 
distribution the weights 𝑑𝑔  have a 1/6  chance of taking each value in 
{−√1.5,−√1,−√. 5,√. 5,√1,√1.5}. In his simulations this method outperforms the two-point 
wild bootstrap for 𝐺 < 10 and is the preferred method to use if 𝐺 < 10.  

MacKinnon and Webb (2013) address the issue of unbalanced clusters and find that, 
even with 𝐺 = 50, tests based on the standard CRVE with 𝑇(𝐺 − 1) critical values can 
over-reject considerably if the clusters are unbalanced. By contrast, the two-point wild 
bootstrap with Rademacher weights is generally reliable.  

3. Bootstrap with Caution 

Regardless of the bootstrap method used, pairs cluster with or without asymptotic 
refinement or wild cluster bootstrap, an important step when bootstrapping with few clusters is 
to examine the distribution of bootstrapped values. This is something that should be done 
whether you are bootstrapping 𝛽 to obtain a standard error, or bootstrapping t-statistics with 
refinement to obtain a more accurate p-value. This examination can take the form of looking at 
four things: (1) basic summary statistics like mean and variance; (2) the sample size to confirm 
that it is the same as the number of bootstrap replications (no missing values); (3) the largest 
and smallest handful of values of the distribution; and (4) a histogram of the bootstrapped 
values.  

We detail a few potential problems that this examination can diagnose.  
First, if you are using a pairs cluster bootstrap and one cluster is an outlier in some 

sense, then the resulting histogram may have a big “mass” that sits separately from the rest of 
the bootstrap distribution – that is, there may be two distinct distributions, one for cases where 
that cluster is sampled and one for cases where it is not. If this is the case then you know that 
your results are sensitive to the inclusion of that cluster.  

Second, if you are using a pairs cluster bootstrap with dummy right-hand side variables, 
then in some samples you can get no or very limited variation in treatment. This can lead to 
zero or near-zero standard errors. For a percentile-t pairs cluster bootstrap, a zero or missing 
standard error will lead to missing values for 𝑤∗, since the standard error is zero or missing. If 
you naively use the remaining distribution, then there is no reason to expect that you will have 
valid inference. And if the bootstrapped standard errors are zero plus machine precision noise, 
rather than exactly zero, very large t-values may result. Then your bootstrap distribution of 
t-statistics will have really fat tails, and you will not reject anything, even false null hypotheses. 
No variation or very limited variation in treatment can also result in many of your �̂�∗’s being 
“perfect fit” �̂�∗’s with limited variability. Then the bootstrap standard deviation of the �̂�∗’s 
will be too small, and if you use it as your estimated standard error you will over-reject. In this 
case we suggest using the wild cluster bootstrap.  

Third, if your pairs cluster bootstrap samples draw nearly multicollinear samples, you 
can get huge �̂�∗’s. This can make a bootstrapped standard error seem very large. You need to 
determine what in the bootstrap samples “causes” the huge �̂�∗’s . If this is some pathological 
but common draw, then you may need to think about a different type of bootstrap, such as the 
wild cluster bootstrap, or give up on bootstrapping methods. For an extreme example, consider 
a DiD model, with first-order “control” fixed effects and an interaction term. Suppose that a 
bootstrap sample happens to have among its “treatment group” only observations where “post 
= 1”. Then the variables “treated” and “treated*post” are collinear, and an OLS package will 
drop one of these variables. If it drops the “post” variable, it will report a coefficient on 
“treated*post”, but this coefficient will not be a proper interaction term, it will instead also 
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include the level effect for the treated group.  
Fourth, with less than ten clusters the wild cluster bootstrap should use the six-point 

version of Webb (2013).  
Fifth, in general if you see missing values in your bootstrapped t-statistics, then you 

need to figure out why. Don’t take your bootstrap results at face value until you know what’s 
going on.  

D. Solution 3: Improved Critical Values using a T-distribution 
The simplest small-sample correction for the Wald statistic is to base inference on a 𝑇 

distribution, rather than the standard normal, with degrees of freedom at most the number of 
clusters 𝐺. Recent research has proposed methods that lead to using degrees of freedom much 
less than 𝐺, especially if clusters are unbalanced.  

1. G-L Degrees of Freedom 

Some packages, including Stata after command regress, use 𝐺 − 1  degrees of 
freedom for 𝑡-tests and 𝐹 −tests based on cluster-robust standard errors. This choice emanates 
from the complex survey literature; see Bell and McCaffrey (2002) who note, however, that 
with normal errors this choice still tends to result in test over-rejection so the degrees of 
freedom should be even less than this.  

Even the 𝑇(𝐺 − 1) can make quite a difference. For example with 𝐺 = 10 for a 
two-sided test at level 0.05 the critical value for 𝑇(9) is 2.262 rather than 1.960, and if 
𝑤 = 1.960 the p-value based on 𝑇(9) is 0.082 rather than 0.05. In Monte Carlo simulations 
by Cameron, Gelbach, and Miller (2008) this choice works reasonably well, and at a minimum 
one should use the 𝑇(𝐺 − 1) distribution rather than the standard normal.  

For models that include 𝐿 regressors that are invariant within cluster, Donald and Lang 
(2007) provide a rationale for using the 𝑇(𝐺 − 𝐿) distribution. If clusters are balanced and all 
regressors are invariant within cluster then the OLS estimator in the model 𝑦𝑖𝑔 = 𝒙𝑔′ 𝜷 + 𝑢𝑖𝑔 
is equivalent to OLS estimation in the grouped model �̄�𝑔 = 𝒙𝑔′ 𝜷 + �̄�𝑔. If �̄�𝑔 is i.i.d. normally 
distributed then the Wald statistic is 𝑇(𝐺 − 𝐿) distributed, where V�[𝜷�] = 𝑠2(𝑿′𝑿)−1  and 
𝑠2 = (𝐺 − 𝐿)−1 ∑ �̄�𝑔�

2
𝑔 . Note that �̄�𝑔 is i.i.d. normal in the random effects model if the error 

components are i.i.d. normal. Usually if there is a time-invariant regressor there is only one, in 
addition to the intercept, in which case 𝐿 = 2.  

Donald and Lang extend this approach to inference on 𝜷 in a model that additionally 
includes regressors 𝒛𝑖𝑔 that vary within clusters, and allow for unbalanced clusters, leading to 
𝐺 − 𝐿  for the RE estimator. Wooldridge (2006) presents an expansive exposition of the 
Donald and Lang approach. He also proposes an alternative approach based on minimum 
distance estimation. See Wooldridge (2006) and, for a summary, Cameron and Miller (2011).  

2. Data-determined Degrees of Freedom 

For testing the difference between two means of normally and independently 
distributed populations with different variances the 𝑡 test is not exactly 𝑇 distributed – this is 
known as the Behrens-Fisher problem. Satterthwaite (1946) proposed an approximation that 
was extended to regression with clustered errors by Bell and McCaffrey (2002) and developed 
further by Imbens and Kolesar (2012).  

The 𝑇(𝑁 − 𝑘)  distribution is the ratio of 𝑁[0,1]  to independent 
�[𝜒2(𝑁 − 𝐾)]/(𝑁 − 𝑘). For linear regression under i.i.d. normal errors, the derivation of the 
𝑇(𝑁 − 𝑘) distribution for the Wald 𝑡-statistic uses the result that (𝑁 − 𝐾)(𝑠𝛽�

2/𝜎𝛽�
2) ∼ 𝜒2(𝑁 −
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𝐾), where 𝑠𝛽�
2 is the usual unbiased estimate of 𝜎𝛽�

2 = V[�̂�]. This result no longer holds for 
non-i.i.d. errors, even if they are normally distributed. Instead, an approximation uses the 
𝑇(𝑣∗) distribution where 𝑣∗ is such that the first two moments of 𝑣∗(𝑠𝛽�

2/𝜎𝛽�
2) equal the first 

two moments (𝑣∗ and 2𝑣∗) of the 𝜒2(𝑣∗) distribution. Assuming 𝑠𝛽�
2 is unbiased for 𝜎𝛽�

2 , 
E[𝑣∗(𝑠𝛽�

2/𝜎𝛽�
2)] = 𝑣∗. And V[𝑣∗(𝑠𝛽�

2/𝜎𝛽�
2)] = 2𝑣∗ if 𝑣∗ = 2[(𝜎𝛽�

2)2/V[𝑠𝛽�
2]].  

Thus the Wald t-statistic is treated as being 𝑇(𝑣∗)  distributed where 𝑣∗ =
2(𝜎𝛽�

2)2/𝑉[𝑠𝛽�
2]. Assumptions are needed to obtain an expression for V[𝑠𝛽�

2]. For clustered errors 
with 𝒖 ∼ 𝑁[𝟎,Ω]  and using the CRVE defined in Subsection II.C, or using CR2VE or 
CR3VE defined in Subsection VI.B, Bell and McCaffrey (2002) show that the distribution of 
the Wald t-statistic defined in (23) can be approximated by the 𝑇(𝑣∗) distribution where 

 

 𝑣∗ =
(∑ 𝜆𝑗𝐺

𝑗=1 )2

(∑ 𝜆𝑗2𝐺
𝑗=1 )

, (26) 

 
and 𝜆𝑗  are the eigenvalues of the 𝐺 × 𝐺  matrix 𝑮′Ω�𝑮, where Ω�  is consistent for Ω, the 
𝑁 × 𝐺  matrix 𝑮  has 𝑔𝑡ℎ  column (𝑰𝑁 − 𝑯)𝑔′ 𝑨𝑔𝑿𝑔(𝑿′𝑿)−1𝒆𝑘 , (𝑰𝑁 − 𝑯)𝑔  is the 𝑁𝑔 × 𝑁 
submatrix for cluster 𝑔 of the 𝑁 × 𝑁 matrix 𝐼𝑁 − 𝑿(𝑿′𝑿)−1𝑿′, 𝑨𝑔 = (𝑰𝑁𝑔 − 𝑯𝑔𝑔)−1/2 for 
CR2VE, and 𝒆𝑘 is a 𝐾 × 1 vector of zeroes aside from 1 in the 𝑘𝑡ℎ position if �̂� = �̂�𝑘. Note 
that 𝑣∗ needs to be calculated separately, and differs, for each regression coefficient. The 
method extends to Wald tests based on scalar linear combinations 𝒄′𝜷� .  

The justification relies on normal errors and knowledge of Ω = E[𝒖𝒖′|𝑿]. Bell and 
McCaffrey (2002) perform simulations with balanced clusters (𝐺 = 20 and 𝑁𝑔 = 10) and 
equicorrelated errors within cluster. They calculate 𝑣∗ assuming Ω = 𝜎2𝑰, even though errors 
are in fact clustered, and find that their method leads to Wald tests with true size closer to the 
nominal size than tests based on the conventional CRVE, CRV2E, and CRV3E.  

Imbens and Kolesar (2012) additionally consider calculating 𝑣∗ where Ω� is based on 
equicorrelated errors within cluster. They follow the Monte Carlo designs of Cameron, 
Gelbach and Miller (2008), with 𝐺 = 5 and 10 and equicorrelated errors. They find that all 
finite-sample adjustments perform better than using the standard CRVE with 𝑇(𝐺 − 1) 
critical values. The best methods use the CR2VE and 𝑇(𝑣∗), with slight over-rejection with 𝑣∗ 
based on Ω� = 𝑠2𝑰  (Bell and McCaffrey) and slight under-rejection with 𝑣∗  based on Ω� 
assuming equicorrelated errors (Imbens and Kolesar). For 𝐺 = 5 these methods outperform 
the two-point wild cluster bootstrap, as expected given the very low 𝐺 problem discussed in 
Subsection VI.C. More surprisingly these methods also outperform wild cluster bootstrap 
when 𝐺 = 10, perhaps because Imbens and Kolesar (2012) may not have imposed the null 
hypothesis in forming the residuals for this bootstrap.  

3. Effective Number of Clusters 

Carter, Schnepel and Steigerwald (2013) propose a measure of the effective number of 
clusters. This measure is 

 

 𝐺∗ =
𝐺

(1 + 𝛿)
, (27) 

 
where 𝛿 = 1

𝐺
∑ {𝐺
𝑔=1 (𝛾𝑔 − �̄�)2/�̄�2} , 𝛾𝑔 = 𝒆𝑘′ (𝑿′𝑿)−1𝑿𝑔′ Ω𝑔𝑿𝑔(𝑿′𝑿)−1  𝒆𝑘 , 𝒆𝑘  is a 𝐾 × 1 
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vector of zeroes aside from 1 in the 𝑘𝑡ℎ position if �̂� = �̂�𝑘, and �̄� = 1
𝐺
∑ 𝛾𝑔𝐺
𝑔=1 . Note that 𝐺∗ 

varies with the regression coefficient considered, and the method extends to Wald tests based 
on scalar linear combinations 𝒄′𝜷� .  

The quantity 𝛿 measures cluster heterogeneity, which disappears if 𝛾𝑔 = 𝛾 for all 𝑔. 
Given the formula for 𝛾𝑔, cluster heterogeneity (𝛿 ≠ 0) can arise for many reasons, including 
variation in 𝑁𝑔, variation in 𝑿𝑔 and variation in Ω𝑔 across clusters.  
In simulations using standard normal critical values, Carter et al. (2013) find that test size 
distortion occurs for 𝐺∗ < 20. In application they assume errors are perfectly correlated within 
cluster, so Ω𝑔 = 𝒍𝒍′ where 𝒍 is an 𝑁𝑔 × 1 vector of ones. For data from the Tennessee STAR 
experiment they find 𝐺∗ = 192 when 𝐺 = 318. For the Hersch (1998) data of Subsection 
II.B, with very unbalanced clusters, they find for the industry job risk coefficient and with 
clustering on industry that 𝐺∗ = 19 when 𝐺 = 211.  

Carter et al. (2013) do not actually propose using critical values based on the 𝑇(𝐺∗) 
distribution. The key component in obtaining the formula for 𝑣∗ in the Bell and McCaffrey 
(2002) approach is determining V [𝑠𝛽�

2/𝜎𝛽�
2] , which equals E [(𝑠𝛽�

2 − 𝜎𝛽�
2)/𝜎𝛽�

2]  given 𝑠𝛽�
2  is 

unbiased for 𝜎𝛽�
2. Carter et al. (2013) instead work with E[(�̃�𝛽�

2 − 𝜎𝛽�
2)/𝜎𝛽�

2] where �̃�𝛽�
2, defined in 

their paper, is an approximation to 𝑠𝛽�
2 that is good for large 𝐺 (formally �̃�𝛽�

2/𝜎𝛽�
2 → 𝑠𝛽�

2/𝜎𝛽�
2 as 

𝐺 → ∞). Now E[(�̃�𝛽�
2 − 𝜎𝛽�

2)/𝜎𝛽�
2] = 2(1 + 𝛿)/𝐺, see Carter et al. (2013), where 𝛿 is defined in 

(27). This suggests using the 𝑇(𝐺∗)  distribution as an approximation, and that this 
approximation will improve as 𝐺 increases.  

E. Special Cases 
With few clusters, additional results can be obtained if there are many observations in 

each group. In DiD studies the few clusters problem arises if few groups are treated, even if 𝐺 
is large. And the few clusters problem is more likely to arise if there is multi-way clustering.  

1. Fixed Number of Clusters with Cluster Size Growing 

The preceding adjustments to the degrees of freedom of the 𝑇 distribution are based on 
the assumption of normal errors. In some settings asymptotic results can be obtained when 𝐺 
is small, provided 𝑁𝑔 → ∞.  

Bester, Conley and Hansen (2011), building on Hansen (2007a), give conditions under 
which the 𝑡-test statistic based on (11) is �𝐺/(𝐺 − 1) times 𝑇𝐺−1 distributed. Then using 
𝒖�𝑔 = �𝐺/(𝐺 − 1)𝒖�𝑔 in (11) yields a 𝑇(𝐺 − 1) distributed statistic. In addition to assuming 
𝐺 is fixed while 𝑁𝑔 → ∞, it is assumed that the within group correlation satisfies a mixing 
condition (this does not happen in all data settings, although it does for time series and spatial 
correlation), and that homogeneity assumptions are satisfied, including equality of 
plim 1

𝑁𝑔
𝑿𝑔′ 𝑿𝑔 for all 𝑔.  

Let �̂�𝑔 denote the estimate of parameter 𝛽 in cluster 𝑔, �̂� = 𝐺−1 ∑ �̂�𝑔𝐺
𝑔=1  denote the 

average of the 𝐺  estimates, and 𝑠
𝛽�
2 = (𝐺 − 1)∑ (𝐺

𝑔=1 �̂�𝑔 − �̂�)2  denote their variance. 

Suppose that the �̂�𝑔  are asymptotically normal as 𝑁𝑔 → ∞  with common mean 𝛽 , and 
consider test of 𝐻0:𝛽 = 𝛽0  based on 𝑡 = √𝐺(�̂�𝑔 − 𝛽0)/𝑠

𝛽�
. Then Ibragimov and Müller 

(2010) show that tests based on the 𝑇(𝐺 − 1) distribution will be conservative tests (i.e., 
under-reject) for level 𝛼 ≤ 0.083 . This approach permits correct inference even with 
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extremely few clusters, assuming 𝑁𝑔 is large. However, the requirement that cluster estimates 
are asymptotically independent must be met. Thus the method is not directly applicable to a 
state-year DiD application when there are year fixed effects (or other regressor that varies over 
time but not states). In that case Ibragimov and Müller propose applying their method after 
aggregating subsets of states into groups in which some states are treated and some are not.  

2. Few Treated Groups 

Problems arise if most of the variation in the regressor is concentrated in just a few 
clusters, even when 𝐺 is sufficiently large. This occurs if the key regressor is a cluster-specific 
binary treatment dummy and there are few treated groups.  

Conley and Taber (2011) examine a differences-in-differences (DiD) model in which 
there are few treated groups and an increasing number of control groups. If there are 
group-time random effects, then the DiD model is inconsistent because the treated groups 
random effects are not averaged away. If the random effects are normally distributed, then the 
model of Donald and Lang (2007) applies and inference can use a 𝑇 distribution based on the 
number of treated groups. If the group-time shocks are not random, then the 𝑇 distribution 
may be a poor approximation. Conley and Taber (2011) then propose a novel method that uses 
the distribution of the untreated groups to perform inference on the treatment parameter.  

Abadie, Diamond and Hainmueller (2010) propose synthetic control methods that 
provide a data-driven method to select the control group in a DiD study, and that provide 
inference under random permutations of assignment to treated and untreated groups. The 
methods are suitable for treatment that effects few observational units.  

3. What if you have multi-way clustering and few clusters? 

Sometimes we are worried about multi-way clustering, but one or both of the ways has 
few clusters.  Currently we are not aware of an ideal approach to deal with this problem.  One 
potential solution is to try to add sufficient control variables so as to minimize concerns about 
clustering in one of the ways, and then use a one-way few-clusters cluster robust approach on 
the other way.  Another potential solution is to model one of the ways of clustering in a 
parametric way, such as with a common shock or an autoregressive error model.  Then you 
can construct a variance estimator that is a hybrid of the parametric model, and cluster robust in 
the remaining dimension.  

VII. Extensions 
The preceding material has focused on the OLS (and FGLS) estimator and tests on a 

single coefficient. The basic results generalize to multiple hypothesis tests, instrumental 
variables (IV) estimation, nonlinear estimators and generalized method of moments (GMM).  

These extensions are incorporated in Stata, though Stata generally computes test 
p-values and confidence intervals using standard normal and chisquared distributions, rather 
than 𝑇 and 𝐹 distributions. And for nonlinear models stronger assumptions are needed to 
ensure that the estimator of 𝜷 retains its consistency in the presence of clustering. We provide 
a brief overview.  

A. Cluster-Robust F-tests 
Consider Wald joint tests of several restrictions on the regression parameters. Except in 

the special case of linear restrictions and OLS with i.i.d. normal errors, asymptotic theory 
yields only a chi-squared distributed statistic, say 𝑊, that is 𝜒2(ℎ) distributed, where ℎ is the 
number of (linearly independent) restrictions.  
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Alternatively we can use the related 𝐹  statistic, 𝐹 = 𝑊/ℎ . This yields the same 
p-value as the chi-squared test if we treat 𝐹 as being 𝐹(ℎ,∞) distributed. In the cluster case, a 
finite-sample adjustment instead treats 𝐹 as being 𝐹(ℎ,𝐺 − 1) distributed. This is analogous 
to using the 𝑇(𝐺 − 1) distribution, rather than 𝑁[0,1], for a test on a single coefficient.  

In Stata, the finite-sample adjustment of using the 𝑇(𝐺 − 1) for a t-test on a single 
coefficient, and using the 𝐹(ℎ,𝐺 − 1) for an F-test, is only done after OLS regression with 
command regress. Otherwise Stata reports critical values and p-values based on the 𝑁[0,1] 
and 𝜒2(ℎ) distributions.  

Thus Stata does no finite-cluster correction for tests and confidence intervals following 
instrumental variables estimation commands, nonlinear model estimation commands, or even 
after command regress in the case of tests and confidence intervals using commands 
testnl and nlcom. The discussion in Section VI was limited to inference after OLS 
regression, but it seems reasonable to believe that for other estimators one should also base 
inference on the 𝑇(𝐺 − 1) and 𝐹(ℎ,𝐺 − 1) distributions, and even then tests may over-reject 
when there are few clusters.  

Some of the few-cluster methods of Section VI can be extended to tests of more than 
one restriction following OLS regression. The Wald test can be based on the bias-adjusted 
variance matrices CR2VE or CR3VE, rather than CRVE. For a bootstrap with asymptotic 
refinement of a Wald test of 𝐻0:𝑹𝜷 = 𝒓, in the 𝑏𝑡ℎ resample we compute 𝑊𝑏

∗ = (𝑹𝜷�𝑏∗ −
𝑹𝜷�)′[𝑹V�clu[𝜷�𝑏∗ ]𝑹′]−1(𝑹𝜷�𝑏∗ − 𝑹𝜷�) . Extension of the data-determined degrees of freedom 
method of Subsection VI.D to tests of more than one restriction requires, at a minimum, 
extension of Theorem 4 of Bell and McCaffrey (2002) from the case that covers 𝛽, where 𝛽 is 
a single component of 𝜷, to 𝑹𝜷. An alternative ad hoc approach would be to use the 𝐹�ℎ, 𝑣∗� 
distribution where 𝑣∗ is an average (possibly weighted by estimator precision) of 𝑣∗ defined 
in (26) computed separately for each exclusion restriction.  

For the estimators discussed in the remainder of Section VII, the rank of V�clu[𝜷�] is 
again the minimum of 𝐺 − 1 and the number of parameters (𝐾). This means that at most 
𝐺 − 1 restrictions can be tested using a Wald test, in addition to the usual requirement that 
ℎ ≤ 𝐾.  

B. Instrumental Variables Estimators 
The cluster-robust variance matrix estimate for the OLS estimator extends naturally to 

the IV estimator, the two-stage least squares (2SLS) estimator and the linear GMM estimator.  
The following additional adjustments must be made when errors are clustered. First, a 

modified version of the Hausman test of endogeneity needs to be used. Second, the usual 
inference methods when instruments are weak need to be adjusted. Third, tests of 
over-identifying restrictions after GMM need to be based on an optimal weighting matrix that 
controls for cluster correlation of the errors.  

1. IV and 2SLS 

In matrix notation, the OLS estimator in the model 𝒚 = 𝑿𝜷 + 𝒖 is inconsistent if 
E[𝒖|𝑿] ≠ 𝟎. We assume existence of a set of instruments 𝒁 that satisfy E[𝒖|𝒁] = 𝟎 and 
satisfy other conditions, notably 𝒁 is of full rank with dim[𝒁] ≥ dim[𝑿] and Cor[𝒁,𝑿] ≠ 𝟎.  

For the clustered case the assumption that errors in different clusters are uncorrelated is 
now one of uncorrelated errors conditional on the instruments 𝒁, rather than uncorrelated 
errors conditional on the regressors 𝑿. In the 𝑔𝑡ℎ cluster the matrix of instruments 𝒁𝑔 is an 
𝑁𝑔 × 𝑀 matrix, where 𝑀 ≥ 𝐾, and we assume that E[𝒖𝑔|𝒁𝑔] = 𝟎 and Cov[𝒖𝑔𝒖ℎ′ |𝒁𝑔,𝒁ℎ] =
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𝟎 for 𝑔 ≠ ℎ.  
In the just-identified case, with 𝒁 and 𝑿 having the same dimension, the IV estimator 

is 𝜷�IV = (𝒁′𝑿)−1𝒁′𝒚, and the cluster-robust variance matrix estimate is  
 

 V�clu[𝜷�IV] = (𝒁′𝑿)−1 �� 𝒁𝑔′ 𝒖�𝑔𝒖�𝑔′ 𝒁𝑔
𝐺

𝑔=1
� (𝑿′𝒁)−1, (28) 

 
where 𝒖�𝑔 = 𝒚𝑔 − 𝑿𝑔𝜷�IV are residuals calculated using the consistent IV estimator. We again 
assume 𝐺 → ∞. As for OLS, the CRVE may be rank-deficient with rank the minimum of 𝐾 
and 𝐺 − 1.  

In the over-identified case with 𝒁  having dimension greater than 𝑿 , the 2SLS 
estimator is the special case of the linear GMM estimator in (29) below with 𝑾 = (𝒁′𝒁)−1, 
and the CRVE is that in (30) below with 𝑾 = (𝒁′𝒁)−1 and 𝒖�𝑔 the 2SLS residuals. In the 
just-identified case 2SLS is equivalent to IV.  

A test for endogeneity of a regressor(s) can be conducted by comparing the OLS 
estimator to the 2SLS (or IV) estimator that controls for this endogeneity. The two estimators 
have the same probability limit given exogeneity and different probability limits given 
endogeneity. This is a classic setting for the Hausman test but, as in the Hausman test for fixed 
effects discussed in Subsection III.D, the standard version of the Hausman test cannot be used 
when errors are clustered. Instead partition = [𝑿1 𝑿2], where 𝑿1 is potentially endogenous 
and 𝑿2 is exogenous, and let 𝒗�𝑖𝑔 denote the residuals from first-stage OLS regression of the 
endogenous regressors on instruments and exogenous regressors. Then estimate by OLS the 
model 

 
𝑦𝑖𝑔 = 𝒙1𝑖𝑔′ 𝜷1 + 𝒙2𝑖𝑔′ 𝜷2 + 𝒗�1𝑖𝑔′ 𝜸 + 𝑢𝑖𝑔. 

 
The regressors 𝒙1 are considered endogenous if we reject 𝐻0:𝜸 = 𝟎 using a Wald test based 
on a CRVE. In Stata this is implemented using command estat endogenous. 
(Alternatively a pairs cluster bootstrap can be used to estimate the variance of 𝜷�2SLS − 𝜷�OLS).  

2. Weak Instruments 

When endogenous regressor(s) are weakly correlated with instrument(s), after 
partialling out the exogenous regressors in the model, there is great loss of precision. Then the 
standard error for the coefficient of the endogenous regressor is much higher after IV or 2SLS 
estimation than after OLS estimation.  

Additionally, asymptotic theory takes an unusually long-time to kick in so that even 
with large samples the IV estimator can still have considerable bias and the Wald statistic is 
still not close to normally distributed. See, for example, Bound, Jaeger, and Baker (1995), 
Andrews and Stock (2007), and textbook discussions in Cameron and Trivedi (2005, 2009).  

For this second consequence, called the “weak instrument” problem, the econometrics 
literature has focused on providing theory and guidance in the case of homoskedastic errors. 
Not all of the proposed methods extend to errors that are correlated within cluster. And the 
problem may even be greater in the clustered case, as the asymptotics are then in 𝐺 → ∞ 
rather than 𝑁 → ∞, though we are unaware of evidence on this.  

We begin with case of a single endogenous regressor. A standard diagnostic for 
detecting weak instruments is to estimate by OLS the first-stage regression of the endogenous 
regressor on the exogenous regressors and the additional instrument(s). Then calculate the 
F-statistic for the joint significance of the instruments; in the case of a just-identified model 
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there is only one instrument to test so the F-statistic is the square of the t-statistic. With 
clustered errors, this F-statistic needs to be based on a cluster-robust variance matrix estimate. 
It is common practice to interpret the cluster-robust F-statistic in the same way as when errors 
are i.i.d., using the tables of Stock and Yogo (2005) or the popular rule-of-thumb, due to 
Staiger and Stock (1997), that there may be a weak instrument problem if 𝐹 < 10. But it 
should be noted that these diagnostics for weak instruments were developed for the simpler 
case of i.i.d. errors. Note also that the first stage cluster-robust F-statistic can only be computed 
if the number of instruments is less than the number of clusters.  

With more than one endogenous variable and i.i.d. errors the F-statistic generalizes to 
the Cragg-Donald minimum eigenvalue statistic, and one can again use the tables of Stock and 
Yogo (2005). For clustered errors generalizations of the Cragg-Donald minimum eigenvalue 
statistic have been proposed, see Kleibergen and Paap (2008), but it is again not clear whether 
these statistics can be compared to the Stock and Yogo tables when errors are clustered.  

Now consider statistical inference that is valid even if instruments are weak, again 
beginning with the case of a single endogenous regressor. Among the several testing methods 
that have been proposed given i.i.d. errors, the Anderson-Rubin method can be generalized to 
the setting of clustered errors. Consider the model 𝑦𝑖𝑔 = 𝛽𝑥𝑖𝑔 + 𝑢𝑖𝑔, where the regressor x is 
endogenous and the first-stage equation is 𝑥𝑖𝑔 = 𝒛𝑖𝑔′ 𝝅 + 𝑣𝑖𝑔 . (If there are additional 
exogenous regressors 𝒙2, as is usually the case, the method still works if the variables 𝑦, 𝑥 
and 𝒛 are defined after partialling out 𝒙2 .) The two equations imply that 𝑦𝑖𝑔 − 𝛽∗𝑥𝑖𝑔 =
𝒛𝑖𝑔′ 𝝅(𝛽 − 𝛽∗) + 𝑤𝑖𝑔, where 𝑤𝑖𝑔 = 𝑢𝑖𝑔 + 𝑣𝑖𝑔(𝛽 − 𝛽∗). So a test of 𝛽 = 𝛽∗ is equivalent to a 
Wald test of 𝜸 = 𝟎 in the model 𝑦𝑖𝑔 − 𝛽∗𝑥𝑖𝑔 = 𝒛𝑖𝑔′ 𝜸 + 𝑤𝑖𝑔. With clustered errors the test is 
based on cluster-robust standard errors.  

Additionally, a weak instrument 95% confidence interval for 𝛽 can be constructed by 
regressing 𝑦𝑖𝑔 − 𝛽∗𝑥𝑖𝑔 on 𝒛𝑖𝑔 for a range of values of 𝛽∗ and including in the confidence 
interval for 𝛽 only those values of 𝛽∗ for which we did not reject 𝐻0:𝜸 = 𝟎 when testing at 
5%. As in the i.i.d. case, this can yield confidence intervals that are unbounded or empty, and 
the method loses power when the model is overidentified.  

When there is more than one endogenous regressor this method can also be used, but it 
can only perform a joint F-test on the coefficients of all endogenous regressors rather than 
separate tests for each of the endogenous regressors.  

Chernozhukov and Hansen (2008) provide a simple presentation of the method and an 
empirical example. Finlay and Magnusson (2009) provide this and other extensions, and 
provide a command ivtest for Stata. We speculate that if additionally there are few clusters, 
then some of the adjustments discussed in Section VI would help.  

Baum, Schaffer and Stillman (2007) provide a comprehensive discussion of various 
methods for IV, 2SLS, limited information maximum likelihood (LIML), k-class, continuous 
updating and GMM estimation in linear models, and present methods using their ivreg2 
Stata command. They include weak instruments methods for errors that are i.i.d., 
heteroskedastic or within-cluster correlated errors.  

3. Linear GMM 

For over-identified models the linear GMM estimator is more efficient than the 2SLS 
estimator if E[𝒖𝒖′|𝒁] ≠ 𝜎2𝑰. Then  

 
 𝜷�GMM = (𝑿′𝒁𝑾𝒁′𝑿)−1(𝑿′𝒁𝑾𝒁′𝒚), (29) 
 
where 𝑾 is a full rank 𝐾 × 𝐾 weighting matrix. The CRVE for GMM is  
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V�clu[𝜷�GMM]

= (𝑿′𝒁𝑾𝒁′𝑿)−1𝑿′𝒁𝑾�� 𝒁𝑔′ 𝒖�𝑔𝒖�𝑔′ 𝒁𝑔
𝐺

𝑔=1
�𝑾𝒁′𝑿(𝑿′𝒁𝑾𝒁′𝑿)−1, (30) 

 
where 𝒖�𝑔 are residuals calculated using the GMM estimator.  

For clustered errors, the efficient two-step GMM estimator uses 
𝑾 = (∑ 𝒁𝑔′ 𝒖�𝑔𝒖�𝑔′ 𝒁𝑔)−1𝐺

𝑔=1 , where 𝒖�𝑔 are 2SLS residuals. Implementation of this estimator 
requires that the number of clusters exceeds the number of instruments, since otherwise 
∑ 𝒁𝑔′ 𝒖�𝑔𝒖�𝑔′ 𝒁𝑔𝐺
𝑔=1  is not invertible. Here 𝒁 contains both the exogenous regressors in the 

structural equation and the additional instruments required to enable identification of the 
endogenous regressors. When this condition is not met, Baum, Schaffer and Stillman (2007) 
propose doing two-step GMM after first partialling out the instruments 𝒛 from the dependent 
variable 𝑦, the endogenous variables in the initial model 𝑦𝑖𝑔 = 𝒙𝑖𝑔′ 𝜷 + 𝑢𝑖𝑔, and any additional 
instruments that are not also exogenous regressors in this model.  

The over-identifying restrictions (OIR) test, also called a Hansen test or a Sargan test, is 
a limited test of instrument validity that can be used when there are more instruments than 
necessary. When errors are clustered the OIR tests must be computed following the cluster 
version of two-step GMM estimation; see Hoxby and Paserman (1998).  

Just as GLS is more efficient than OLS, specifying a model for Ω = E[𝒖𝒖′|𝒁] can 
lead to more efficient estimation than GMM. Given a model for Ω, and conditional moment 
condition E[𝒖|𝒁] = 𝟎, a more efficient estimator is based on the unconditional moment 
condition E[𝒁′Ω−1𝒖] = 𝟎. Then we minimize (𝒁′Ω�−1𝒖)′(𝒁′Ω�−1𝒁)−1(𝒁′Ω�−1𝒖), where Ω� is 
consistent for Ω. Furthermore the CRVE can be robustified against misspecification of Ω, 
similar to the case of FGLS. In practice such FGLS-type improvements to GMM are seldom 
used, even in simpler settings that the clustered setting. An exception is Shore-Sheppard (1996) 
who considers the impact of equicorrelated instruments and group-specific shocks in a model 
similar to that of Moulton. One reason may be that this option is not provided in Stata 
command ivregress. In the special case of a random effects model for Ω, command 
xtivreg can be used along with a pairs cluster bootstrap used to guard against 
misspecification of Ω.    

C. Nonlinear Models 
For nonlinear models there are several ways to handle clustering. We provide a brief 

summary; see Cameron and Miller (2011) for further details.  
For concreteness we focus on logit regression. Recall that in the cross-section case 𝑦𝑖 

takes value 0 or 1 and the logit model specifies that E[𝑦𝑖|𝒙𝑖] = Pr [𝑦𝑖 = 1|𝒙𝑖] = Λ(𝒙𝑖′𝜷), 
where Λ(𝑧) = 𝑒𝑧/(1 + 𝑒𝑧).  

1. Different Models for Clustering 

The simplest approach is a pooled approach that assumes that clustering does not 
change the functional form for the conditional probability of a single observation. Thus, for the 
logit model, whatever the nature of clustering, it is assumed that  

 
 E[𝑦𝑖𝑔|𝒙𝑖𝑔] = Pr [ 𝑦𝑖𝑔 = 1|𝒙𝑖𝑔] = Λ(𝒙𝑖𝑔′ 𝜷). (31) 
 
This is called a population-averaged approach, as Λ(𝒙𝑖𝑔′ 𝜷) is obtained after averaging out any 
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within-cluster correlation. Inference needs to control for within-cluster correlation, however, 
and more efficient estimation may be possible.  

The generalized estimating equations (GEE) approach, due to Liang and Zeger (1986) 
and widely used in biostatistics, introduces within-cluster correlation into the class of 
generalized linear models (GLM), a class that includes the logit model. One possible model for 
within-cluster correlation is equicorrelation, with Cor [𝑦𝑖𝑔,𝑦𝑗𝑔|𝒙𝑖𝑔,𝒙𝑗𝑔] = 𝜌 . The Stata 
command xtgee y x, family(binomial) link(logit) corr(exchangeable) 
estimates the population-averaged logit model and provides the CRVE assuming the 
equicorrelation model for within-cluster correlation is correctly specified. The option 
vce(robust) provides a CRVE that is robust to misspecification of the model for 
within-cluster correlation. Command xtgee includes a range of models for the within-error 
correlation. The method is a nonlinear analog of FGLS given in Subsection II.D, and 
asymptotic theory requires 𝐺 → ∞.  

A further extension is nonlinear GMM. For example, with endogenous regressors and 
instruments 𝒛  that satisfy E [𝑦𝑖𝑔 − exp ( 𝒙𝑖𝑔′ 𝜷)|𝒛𝑖𝑔] = 0 , a nonlinear GMM estimator 
minimizes 𝒉(𝜷)′𝑾𝒉(𝜷)  where 𝒉(𝜷) = ∑ ∑ 𝒛𝑖𝑔𝑖𝑔 (𝑦𝑖𝑔 − exp (𝒙𝑖𝑔′ 𝜷)) . Other choices of 
𝒉(𝜷) that allow for intracluster correlation may lead to more efficient estimation, analogous to 
the linear GMM example discussed at the end of Subsection VII.B. Given a choice of 𝒉(𝜷), 
the two-step nonlinear GMM estimator at the second step uses weighting matrix 𝑾 that is the 
inverse of a consistent estimator of V[𝒉(𝜷)], and one can then use the minimized objection 
function for an overidentifying restrictions test.  

Now suppose we consider a random effects logit model with normally distributed 
random effect, so  

 
 Pr [ 𝑦𝑖𝑔 = 1|𝛼𝑔,𝒙𝑖𝑔] = Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷), (32) 
 
where 𝛼𝑔 ∼ 𝑁[0,𝜎𝛼2]. If 𝛼𝑔 is known, the 𝑁𝑔 observations in cluster 𝑔 are independent with 
joint density 
 

𝑓(𝑦1𝑔, . . . ,𝑦𝑁𝑔𝑔|𝛼𝑔,𝑿𝑔) = � Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷)𝑦𝑖𝑔[1 − Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷)]1−𝑦𝑖𝑔
𝑁𝑔

𝑖=1
. 

 
Since 𝛼𝑔 is unknown it is integrated out, leading to joint density 
 

𝑓(𝑦1𝑔, . . . ,𝑦𝑁𝑔𝑔|𝑿𝑔) = ��� Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷)𝑦𝑖𝑔[1 − Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷)]1−𝑦𝑖𝑔
𝑁𝑔

𝑖=1
� ℎ(𝛼𝑔|𝜎𝛼2)𝑑𝛼𝑔, 

 
where ℎ(𝛼𝑔|𝜎𝛼2) is the 𝑁[0,𝜎𝛼2] density. There is no closed form solution for this integral, but 
it is only one-dimensional so numerical approximation (such as Gaussian quadrature) can be 
used. The consequent MLE can be obtained in Stata using the command xtlogit y x, re. 
Note that in this RE logit model (31) no longer holds, so 𝜷 in the model (32) is scaled 
differently from 𝜷 in (31). Furthermore 𝜷 in (32) is inconsistent if the distribution for 𝛼𝑔 is 
misspecified, so there is little point in using option vce(robust) after command 
xtlogit, re.  

It is important to realize that in nonlinear models such as logit, the population-averaged 
and random effects approaches lead to quite different estimates of 𝜷 that are not comparable 
since 𝜷  means different things in the different models. The resulting estimated average 
marginal effects may be similar, however, just as they are in standard cross-section logit and 
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probit models.  
With few clusters, Wald statistics are likely to over-reject as in the linear case, even if 

we scale the CRVE’s given in this section by 𝐺/(𝐺 − 1) as is typically done; see (12) for the 
linear case. McCaffrey, Bell, and Botts (2001) consider bias-correction of the CRVE in 
generalized linear models. Asymptotic refinement using a pairs cluster bootstrap as in 
Subsection VI.C is possible. The wild bootstrap given in Subsection VI.D is no longer possible 
in a nonlinear model, aside from nonlinear least squares, since it requires additively separable 
errors. Instead one can use the score wild bootstrap proposed by Klein and Santos (2012) for 
nonlinear models, including maximum likelihood and GMM models. The idea in their paper is 
to estimate the model once, generate scores for all observations, and then perform a bootstrap 
in the wild-cluster style, perturbing the scores by bootstrap weights at each step. For each 
bootstrap replication the perturbed scores are used to build a test statistic, and the resulting 
distribution of this test statistic can be used for inference. They find that this method performs 
well in small samples, and can greatly ease computational burden because the nonlinear model 
need only be estimated once. The conservative test of Ibragimov and Müller (2010) can be used 
if 𝑁𝑔 → ∞.  

2. Fixed Effects 

A cluster-specific fixed effects version of the logit model treats the unobserved 
parameter 𝛼𝑔  in (32) as being correlated with the regressors 𝒙𝑖𝑔 . In that case both the 
population-averaged and random effects logit estimators are inconsistent for 𝜷.  

Instead we need a fixed effects logit estimator. In general there is an incidental 
parameters problem if asymptotics are that 𝑁𝑔  is fixed while 𝐺 → ∞ , as there only 𝑁𝑔 
observations for each 𝛼𝑔 , and inconsistent estimation of 𝛼𝑔  spills over to inconsistent 
estimation of 𝜷. Remarkably for the logit model it is nonetheless possible to consistently 
estimate 𝜷. The logit fixed effects estimator is obtained in Stata using the command xtlogit 
y x, fe. Note, however, that the marginal effect in model (32) is 𝜕 Pr [ 𝑦𝑖𝑔 =
1|𝛼𝑔,𝒙𝑖𝑔]/𝜕𝑥𝑖𝑗𝑘 = Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷)(1 − Λ(𝛼𝑔 + 𝒙𝑖𝑔′ 𝜷))𝛽𝑘 . Unlike the linear FE model this 
depends on the unknown 𝛼𝑔. So the marginal effects cannot be computed, though the ratio of 
the marginal effects of the 𝑘𝑡ℎand 𝑙𝑡ℎ  regressor equals 𝛽𝑘/𝛽𝑙  which can be consistently 
estimated.  

The logit model is one of few nonlinear models for which fixed effects estimation is 
possible when 𝑁𝑔 is small. The other models are Poisson with E[𝑦𝑖𝑔|𝑿𝑔,𝛼𝑔] = exp (𝛼𝑔 +
𝒙𝑖𝑔′ 𝜷), and nonlinear models with E[𝑦𝑖𝑔|𝑿𝑔,𝛼𝑔] = 𝛼𝑔 + 𝑚(𝒙𝑖𝑔′ 𝜷), where 𝑚(⋅) is a specified 
function.  

The natural approach to introduce cluster-specific effects in a nonlinear model is to 
include a full set of cluster dummies as additional regressors. This leads to inconsistent 
estimation of 𝜷 in all models except the linear model (estimated by OLS) and the Poisson 
regression model, unless 𝑁𝑔 → ∞. There is a growing literature on bias-corrected estimation in 
such cases; see, for example, Fernández-Val (2009). This paper also cites several simulation 
studies that gauge the extent of bias of dummy variable estimators for moderate 𝑁𝑔, such as 
𝑁𝑔 = 20.  

Yoon and Galvao (2013) consider fixed effects in panel quantile regression models 
with correlation within cluster and provide methods under the assumption that both the number 
of individuals and the number of time periods go to infinity.  
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D. Cluster-randomized Experiments 
Increasingly researchers are gathering their own data, often in the form of field or 

laboratory experiments. When analyzing data from these experiments they will want to account 
for the clustered nature of the data. And so when designing these experiments, they should also 
account for clustering. Fitzsimons, Malde, Mesnard, and Vera-Hernández (2012) use a wild 
cluster bootstrap in an experiment with 12 treated and 12 control clusters.  

Traditional guidance for computing power analyses and minimum detectable effects 
(see e.g. Duflo, Glennerster and Kremer, 2007, pp. 3918-3922, and Hemming and Marsh 
(2013)) are based on assumptions of either independent errors or, in a clustered setting, a 
random effects common-shock model. Ideally one would account for more general forms of 
clustering in these calculations (the types of clustering that motivate cluster-robust variance 
estimation), but this can be difficult to do ex ante. If you have a data set that is similar to the one 
you will be analyzing later, then you can assign a placebo treatment, and compute the ratio of 
cluster-robust standard errors to default standard errors. This can provide a sense of how to 
adjust the traditional measures used in design of experiments.  

VIII. Empirical Example 
In this section we illustrate the most common applications of cluster-robust inference. 

There are two examples. The first is a Moulton-type setting that uses individual-level cross 
section data with clustering on state. The second is the Bertrand et al. (2004) example of DiD in 
a state-year panel with clustering on state and potentially with state fixed effects.  

The micro data are from the March CPS, downloaded from IPUMS-CPS (King et al., 
2010). We use data covering individuals who worked 40 or more weeks during the prior year, 
and whose usual hours per week in that year was 30 or more. The hourly wage is constructed as 
annual earnings divided by annual hours (usual hours per week times number of weeks 
worked), deflated to real 1999 dollars, and observations with real wage in the range ($2, $100) 
are kept.  

The cross-section example uses individual-level data for 2012. The panel example uses 
data aggregated to the state-year level for 1977 to 2012. In both cases we estimate log-wage 
regressions and perform inference on a generated regressor that has zero coefficient. 
Specifically, we test 𝐻0:𝛽 = 0 using 𝑤 = �̂�/𝑠𝛽� . For each example we present results for a 
single data set, before presenting a Monte Carlo experiment that focuses on inference when 
there are few clusters.  

We contrast various ways to compute standard errors and perform Wald tests. Even 
when using a single statistical package, different ways to estimate the same model may lead to 
different empirical results due to calculation of different degrees of freedom, especially in 
models with fixed effects, and due to uses of different distributions in computing p-values and 
critical values. To make this dependence clear we provide the particular Stata command used to 
results given below; similar issues arise if alternative statistical packages are employed.  

The data and accompanying Stata code (version 13) are available at our websites. 

A. Individual-level Cross-section Data: One Sample 
In our first application we use data on 65,685 individuals from the year 2012. The 

model is  
 

 𝑦𝑖𝑔 = 𝛽𝑑𝑔 + 𝒛𝑖𝑔′ 𝜸 + 𝑢𝑖𝑔, (33) 
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where 𝑦𝑖𝑔 is log-wage, 𝑑𝑔 is a randomly generated dummy “policy” variable, equal to one for 
one-half of the states and zero for the other half, and 𝒛𝑖𝑔 is a set of individual-level controls 
(age, age squared, and education in years). Estimation is by OLS and by FGLS controlling for 
state-level random effects.  

The policy variable 𝑑𝑔 is often referred to as a “placebo” treatment, and should be 
statistically significant in only 5% of tests performed at significance level 0.05.  

Table 1 reports the estimated coefficient of the policy variable, along with its standard 
error computed in several different ways, when there are 51 clusters (states).  

OLS results given in the first column of Table 1 are obtained using Stata command 
regress. The default standard error is misleadingly small (𝑠𝑒 = 0.0042), leading to the 
dummy variable being very highly statistically significant (𝑡 = −0.0226/0.0042 = −5.42) 
even though it was randomly generated independently of log-wage. The White 
heteroskedastic-robust standard error, from regress option vce(robust), is similar in 
magnitude. From Subsection IV.A White standard errors should not be used if 𝑁𝑔 is small, but 
here 𝑁𝑔  is large. The cluster-robust standard error (𝑠𝑒 = 0.0229)  using option 
vce(cluster state) is 5.5 times larger and leads to the more sensible result that the 
regressor is statistically insignificant (𝑡 = −0.99). In results not presented in Table 1, the 
cluster-robust standard errors of the other regressors - age, age squared and education - were, 
respectively, 1.2, 1.2 and 2.3 times the default. So ignoring clustering again understates the 
standard errors. As expected, a pairs cluster bootstrap (without asymptotic refinement) using 
option vce(boot, cluster(state)), yields very similar cluster-robust standard error. 

Note that formula (6) suggests that the cluster-robust standard errors are 4.9 times the 
default (�1 + (1 × 0.018 × (65685/51 − 1) = 4.9), close to the observed multiple of 5.5. 
Formula (6) may work especially well in this example as taking the natural logarithm of wage 
leads to model error that is close to homoskedastic and equicorrelation is a good error model 
for individuals clustered in regions.  

FGLS estimates for a random effects model with error process defined in (16) are given 
in the second column of Table 1. These were obtained using command xtreg, re after 
xtset state. The cluster-robust standard error defined in (15), and computed using option 
vce(robust), is 0.0214/0.0199 = 1.08 times larger than the default. The pairs cluster 
bootstrap, implemented using option vce(boot) yields a similar cluster-robust standard 
error.  

In principle FGLS can be more efficient than OLS. In this example, there is a modest 
gain in efficiency with the cluster-robust standard error equal to 0.0214 for FGLS compared to 
0.0229 for OLS. 

Finally, to illustrate the potential pitfalls of pairs cluster bootstrapping for standard 
errors when there are few clusters, discussed in Subsection VI.C, we examine a modification 
with only six states broken into treated (AZ, LA, MD) and control (DE, PA, UT). For these six 
states, we estimate a model similar to that in Table 1. Then �̂� = 0.0373  with default 
𝑠𝑒 = 0.0128. We then perform a pairs cluster bootstrap with 999 replications. The bootstrap 
𝑠𝑒 = 0.0622 is similar to the cluster-robust 𝑠𝑒 = 0.0577. However, several problems arise. 
First, 28 replications cannot be estimated, presumably due to no variation in treatment in the 
bootstrap samples. Second, a kernel density estimate of the bootstrapped �̂�𝑠 reveals that their 
distribution is very multi-modal and has limited density near the middle of the distribution. 
Considering these results, we would not feel comfortable using the pairs cluster bootstrap in 
this dataset with these few clusters. Better is to base inference on a wild cluster bootstrap. 

This example highlights the need to use cluster-robust standard errors even when model 
errors are only weakly correlated within cluster (the intraclass correlation of the residuals in 
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this application is 0.018), if the regressor is substantially correlated within cluster (here 
perfectly correlated within cluster) and/or cluster sizes are large (ranging here from 519 to 
5866).  

B. Individual-level Cross-section Data: Monte Carlo 
We next perform a Monte Carlo exercise to investigate the performance of various 

cluster-robust methods as the number of clusters becomes small. The analysis is based on the 
same cross-section regression as in the previous subsection. 

In each replication, we generate a dataset by sampling (with replacement) states and all 
their associated observations. For quicker computation of the Monte Carlo simulation, within 
each state we use only a 20% subsample of individuals, so there are on average approximately 
260 observations per cluster. 

We explore the effect of the number of clusters 𝐺 by performing varying simulations 
with 𝐺 equal to 6, 10, 20, 20 or 50. Given a sample of states, we assign a dummy “policy” 
variable to one-half of the states. We run OLS regressions of log-wage on the policy variable 
and the same controls as used for the Table 1 regressions.  

In these simulations we perform tests of the null hypothesis that the slope coefficient of 
the policy variable is zero. Table 2 presents rejection rates that with millions of replications 
should equal 0.05, since we are testing a true hypothesis at a nominal 5% level. For 𝐺 =
6 and 10 we perform 4,000 simulations, so we expect that 95% of these simulations will yield 
estimated test size in the range (0.043, 0.057) if the true test size is 0.05. For larger 𝐺 there 
are 1,000 simulations and the 95% simulation interval is instead (0.036, 0.064). 

We begin with lengthy discussion of the many clusters case. These results are given in 
the final column (𝐺 = 50) of Table 2. Rows 1-9 report sizes for Wald tests based on 𝑡 = �̂�/𝑠𝑒 
where 𝑠𝑒 is computed in various ways, while rows 10-15 report sizes for tests using various 
bootstraps with an asymptotic refinement. Basic Stata commands yield the standard errors in 
rows 1-3 and 9, while the remaining rows require additional coding. 

Row 1 presents the size of tests using heteroskedastic-robust standard errors, obtained 
using Stata command using regress, vce(robust). Ignoring clustering leads to great 
over-rejection due to considerable under-estimation of the standard error. Using formula (6) for 
this 20% subsample yields a standard error inflation factor of 
�1 + (1 × 0.018 × (0.20 × 65685/51 − 1) = 2.38. So 𝑡 = 1.96  using the 
heteroskedastic-robust standard error is really 𝑡 = 1.96/2.38 = 0.82. And, using standard 
normal critical values, an apparent 𝑝 = 0.05 is really 𝑝 = 0.41 since Pr[|z| > 0.82] = 0.41. 
This crude approximation is fairly close to 𝑝 = 0.498 obtained in this simulation.  

Results using cluster-robust standard errors, presented in rows 2-4 and obtained from 
regress, vce(cluster state), show that even with 51 clusters the choice of 
distribution to use in obtaining critical value makes a difference. The rejection rate is closer to 
0.05 when 𝑇(𝐺 − 1) critical values are used than when 𝑁[0,1] critical values are used. 
Using 𝑇(𝐺 − 2) in row 4, suggested by the study of Donald and Lang (2007), leads to slight 
further improvement, but there is still over-rejection.  

Results using the bias adjustments CR2 and CR3 discussed in Subsection VI.B, along 
with 𝑇(𝐺 − 1) critical values, are presented in rows 5-6. Bias adjustment leads to further 
decrease in the rejection rates, towards the desired 0.05.  

Rows 7 and 8 use critical values from the T distribution with the data-determined 
degrees-of-freedom of Subsection VI.D, equal to 17 on average when 𝐺 = 50 (see rows 14 
and 17). This leads to further improvement in the Monte Carlo rejection rate.  

Bootstrap standard errors obtained from a standard pairs cluster bootstrap, 
implemented using command regress, vce(boot, cluster(state)) are used in 
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row 9. For 𝐺 = 50 the rejection rate is essentially the same as that in row 3, as expected since 
this bootstrap has no asymptotic refinement.  

Rows 10-15 implement the various percentile-t bootstraps with asymptotic refinement 
presented in Subsection VI.C. Only 399 bootstraps are used here as any consequent bootstrap 
simulation error averages out over the many Monte Carlo replications. But if these bootstraps 
were used just once, as in an empirical study, a percentile-t bootstrap should use at least 999 
replications. Row 10 can be computed using the bootstrap: command, see our posted 
code, while rows 11-15 require additional coding. For 𝐺 = 50 the various bootstraps give 
similar results, with rejection rates of a bit more than 0.06.  

Rows 16-19 give the effective number of clusters. The Imbens and Kolesar (2013) 
measure 𝑣∗ in (26), denoted IK, and the Carter, Schnepel and Steigerwald (2013) measure 𝐺∗ 
in (27), denoted CSS, are both equal to 17 on average when 𝐺 = 50. For the IK measure, 
across the 1,000 simulations, the 5th percentile is 9.6 and the 95th percentile is 29.5. 

We next examine settings with fewer clusters than 𝐺 = 50. Then most methods lead to 
rejection rates even further away from the nominal test size of 0.05.  

Consider the case 𝐺 = 6. Rows 2-4 and 8 compute the same Wald test statistic but use 
different degrees of freedom in computing p-values. This makes an enormous difference when 
G is small, as the critical value for a Wald test at level 0.05 rises from 2.571 to 2.776 and 
3.182 for, respectively, the 𝑇(5), 𝑇(4) and 𝑇(3) distributions, and from row 16 the IK 
degrees of freedom averages 3.3 across the simulations. The CSS degrees of freedom is larger 
than the IK as, from Subsection VI.D, it involves an approximation that only disappears as 𝐺 
becomes large.  

Using a bias-corrected CRVE also makes a big difference. It appears from rows 6 and 7 
that it is best to use the CR3 bias-correction with 𝑇(𝐺 − 1) critical values, and the CR2 
bias-correction with 𝑇(𝑣∗)  critical values where 𝑣∗  is the Imbens and Kolesar (2013) 
calculated degrees of freedom. 

A downside to using cluster-robust standard errors is that they provide an estimate of 
the standard deviation of �̂� that is more variable than the default or heteroskedastic-robust 
standard errors. This introduces a potential bias – variance tradeoff. To see whether this 
increased variability is an issue we performed 1000 Monte Carlo replications using the full 
cross-section micro dataset, resampling the 50 states with replacement. The standard deviation 
of the cluster-robust standard error across the 1,000 replications equaled 12.3% of the mean 
cluster-robust standard error, while the standard deviation of the heteroskedastic-robust 
standard error equaled 4.5% of its mean. So while the CRVE is less biased than 
heteroskedastic-robust (or default), it is also more variable. But the increased variability is 
relatively small, especially compared to the very large bias that can arise if clustering is not 
controlled for.  

Rows 10-15 present various bootstraps with asymptotic refinement. From row 10, the 
pairs cluster bootstrap performs extremely poorly for 𝐺 ≤ 10.  

Results for the wild cluster bootstrap using a Rademacher 2 point distribution are 
presented in rows 11-13. From Subsection VI.B this bootstrap yields only 26 = 64 possible 
datasets when 𝐺 = 6, and hence at most 64 unique values for 𝑤∗. This leads to indeterminacy 
for the test p-value. Suppose the p-value is in the range [a,b]. Then 𝐻0 is rejected in row 11 if 
a < 0.05, in row 12 if (a+b)/2 < 0.05, and in row 13 if b < 0.05. The indeterminacy leads to 
substantially different results for G as low as six, though not for 𝐺 ≥ 10. 

The wild cluster bootstrap using the Webb 6 point distribution, see row 14, does not 
have this complication when 𝐺 = 6. And it yields essentially the same results as those using 
the Rademacher 2 point distribution when 𝐺 ≥ 10. 

Comparing row 15 to row 12, imposing the null hypothesis in performing the wild 
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bootstrap does not change the rejection rate very much in this set of simulations when 𝐺 ≥ 10, 
although it appears to matter when 𝐺 = 6. By comparison we have found a more substantial 
difference when simulating from the d.g.p. of Cameron et al. (2008).  

In summary, the various wild cluster bootstraps lead to test size that is closer to 0.05 
than using a standard Wald test with cluster-robust standard errors and 𝑇(𝐺 − 1) critical 
values. But the test size still exceeds 0.05 and the bias adjustments in rows 6 and 7 appear to do 
better. 

This example illustrates that at a minimum one should use a cluster-robust Wald test 
with 𝑇(𝐺 − 1) critical values. Especially when there are few clusters it is better still to use 
bias-adjusted cluster-robust standard errors or to use a wild cluster bootstrap. In this Monte 
Carlo experiment, with few clusters the test size was closest to the nominal size using a Wald 
test with cluster-robust standard errors computed using the CR2 correction and 𝑇(𝑣∗) critical 
values, or using the larger CR2 correction with 𝑇(𝐺 − 1) critical values.  

C. State–Year Panel Data: One Sample 
We next turn to a panel difference-in-difference application motivated by Bertrand et 

al. (2004). The underlying data are again individual-level data from the CPS, but now obtained 
for each of the years 1977 to 2012.  

In applications where the policy regressor of interest is only observed at the state-year 
level, it is common to first aggregate the individual-level data to the state-year level before 
OLS regression. Several methods are used; we use the following method.  

The model estimated for 51 states from 1977 to 2012 is 
  

 𝑦�𝑡𝑠 = 𝛼𝑡𝑠 + 𝛿𝑡 + 𝛽 × 𝑑𝑡𝑠 + 𝑢𝑡𝑠 , (34) 
 
where 𝑦�𝑡𝑠 is the average log-wage in year 𝑡 and state 𝑠 (after partialling out individual level 
covariates), 𝛼𝑠 and 𝛿𝑡 are state and year dummies, and 𝑑𝑡𝑠 is a random “policy” variable that 
turns on and stays on for the last 18 years for one half of the states. Here 𝐺 = 51, 𝑇 = 36 and 
𝑁 = 1836.  

The individual level covariates (age, age squared, and years of education) are partialled 
out using a two-step estimation procedure presented in Hansen (2007b). Define 𝐷𝑡𝑠 to be 
state-by-year dummies. First we OLS regress log wage (𝑦𝑖𝑡𝑠) on state-by-year dummies 𝐷𝑡𝑠 
and on the individual level covariates. And second 𝑦�𝑡𝑠 in equation (34) equals the estimated 
coefficients of the 𝐷𝑡𝑠 dummies.  

To speed up bootstraps, and to facilitate computation of the CR2 residual adjustment, 
we additionally partial out the state fixed effects and year fixed effects in (34) by the standard 
Frisch-Waugh method. We separately regress 𝑦�𝑡𝑠 and 𝑑𝑡𝑠 on the state dummies and the year 
dummies. Then 𝛽 is estimated by regressing the residuals of 𝑦�𝑡𝑠 on the residuals of 𝑑𝑡𝑠, with 
no constant. As noted below, regression using residuals leads to slightly different standard 
errors due to different degrees of freedom used in calculating the CRVE. 

Table 3 presents results for the policy dummy regressor which should have coefficient 
zero since it is randomly assigned.  

We begin with model 1, OLS controlling for state and year fixed effects. Using default 
or White-robust standard errors (rows 1-2) leads to a standard error of 0.0037 that is much 
smaller than the cluster-robust standard error of 0.0119 (row 3), where clustering is on state. 
Similar standard errors are obtained using the CR2 correction (rows 4 and 5) and bootstrap 
without asymptotic refinement (row 6). Note that from rows 10 and 11 the IK and CSS degrees 
of freedom are calculated to be, respectively, 𝐺 − 1 and G, an artifact of having balanced 
clusters and a single regressor that is invariant within cluster. 
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The inclusion of state and year fixed effects complicates computation of the degrees of 
freedom (df) adjustment used in computing the CRVE. The row 3 column 1 results are obtained 
from regression of residual on residual without intercept, using command regress, 
noconstant vce(cluster(state)). Then from formula (12) 𝑑𝑓 = 𝐺

𝐺−1
× 𝐺𝑇

𝐺𝑇−1
. If 

instead we directly regressed log-wage on the state and year fixed effects and the K regressors, 
again using regress, vce(cluster(state)), then 𝑑𝑓 = 𝐺

𝐺−1
× 𝐺𝑇

𝐺𝑇−𝑇−𝐺−1
 and the 

cluster-robust standard error equals 0.0122 rather than 0.0119 . And if instead we directly 
estimate the log-wage equation using xtreg, vce(robust) after xtset state then 
𝑑𝑓 = 𝐺

𝐺−1
 and the cluster-robust standard error equals 0.0120. In this example with large T and 

G these adjustments make little difference, but for small G or T one should use 𝑑𝑓 = 𝐺
𝐺−1

 as 
explained in Subsection III.B. 
 The corresponding p-values for tests of the null hypothesis that 𝛽 = 0, following OLS 
regression, are given in column 4 of Table 3. Default and heteroskedastic-robust standard 
errors lead to erroneously large t-statistics (of 0.0156 / 0.0037 = 4.22), so 𝑝 = 0.000 and the 
null hypothesis is incorrectly rejected. Using various standard errors that control for clustering 
(rows 3-6) leads to 𝑝 ≃ 0.20 so that the null is not rejected. Rows 7-9 report p-values from 
several percentile-t bootstraps that again lead to rejection of 𝐻0:𝛽 = 0. 
 For illustrative purposes we also compute standard errors allowing for two-way 
clustering, see Section V, with clustering on both state and year. These are computed using the 
user-generated Stata add-on program cgmreg.ado. Clustering on year is necessary if both the 
regressor and the model errors are correlated across states in a given year. For this application, 
the result (s.e. = 0.01167) is very similar to that from clustering on state alone (s.e. = 0.01185). 
In some other panel applications the two-way cluster robust standard errors can be substantially 
larger than those from clustering on state alone.  

The main lesson from the model 1 OLS results is that even after inclusion of state fixed 
effects one needs to use cluster-robust standard errors that cluster on state. The inclusion of 
state fixed effects did not eliminate the within-state correlation of the error. In this example the 
correct cluster-robust standard errors are 3.6 times larger than the default.  

Model 2 again uses OLS estimation, but drops the state fixed effects from the model 
(34). Dropping these fixed effects leads to much less precise estimation as the cluster-robust 
standard error (row 3) increases from 0.0037 to 0.0226 and this cluster-robust standard error is 
now 0.0226 / 0.0042 = 5.7 times the default, compared to a ratio of 3.6 when state fixed effects 
were included. Note that inclusion of state fixed effects (model 1) did soak up some of the 
within-state error correlation, as expected, but there still remained substantial within-cluster 
correlation of the error so that cluster-robust standard errors need to be used. 

For model 2 the comparisons of the various standard errors and p-values are 
qualitatively similar to those for model 1, so are not discussed further. 

Model 3 estimates the same model as model 1, except that the state and year fixed 
effects are directly estimated, and estimation is now by FGLS allowing for an AR(1) process 
for the errors. Since there are 36 years of data the bias correction of Hansen (2007b), see 
Subsection III.C, will make little difference and is not used here. Estimation uses Stata 
command xtreg,  pa corr(ar 1) after xtset state. 

Comparing rows 1 and 3, again even with inclusion of state fixed effects one should 
obtain standard errors that cluster on state, using xtreg, pa option vce(robust)). The 
difference is not as pronounced as for OLS, with FGLS cluster-robust standard error that is 
0.0084/0.0062 = 1.4 times the default. 

FGLS estimation has led to substantial gain in efficiency, with cluster-robust standard 
error (row 3) for FGLS of 0.0084 compared to 0.0119 for OLS. 
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This example illustrates that even with state fixed effects included in a state year panel 
inference should be based on cluster-robust standard errors. Furthermore there can be 
substantial efficiency gains to estimating by FGLS rather than OLS. 

D. State–Year Panel Data: Monte Carlo 
We next perform a Monte Carlo exercise to investigate the performance of various 

cluster-robust methods as the number of clusters becomes small. The analysis is based on the 
same state-year panel regression as in the previous subsection, with each state-year observation 
based on log-wages after partialling out the individual level covariates. 

In each simulation, we draw a random set of 𝐺 states (with replacement), where G 
takes values 6, 10, 20, 20 and 50. When a state is drawn, we take all years of data for that state. 
We then assign our DiD “policy” variable to half the states, with the policy turned on mid-way 
through the time period. In these simulations we perform tests of the null hypothesis that the 
slope coefficient of the policy variable is zero. As in Table 2, for 𝐺 = 6 and 10 we perform 
4,000 simulations, so we expect that 95% of these simulations will yield estimated test size in 
the range (0.043, 0.057). For larger 𝐺 there are 1,000 simulations and the 95% simulation 
interval is instead (0.036, 0.064). 

We begin with the last column of the table, with 𝐺 = 50 states. All tests aside from 
that based on default standard errors (row 1) have rejection rates that are not appreciably 
different from 0.05, once we allow for simulation error.  

As the number of clusters decreases it becomes clear that one should use the 𝑇(𝐺 − 1) 
or 𝑇(𝐺 − 2) distribution for critical values, and even this leads to mild over-rejection with low 
𝐺. The pairs cluster percentile-t bootstrap fails with few clusters, with rejection rate of only 
0.005 when 𝐺 = 6. For low 𝐺, the wild cluster percentile-t bootstrap has similar results with 
either 2-point or 6-point weights, with very slight over-rejection.  

XI. Concluding Thoughts 
It is important to aim for correct statistical inference, many empirical applications 

feature the potential for errors to be correlated within clusters, and we need to make sure our 
inference accounts for this. Often this is straightforward to do using traditional cluster-robust 
variance estimators - but sometimes things can be tricky. The leading difficulties are (1) 
determining how to define the clusters, and (2) dealing with few clusters; but other 
complications can arise as well. When faced with these difficulties, there is no simple hard and 
fast rule regarding how to proceed. You need to think carefully about the potential for 
correlations in your residuals, and how that interacts with correlations in your covariates. In 
this essay we have aimed to present the current leading set of tools available to practitioners to 
deal with clustering issues. 
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Table 1 - Cross-section individual level data
Impacts of clustering and estimator choices on estimated coefficients and standard errors

OLS FGLS (RE)
Slope coefficient 0.0108 0.0314
Standard Errors

Default 0.0042 0.0199
Heteroscedastic Robust 0.0042 -
Cluster Robust (cluster on State) 0.0229 0.0214
Pairs cluster bootstrap 0.0224 0.0216

Number observations 65685 65685
Number clusters (states) 51 51
Cluster size range 519 to 5866 519 to 5866
Intraclass correlation 0.018 -

Notes:  March 2012 CPS data, from IPUMS download.  Default standard errors for OLS assume errors 
are iid; default standard errors for FGLS assume the Random Effects model is correctly specified.  The 
Bootstrap uses 399 replications.  A fixed effect model is not possible, since the regressor is invariant 
within states.

Estimation Method



Table 2 - Cross-section individual level data
Monte Carlo rejection rates of true null hypothesis (slope = 0) with different number of clusters and different rejection methods
Nominal 5% rejection rates

Wald test method
6 10 20 30 50

Different standard errors and critical values
1 White Robust, T(N-k) for critical value 0.439 0.457 0.471 0.462 0.498
2 Cluster on state, T(N-k) for critical value 0.215 0.147 0.104 0.083 0.078
3 Cluster on state, T(G-1) for critical value 0.125 0.103 0.082 0.069 0.075
4 Cluster on state, T(G-2) for critical value 0.105 0.099 0.076 0.069 0.075
5 Cluster on state, CR2 bias correction, T(G-1) for critical value 0.082 0.070 0.062 0.060 0.065
6 Cluster on state, CR3 bias correction, T(G-1) for critical value 0.048 0.050 0.050 0.052 0.061
7 Cluster on state, CR2 bias correction, IK degrees of freedom 0.052 0.050 0.047 0.047 0.054
8 Cluster on state, T(CSS effective # clusters) 0.114 0.079 0.057 0.056 0.061
9 Pairs cluster bootstrap for standard error, T(G-1) for critical value 0.082 0.072 0.069 0.067 0.074

Bootstrap Percentile-T methods
10 Pairs cluster bootstrap 0.009 0.031 0.046 0.051 0.061
11 Wild cluster bootstrap, Rademacher 2 point distribution, low-p-value 0.097 0.065 0.062 0.051 0.060
12 Wild cluster bootstrap, Rademacher 2 point distribution, mid-p-value 0.068 0.065 0.062 0.051 0.060
13 Wild cluster bootstrap, Rademacher 2 point distribution, high-p-value 0.041 0.064 0.062 0.051 0.060
14 Wild cluster bootstrap, Webb 6 point distribution 0.079 0.067 0.061 0.051 0.061
15 Wild cluster bootstrap, Rademacher 2 pt, do not impose null hypothesis 0.086 0.063 0.050 0.053 0.056

16 IK effective DOF (mean) 3.3 5.6 9.4 12.3 16.9
17 IK effective DOF (5th percentile) 2.7 3.7 4.9 6.3 9.6
18 IK effective DOF (95th percentile) 3.8 7.2 14.5 20.8 29.5
19 CSS effective # clusters (mean) 4.7 6.6 9.9 12.7 17
20 Average number of observations 1554 2618 5210 7803 13055

Notes:  March 2012 CPS data, 20% sample from IPUMS download.  For 6 and 10 clusters, 4000 Monte Carlo replications.  For 20-50 clusters, 
1000 Monte Carlo replications.  The Bootstraps use 399 replications.  "IK effective DOF" from Imbens and Kolesar (2013), and "CSS effective # 
clusters" from Carter, Schnepel and Steigerwald (2013), see Subsection VI.D.  Row 11 uses lowest p-value from interval, when Wild percentile-
T bootstrapped p-values are not point identified due to few clusters.  Row 12  uses mid-range of interval, and row 13 uses largest p-value of 
interval.

Numbers of Clusters



Table 3 - State-year panel data with differences-in-differences estimation
Impacts of clustering and estimation choices on estimated coefficients, standard errors, and p-values

Model: 1 2 3 1 2 3

Estimation Method: OLS-FE
OLS-no 

FE
FGLS 

AR(1) OLS-FE
OLS-no 

FE
FGLS 

AR(1)

Slope coefficient 0.0156 0.0040 -0.0042
Standard Errors

1 Default standard errors, T(N-k) for critical value 0.0037 0.0062 0.0062 0.000 0.521 0.494
2 White Robust, T(N-k) for critical value 0.0037 0.0055 na 0.000 0.470 na
3 Cluster on state, T(G-1) for critical value 0.0119 0.0226 0.0084 0.195 0.861 0.617
4 Cluster on state, CR2 bias correction, T(G-1) for critical value 0.0118 0.0226 na 0.195 0.861 na
5 Cluster on state, CR2 bias correction, IK degrees of freedom 0.0118 0.0226 na 0.195 0.861 na
6 Pairs cluster bootstrap for standard error, T(G-1) for critical value 0.0118 0.0221 0.0086 0.191 0.857 0.624

Bootstrap Percentile-T methods
7 Pairs cluster bootstrap na na 0.162 0.878
8 Wild cluster bootstrap, Rademacher 2 point distribution na na 0.742 0.968
9 Wild cluster bootstrap, Webb 6 point distribution na na 0.722 0.942

10 Imbens-Kolesar effective DOF 50 50
11 C-S-S effective # clusters 51 51

Number observations 1836 1836 1836
Number clusters (states) 51 51 51

p-valuesStandard Errors

Notes:  March 1997-2012 CPS data, from IPUMS download.  Models 1 and 3 include state and year fixed effects, and a "fake policy" dummy variable 
that turns on in 1995 for a random subset of half of the states.  Model 2 includes year fixed effects but not state fixed effects.  The Bootstraps use 999 
replications.    Model 3 uses FGLS, assuming an AR(1) error within each state.   "IK effective DOF" from Imbens and Kolesar (2013), and  "CSS effective 
# clusters" from Carter, Schnepel and Steigerwald (2013), see Subsection VI.D.



Table 4 - State-year panel data with differences-in-differences estimation
Monte Carlo rejection rates of true null hypothesis (slope = 0) with different # clusters and different rejection methods
Nominal 5% rejection rates

Estimation Method
6 10 20 30 50

Wald Tests
1 Default standard errors, T(N-k) for critical value 0.589 0.570 0.545 0.526 0.556
2 Cluster on state, T(N-k) for critical value 0.149 0.098 0.065 0.044 0.061
3 Cluster on state, T(G-1) for critical value 0.075 0.066 0.052 0.039 0.058
4 Cluster on state, T(G-2) for critical value 0.059 0.063 0.052 0.038 0.058
5 Pairs cluster bootstrap for standard error, T(G-1) for critical value 0.056 0.060 0.050 0.036 0.057

Bootstrap Percentile-T methods
6 Pairs cluster bootstrap 0.005 0.019 0.051 0.044 0.069
7 Wild cluster bootstrap, Rademacher 2 point distribution 0.050 0.059 0.050 0.036 0.055
8 Wild cluster bootstrap, Webb 6 point distribution 0.056 0.059 0.048 0.037 0.058

Notes:  March 1997-2012 CPS data, from IPUMS download.  Models include state and year fixed effects, and a "fake policy" dummy 
variable that turns on in 1995 for a random subset of half of the states.  For 6 and 10 clusters, 4000 Monte Carlo replications.  For 20-50 
clusters, 1000 Monte Carlo replications.  The Bootstraps use 399 replications.

Numbers of Clusters
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