
Solutions (mostly for odd-numbered exercises)

c 2005 A. Colin Cameron and Pravin K. Trivedi
"Microeconometrics: Methods and Applications"

1. Chapter 1: Introduction

No exercises.

2. Chapter 2: Causal and Noncausal Models

No exercises.

3. Chapter 3: Microeconomic Data Structures

No exercises.

4. Chapter 4: Linear Models

4-1 (a) For the diagonal entries i = j and E[u2i ] = �
2.

For the �rst o¤-diagonal i = j � 1 or i = j + 1 so ji� jj = 1 and E[uiuj ] = ��2.
Otherwise ji� jj > 1 and E[uiuj ] = 0.

(b) b�OLS is asymptotically normal with mean 0 and asymptotic variance matrix
V[b�OLS] = (X0X)�1X0
X(X0X)�1;

where


 =
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(c) This example is a simple departure from the simplest case of 
 = �2I.

1



Here 
 depends on just two parameters and hence can be consistently estimated as
N !1.
So we use bV[b�OLS] = (X0X)�1X0 b
X(X0X)�1;
where

b
 =
266666664
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377777775
and b
 p! 
 if b�2 p! �2 and d��2 p! ��2 or b� p! �.
For �2 =E[u2i ] the obvious estimate is b�2 = N�1PN

i=1 bu2i , where bui = yi � x0ib�.
For � we can directly use ��2 =E[uiui�1] consistently estimated byd��2 = N�1PN

i=2 buibui�1.
Or use � =E[uiui�1]=

p
E[ui]E[ui�1] =E[uiui�1]=E[u2i ] consistently estimated by b� =

N�1PN
i=2 buibui�1=N�1PN

i=1 bu2i and hence b�b�2 = N�1PN
i=2 buibui�1.

(d) To answer (d) and (e) it is helpful to use summation notation:

bV[b�OLS] =

"
NX
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(d) No. The usual OLS output estimate b�2(X0X)�1 is inconsistent as it ignores the
o¤-diagonal terms and hence the second term above.

(e) No. The White heteroskedasticity-robust estimate is inconsistent as it also ignores
the o¤-diagonal terms and hence the second term above.

4-3 (a) The error u is conditionally heteroskedastic, since V[ujx] =V[x"jx] = x2V["jx] =
x2V["] = x2 � 1 = x2 which depends on the regressor x.

(b) For scalar regressor N�1X0X =N�1P
i x
2
i .

Here x2i are iid with mean 1 (since E[x
2
i ] =E[(xi�E[xi])2] =V[xi] = 1 using E[xi] = 0).

Applying a LLN (here Kolmogorov), N�1X0X =N�1P
i x
2
i
p! E[x2i ] = 1, so Mxx = 1:

(c) V[u] =V[x"] =E[(x")2] � (E[x"])2 =E[x2]E["2] � (E[x]E["])2 =V[x]V["] � 0 � 0 =
1� 1 = 1 where use independence of x and " and fact that here E[x] = 0 and E["] = 0:



(d) For scalar regressor and diagonal 
,

N�1X0
X =
1

N

NX
i=1

�2ix
2
i =

1

N

NX
i=1

xi
2x2i =

1

N

NX
i=1

xi
4

using �2i = x
2
i from (a).N

Here x4i are iid with mean 3 (since E[x
4
i ] =E[(xi�E[xi])4] = 3 using E[xi] = 0 and the

fact that fourth central moment of normal is 3�4 = 3� 1 = 3).
Applying a LLN (here Kolmogorov), N�1X0
X =N�1P

i x
4
i
p! E[x4i ] = 3, soMx
x =

3.

(e) Default OLS result
p
N(b�OLS � �) d! N

�
0; �2M�1

xx

�
= N

�
0; 1� (1)�1

�
= N [0;1] :

(f) White OLS result
p
N(b�OLS � �) d! N

�
0; M�1

xxMx
xM
�1
xx

�
= N

�
0; (1)�1 � 3� (1)�1

�
= N [0;3]:

(g) Yes. Expect that failure to control for conditional heteroskedasticity when should
control for it will lead to inconsistent standard errors, though a priori the direction of
the inconsistency is not known. That is the case here.
What is unusual compared to many applications is that there is a big di¤erence in this
example - the true variance is three times the default estimate and the true standard
errrors are

p
3times larger.

4-5 (a) Di¤erentiate

@Q(�)

@�
=

@u0Wu

@�

=
@u0

@�
� @u

0Wu

@u
by chain rule for matrix di¤erentiation

= X0 � 2Wu assumingW is symmetric

= 2X0Wu

Set to zero
2X0Wu = 0

) 2X0W(y �X�)= 0
) X0Wy = X0WX�

) b�= (X0WX)�1X0Wy



where need to assume the inverse exists.
HereW is rank r > K =rank(X)) X0Z and Z0Z are rank K ) X0Z(Z0Z)�1Z0X is of
full rank K.

(b) ForW = I we have b�=(X0IX)�1X0Iy = (X0X)�1X0y which is OLS.
Note that (X0X)�1 exists if N �K matrix X is of full rank K.

(c) ForW =
�1 we have b�=(X0
�1X)�1X0
�1y which is GLS (see (4.28)).
(d) For W = Z(Z0Z)�1Z0 we have b�=(X0Z(Z0Z)�1Z0X)�1X0Z(Z0Z)�1Z0y which is
2SLS (see (4.53)).

4-7 Given the information, E[x] = 0 and E[z] = 0 and

V[x] = E[x2] = E[(�u+ ")2] = �2�2u + �
2
"

V[z] = E[z2] = E[("+ v)2] = 2�2" + �
2
v

Cov[x; z] = E[xz] = E[(�u+ ")("+ v)] = ��2"
Cov[x; u] = E[xu] = E[(�u+ ")u] = ��2u

(a) For regression of y on x we have b�OLS = �Pi x
2
i

��1P
i xiyi and as usual

plim(b�OLS � �) =
�
plim

P
i x
2
i

��1
plim

P
i xiui

=
�
E[x2]

��1 E[xu] as here data are iid
= (�2�2u + �

2
")
�1��2u:

(b) The squared correlation coe¢ cient is

�2XZ = [Cov[x; z]2]=[V[x]V[z]]
= [�2"]

2=[(�2�2u + �
2
")(

2�2" + �
2
v)]

(c) For single regressor and single instrument

b�IV = (
P
i zixi)

�1P
i ziyi

= (
P
i zixi)

�1P
i zi(xi� + ui)

= � + (
P
i zixi)

�1P
i ziui

= � + (
P
i zi(�ui + "i))

�1P
i ziui

= � + (�
P
i ziui +

P
i zi"i))

�1P
i ziui

= � + (�mzu +mz")
�1mzub�IV � � = mzu= (�mzu +mz")



where mzu = N
�1P

i ziui and mz" = N
�1P

i zi"i.
By a LLNmzu

p! E[mzu] = E[ziui] = E[("i+vi)ui] = 0 since ", u and v are independent
with zero means.
By a LLN mz"

p! E[mz"] = E[zi"i] = E[("i + vi)"i] = E["2i ] = �
2
":

b�IV � � p! 0=�� 0 + �2") = 0:

(d) If mzu = �mz"=� then �mzu = �mz" so �mzu �mz" = 0 and b�IV � � = mzu=0
which is not de�ned.

(e) First b�IV � � = mzu= (�mzu +mz")
= 1=(�+mz"=mzu):

If mzu is large relative to mz"=� then � is large relative to mz"=mzu so �+mz"=mzu is
close to � and 1=(�+mz"=mzu) is close to 1=�:

(f) Given the de�nition of �2XZ in part (c), �
2
XZ is smaller the smaller is , the smaller is

�2", and the larger is �. So in the weak instruments case with small correlation between
x and z (ao �2XZ is small), b�IV � � is likely to converge to 1=� rather than 0, and there
is ��nite sample bias�in b�IV.
4-11 (a) The true variance matrix of OLS is

V[b�OLS] = (X0X)�1X0�X(X0X)�1

= (X0X)�1X0�2(IN+AA
0)X(X0X)�1

= �2(X0X)�1 + �2(X0X)�1X0AA0X(X0X)�1:

(b) This equals or exceeds �2(X0X)�1 since (X0X)�1X0AA0X(X0X)�1 is positive semi-
de�nite. So the default OLS variance matrix, and hence standard errors, will generally
understate the true standard errors (the exception being if X0AA0X = 0).

(c) For GLS

V[b�GLS] = (X0��1X)�1

= (X0[�2(I+AA0)]�1X)�1

= �2(X0[I+AA0]�1X)�1

= �2(X0[IN �A(Im +A0A)�1A0]X)�1

= �2(X0X�X0A(Im +A0A)�1A0X)�1:



(d) �2(X0X)�1 � V[b�GLS] since
X0X � X0X�X0A(Im +A0A)�1A0X in the matrix sense

) (X0X)�1 � (X0X�X0A(Im +A0A)�1A0X)�1 in the matrix sense.

If we ran OLS and GLS and used the incorrect default OLS standard errors we would
obtain the puzzling result that OLS was more e¤�cient than GLS. But this is just an
artifact of using the wrong estimated standard errors for OLS.

(e) GLS requires (X0��1X)�1 which from (c) requires (Im + A0A)�1 which is the
inverse of an m�m matrix.
[We also need (X0X�X0A(Im+A0A)�1A0X)�1 but this is a smaller k�k marix given
k < m < N .]

4-13 (a) Here � = [1 1] and � = [1 0]:
From bottom of page 86 the intercept will be �1 + �1 � F�1" (q) = 1 + 1 � F�1" (q) =
1 + F�1" (q):
The slope will be �2 + �2 � F�1" (q) = 1 + 0� F�1" (q) = 1:
The slope should be 1 at all quantiles.
The intercept varies with F�1" (q). Here F�1" (q) takes values �2:56, �1:68 , �1:05,
�0:51, 0:0, 0:51, 1:05, 1:68 and 2:56 for q = 0:1, 0:2, .... , 0:9. It follows that the
intercept takes values �1:56, �0:68 , �0:05, 0:49, 1:0, 1:51, 2:05, 2:68.
[For example F�1" (0:9) is "� such that Pr[" � "�] = 0:9 for " � N [0; 4] or equivalently
"� such that Pr[z � "�=2] = 0:9 for z � N [0; 1]. Then "�=2 = 1:28 so "� = 2:56.]

(b) The answers accord quite closely with theory as the slope and intercepts are quite
precisely estimated with slope coe¢ cient standard errors less than 0:01 and intercept
coe¢ cient standard errors less than 0:04.

(c) Now both the intercept and slope coe¢ cients vary with the quantile. Both intercept
and slope coe¢ cients increase with the quantile, and for 1 = 0:5 are within two standard
errors of the true values of 1 and 1.

(d) Compared to (b) it is now the intercept that is constant and the slope that varies
across quantiles.
This is predicted from theory similar to that in part (a). Now � = [1 1] and � = [0 1].
From bottom of page 86 the intercept will be �1 + �1 � F�1" (q) = 1 + 0 � F�1" (q) = 1
and the slope will be �2 + �2 � F�1" (q) = 1 + 1� F�1" (q) = 1 + F�1" (q):

4-15 (a) The OLS slope estimate and standard error are 0:05209 and 0:00291, and
the IV estimates are 0:18806 and 0:02614. The IV slope estimate is much larger and



indicates a very large return to schooling. There is a lossin precision with IV standard
error ten times larger, but the coe¢ cient is still statististically signi�cant.

(b) OLS of wage76 on an intercept and col4 gives slope coe¢ cient 0:1559089 and OLS
regression of grade76 on an intercept and col4 gives slope coe¢ cient 0:829019. From
(4.46) , dy=dx = (dy=dz)=(dx=dz) = 0:1559089=0:829019 = 0:18806. This is the same
as the IV estimate in part (a).

(c) We obtain Wald = (1.706234 - 1.550325) / ( 13.52703 - 12.69801) = 0.18806. This
is the same as the IV estimate in part (a).

(d) From OLS regression of grade76 on col4, R2 = 0:0208 and F = 60:37. This does
not suggest a weak instruments problem, except that precision of IV will be much lower
than that of OLS due to the relatively low R2.

(e) Including the additional regressors the OLS slope estimate and standard error are
0:03304 and 0:00311, and the IV estimates are 0:09521 and 0:04932. The IV slope
estimate is again much larger and indicates a very large return to schooling. There is a
loss in precision with IV standard error now eighteed ten times larger, but the coe¢ cient
is still statististically signi�cant using a one-tail test at �ve percent.
Now OLS of wage76 on an intercept and col4 and other regressors gives slope coe¢ cient
0:1559089 and OLS regression of grade76 on an intercept and col4 gives slope coe¢ cient
0:829019. From (4.46) , dy=dx = (dy=dz)=(dx=dz) = 0:1559089=0:829019 = 0:18806.
This is the same as the IV estimate in part (a).

4-17 (a) The average of b�OLS over 1000 simulations was 1.502518.
This is close to the theoretical value of 1:5: plim(b�OLS � �) = ��2u=

�
�2�2u + �

2
"

�
=

(1� 1)=(1� 1 + 1) = 1=2 and here � = 1.

(b) The average of b�IV over 1000 simulations was 1.08551.
This is close to the theoretical value of 1: plim(b�IV � �) = 0 and here � = 1.
(c) The observed values of b�IV over 1000 simulations were skewed to the right of � = 1,
with lower quartile .964185, median 1.424028 and upper quartile 1.7802471. Exercise
4-7 part (e) suggested concentration of b�IV � � around 1=� = 1 or concetration of b�IV
around � + 1 = 2 since here � = 1:

(d) The R2 and F statistics across simulations from OLS regression (with intercept) of
z on x do indicate a likely weak instruments problem.
Over 1000 simulations, the average R2 was 0.0148093 and the average F was 1.531256.
[Aside: From Exercise 4-7 (b) �2XZ = [�2"]

2=[(�2�2u + �
2
")(

2�2" + �
2
v) = [0:01]2=(1 +

1)(0:012 + 1) = 0:00005:]



5. Chapter 5: Extremum, ML, NLS

5-1 First note that

@bE[yjx]
@x

=
@

@x
exp(1 + 0:01x)[1 + exp(1 + 0:01x)]�1

= 0:01 exp(1 + 0:01x)[1 + exp(1 + 0:01x)]�1

� exp(1 + 0:01x)� 0:01 exp(1 + 0:01x)[1 + exp(1 + 0:01x)]�2

= 0:01� exp(1 + 0:01x)

[1 + exp(1 + 0:01x)]2
upon simpli�cation

(a) The average marginal e¤ect over all observations.

@bE[yjx]
@x

=
1

100

100X
i=1

0:01� exp(1 + 0:01i)

1 + exp(1 + 0:01i)
= 0:0014928:

(b) The sample mean �x = 1
100

P100
i=1 i = 50:5. Then

@bE[yjx]
@x

�����
�x

= 0:01� exp(1 + 0:01� 50:5)
[1 + exp(1 + 0:01x� 50:5)]2 = 0:0014867:

(c) Evaluating at x = 90

@bE[yjx]
@x

�����
90

= 0:01� exp(1 + 0:01� 90)
[1 + exp(1 + 0:01x� 90)]2 = 0:0011318:

(d) Using the �nite di¤erence method

�bE[yjx]
�x

�����
90

=
exp(1 + 0:01� 90)

1 + exp(1 + 0:01x� 90) �
exp(1 + 0:01� 90)

1 + exp(1 + 0:01x� 90) = 0:0011276:

Comment: This example is quite linear, leading to answers in (a) and (b) being close,
and similarly for (c) and (d). A more nonlinear function, with greater variation is
obtained using bE[yjx] = exp(0+0:04x)=[1+ exp(0+0:04x)] for x = 1; :::; 100. Then the
answers are 0:0026163, 0:0013895, 0:00020268, and 0:00019773.



5-2 (a) Here

ln f(y) = ln y � 2 ln�� y=� with � = exp(x0�)=2 and ln� = x0� � ln 2
= ln y � 2(x0� � ln 2)� y=[exp(x0�)=2]
= ln y � 2x0� + 2 ln 2� 2y exp(�x0�)

so
QN (�)=

1

N

X
i
ln f(yi) =

1

N

X
i
fln yi � 2x0� + 2 ln 2� 2yi exp(�x0�)g:

(b) Now using x nonstochastic so need only take expectations wrt y

Q0(�) = plimQN (�)

= plim
1

N

X
i
ln yi � plim

1

N

X
i
2x0i�+plim

1

N

X
i
2 ln 2� plim 1

N

X
i
2yi exp(�x0i�)

= lim
1

N

X
i
E[ln yi]� 2 lim

1

N

X
i
x0i�+2 ln 2� 2 lim

1

N

X
i
E[yi] exp(�x0i�)

= lim
1

N

X
i
E[ln yi]� 2 lim

1

N

X
i
x0i�+2 ln 2� 2 lim

1

N

X
i
exp(x0i�0) exp(�x0i�);

where the last line uses E[yi] = exp(x0i�0) in the dgp and we do not need to evaluate
E[ln yi] as the �rst sum does not invlove � and will therefore have derivative of 0 wrt
�.

(c) Di¤erentiate wrt � (not �0)

@Q0(�)

@�
= �2 lim 1

N

X
i
xi+ lim

2

N

X
i
exp(x0i�0) exp(�x0i�)xi

= 0 when � = �0:

[Also @2Q0(�)=@�@�0 = �2 limN�1P
i exp(x

0
i�0) exp(�x0i�)xix0i is negative de�nite at

�0, so local max.]
Since plimQN (�) attains a local maximum at � = �0, conclude that b� = argmaxQN (�)
is consistent for �0.

(d) Consider the last term. Since yi exp(�x0i�) is not iid need to use Markov SLLN.
This requires existence of second moments of yi which we have assumed.

5-3 (a) Di¤erentiating QN (�) wrt �

@QN
@�

=
1

N

X
i

�
�2xi + 2yi exp(�x0i�)xi

�
=

1

N

X
i
2� fyi exp(�x0i�)� 1gxi rearranging

=
1

N

X
i
2� yi � exp(x

0
i�)

exp(x0i�)
xi multiplying by

exp(x0i�)

exp(x0i�)



(b) Then

limE

"
@QN
@�

����
�0

#
= lim

1

N

X
i
2� yi � exp(x

0
i�0)

exp(x0i�0)
xi = 0 if E[yijxi] = exp(x0i�0):

So essential condition is correct speci�cation of E[yijxi].

(c) From (a)
p
N
@QN
@�

����
�0

=
1p
N

X
i
2� yi � exp(x

0
i�0)

exp(x0i�0)
xi:

Apply CLT to average of the term in the sum.
Now yijxi has mean exp(x0i�0) and variance (exp(x0i�0))2=2.
So Xi � 2� yi�exp(x0i�0)

exp(x0i�0)
xi has mean 0 and variance 4� (exp(x0i�0))

2=2

(exp(x0i�0))
2 xix

0
i = 2xix

0
i.

Thus for ZN = (V[
p
N �X])�1=2(

p
N �X �

p
NE[ �X]) =

�
1
N

P
iV[Xi]

��1=2
( 1p

N

P
iXi)

ZN =

�
1

N

X
i
2xix

0
i

��1=2
�
�
1p
N

X
i
2� yi � exp(x

0
i�0)

exp(x0i�0)
xi

�
d! N [0; I]

) 1p
N

X
i
2� yi � exp(x

0
i�0)

exp(x0i�0)
xi

d! N
�
0; lim

1

N

X
i
2xix

0
i

�

(d) Here yi is not iid. Use Liapounov CLT.
This will need a (2 + �)th absolute moment of yi. e.g. 4th moment of yi.

(e) Di¤erentiating (a) wrt �0 yields

@2QN
@�@�0

����
�0

=
1

N

X
i

�
�2exp(x

0
i�0)

exp(x0i�0)
xix

0
i

�
p! lim

1

N

X
i
�2xix0i:

(f) Combining

p
N(b� � �0) d! N [0;A(�0)

�1B(�0)A(�0)
�1]

d! N
"
0;

�
lim

1

N

X
i
�2xix0i

��1�
lim

1

N

X
i
2xix

0
i

��
lim

1

N

X
i
�2xix0i

��1#
d! N

"
0;

�
lim

1

N

X
i
2xix

0
i

��1#
:



(g) Test H0 : �0j � ��j against Ha : �0j < ��j at level :05.

b� a� N
�
�;
�X

i
2xix

0
i

��1�
) zj =

(b�j � �j)
sj

a� N [0; 1], where sj is jth diag entry in
�X

i
2xix

0
i

��1
:

Reject H0 at level 0:05 if zj < �z:05 = �1:645.

5-5 (a) t = b�1=se[b�1] = 5=2 = 2:5. Since j2:5j > _z:05 = 1:645 we reject H0.

(b) Rewrite as H0 : �1 � 2�2 = 0 versus H0 : �1 � 2�2 6= 0.
Use (5.32). Test H0 : R� = r where R = [1 � 2] and r = 0 and �0 = [�1 �2].

Here b� = � 5
2

�
so Rb� � r = [1 � 2] � 5

2

�
= 1:

Also V[b�] = N�1 bC =

�
4 1
1 1

�
using Cov[b�1;b�2] = (Cor[b�1;b�2])2V[b�1]V[b�2] = 0:52 �

22 � 12 = 1.
Then RN�1 bCR0 = [1 � 2] � 4 1

1 1

� �
1
�2

�
= 4

so W = (Rb� � r)0 �R(N�1 bC)R0��1 (Rb� � r) = 1� 4�1 � 1.
Since W = 0:25 < �21;:05 = 3:84 do not reject H0:

[Alternatively as only one restriction here, note that b�1 � 2b�2 has variance V[b�1] +
4V[b�1]� 4Cov[b�1;b�2] = 4 + 4� 1� 4� 1 = 4, leading to

t =
b�1 � 2b�2
se[b�1 � 2b�2] = 5� 3p

4
= 0:5

and do not reject as j0:5j < z:05 = 1:96. Note that t2 =W.]

(c) Use (5.32) Test H0 : R� = r where R =

�
1 0
0 1

�
and r =

�
0
0

�
and � =

�
�1
�2

�
.

Then Rb� � r = � 1 0
0 1

� �
5
2

�
=

�
5
2

�
and RN�1 bCR0 = � 1 0

0 1

� �
4 1
1 1

� �
1 0
0 1

�
=

�
4 1
1 1

�
so W = (Rb� � r)0 �R(N�1 bC)R0��1 (Rb� � r) = � 5 2

� � 4 1
1 1

� �
5
2

�
= 124.

Since W = 124 < �22;:05 = 5:99 reject H0:



5-7 Results will vary as uses generated data. Expect b�1 ' �1 and b�2 ' 1 and standard
errors similar to those below.

(a) For NLS got b�1 = �1:1162 and b�2 = 1:1098 with standard errors 0:0551 and 0:0256.
(b) Yes, will need to use sandwich errors due to heteroskedasticity as V[yjx] = exp(�1+
�2x)

2=2. Note that standard errors given in (a) do not correct for heteroskedasticity.

(c) For MLE got b�1 = �1:0088 and b�2 = 1:0262 with standard errors 0:0224 and 0:0215.
(d) Sandwich errors can be used but are not necessary since the ML simpli�cation that
A = �B is appropriate here.




