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Introduction

Causal Machine Learning in Economics

Current causal inference methods in microeconometric applications
have a high-dimensional component

I e.g. estimate a key parameter assuming selection on observables only

F good controls makes this assumption more reasonable

I e.g. IV with many available instruments

F good few instruments avoids many instruments problem

I e.g. a structural dynamic discrete choice model with many potential
states.

Standard nonparametric and semiparametric methods su¤er from a
course of dimensionality.

Machine learning methods do better in many applications
I though valid statistical inference needs to control for this data mining.

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 2 / 20



Introduction

Outline

1 Partial Linear Model
2 Orthogonalization
3 Cross �tting
4 Further Discussion
5 A Very Few References

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 3 / 20



1. Partial Linear Model

1. Partial Linear Model

A partial linear control function model speci�es

y = d0α+ g(xc ) + u where g(�) is unknown.

Here
I d are policy or treatment variables of interest

F for simplicity we will later focus on the scalar case

I xc are control variables
I g(�) is an unknown function

Selection on observables assumption
I consistent OLS estimation of α requires E [ujd, xc ] = 0
I this is more plausible the better is g(xc ).

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 4 / 20



1. Partial Linear Model

Curse of dimensionality kills standard semiparametric
methods

Robinson (1988) proposed semiparametric estimation

y = d0α+ g(xc ) + u where g(�) is unknown.

I Kernel regression of y on xc gives residual uy jxc
I Kernel regression of d on xc gives residuals udjxc
I OLS of uy jxc on udjxc gives root-N consistent asymptotically normal bα.

This works if xc is of low dimension
I e.g. y = energy consumption; d = usual demand determinants;
xc is time of day (scalar).

Instead consider xc is of high dimension - many controls
I kernel regression fails due to curse of dimensionality.

Solution: use a machine learner rather than kernel regression
I here use the LASSO instead of kernel regression.

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 5 / 20



1. Partial Linear Model

LASSO (Least Absolute Shrinkage And Selection)
The basic LASSO estimator bβλ of β minimizes

Qλ(β) = ∑n
i=1(yi � x

0
iβ)

2 + λ ∑p
j=1 jβj j

I where λ � 0 is a tuning parameter to be determined
I and x0s are standardized to have mean 0 and variance 1.

The idea is to penalize model complexity
I this induces bias but can reduce variance.

LASSO sets many β to zero and shrinks remaining towards zero
I hence name.

Tuning parameter λ is most often determined by MSE
cross-validation or AIC or BIC

I but in this causal partial linear application we want a tighter penalty
F like oversmoothing with kernels

I Chernozhukov et al. propose a particular data-dependent value of λ.
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1. Partial Linear Model

LASSO (left) versus Ridge
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1. Partial Linear Model

Partialling out LASSO for Partial Linear Model

Let g(xc ) = x0γ where x are �exible transformations of xc such as
polynomials and interactions.

Then
y = αd + x0γ+ u where g(�) is unknown.

Partialling out LASSO estimator (scalar d)
I Lasso regression of y on x gives residual uy jx
I Lasso regression of d on x gives residual udjx
I OLS of uy jx on udjx gives root-N consistent asymptotically normal bα.

Implementation
I requires only LASSO and OLS
I most machine learning is in R
I Stata 16 introduced LASSO, Ridge, elasticnet and extensions
I Also there is a Stata addon pdslasso for this problem.

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 8 / 20



1. Partial Linear Model

Example

Example with N = 2955, d is scalar, dim(x)= 176.
I y = ltotexp is log annual medical expenditure for people aged 65-90
I d = suppins is indicator for supplementary health insurance (beyond
basic Medicare)

I x = 176 variables created from levels, quadratics and interactions of 5
continuous and 13 binary variables.

. global rlist2 c.($xlist2)##c.($xlist2) i.($dlist2) c.($xlist2)#i.($dlist2)

>     msa phylim actlim injury priolist hvgg
. global dlist2 female white hisp marry northe mwest south ///

. global xlist2 income educyr age famsze totchr

(109 observations deleted)
. keep if ltotexp != .

. use mus203mepsmedexp.dta, clear
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1. Partial Linear Model

Example estimated in Stata 16

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1839193   .0468223     3.93   0.000     .0921493    .2756892

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                  =     0.0001
Wald chi2(1)                 =      15.43
Number of selected controls  =         21
Number of controls           =        176

Partialing­out linear model          Number of obs                =      2,955

Estimating lasso for suppins using plugin
Estimating lasso for ltotexp using plugin

. poregress ltotexp suppins, controls($rlist2)

.

. * Partialling out partial linear model using default plugin lambda
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2. Orthogonalization

2. Orthogonalization

The preceding method works because estimation is based on an
orthogonalized moment.

De�ne α as parameters of interest and η as nuisance parameters.

Estimate bα is obtained following �rst step estimate bη of η

First stage: bη solves∑n
i=1 ω(wi , η) = 0

Second stage: bα solves∑n
i=1 ψ(wi , α,bη) = 0.

Noise in estimating η usually e¤ects the asymptotic distribution of bα
I e.g. Heckman two-step estimator in selection models.

But this is not always the case
I e.g. feasible GLS asymptotic distribution not a¤ected by �rst-stage
estimation to get bΩ.
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2. Orthogonalization

Orthogonalization (continued)

Result: �rst-stage estimation of η does not e¤ect the second-stage
asymptotic distribution of bα if the second-stage function ψ(�) satis�es

E [∂ψ(wi , α, η)/∂η] = 0

Intuition: on average changing η does not change ψ(�).
Proof: see next slide.

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 12 / 20



2. Orthogonalization

Orthogonalization (continued)

Why does this work?

1p
n

n
∑
i=1

ψ(wi , bα,bη)
=

1p
n

n
∑
i=1

ψ(wi , α0, η0) +
1
n

n
∑
i=1

∂ψ(wi , α, η)
∂α0

����
α0,η0

�
p
n(bα� α0)

+
1
n

n
∑
i=1

∂ψ(wi , α, η)
∂η0

����
α0,η0

�
p
n(bη� η0)

By a law of large numbers 1n ∑n
i=1

∂ψ(wi ,α,η)
∂η

���
α0,η0

converges to its

expected value which is zero if E [∂ψ(wi , α, η)/∂η] = 0.
So the term involving bη drops out.
For more detail see Cameron and Trivedi (2005, p.201).
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2. Orthogonalization

Orthogonalization in partial linear model
Consider the partially linear model and manipulate

y = αd + x0γ+ u where E [ujx1, x] = 0
) E [y jx] = αE [d jx] + x0γ as E [ujx] = 0

y � E [y jx] = α(d � E [d jx]) + u subtracting

Recall that OLS of y on x has f.o.c. ∑i xiui = 0
I so is sample analog of population moment condition
E [xu] = E [x(y � βx)] = 0.

Partialling out estimator therefore solves population moment
condition

E [(d � E [d jx])f(y � E [y jx])� α(d � E [d jx])g] = 0.

Then E [ψ(�)] = 0 where de�ne

ψ(�) = (d � η1)f(y � η2)� α(d � η1)g
where η1 = E [y jx] and η2 = E [y jx]

A. Colin Cameron U.C.-Davis . Presented at Big Ag Data ConferenceUniversity of California - Davis ()Causal Machine Learning in Economics January 10 2020 14 / 20



2. Orthogonalization

Orthogonalization in partial linear model (continued)

Estimation is based on E [ψ(w, α, η1, η2)] = 0 where

ψ(�) = (d � η1)f(y � η2)� α(d � η1)g
where η1 = E [y jx] and η2 = E [y jx]

This satis�es the orthogonalization condition since
I E [∂ψ(w, α, η)/∂η1 ] = E [2α(d � η1)� (y � η2)] = 0

F as η1 = E [d jx] and η2 = E [y jx]
I E [∂ψ(w, α, η)/∂η2 ] = E [�(d � η1)] = 0

F as η1 = E [y jx].
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3. Cross Fitting

3. Cross Fitting

The partialling-out LASSO method requires a sparsity assumption
that the number of nonzero coe¢ cients of x grows at rate no more
than

p
N

I more precisely s/(
p
N/ ln p) should be small where

F s = #variables in true model
F p = #potential regressor.

This rate of convergence improves to N if sample splitting is used
I estimate nuisance parameters η using part of the sample (e.g. 90%)
I estimate α using the remaining part of the sample (e.g. 10%).

A variation uses the entire sample to estimate α as explained next.
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3. Cross Fitting

K-fold cross �tting (continued)

Consider the case K = 10

With 10 folds or partitions of the data do for k = 1, ..., 10
I estimate nuisance parameters η (here LASSO) using all but fold k
I use these to form residuals in just fold k

Combine these 10 sets of residuals so have residuals for all
observations

I OLS regress uy jx on ud jx.

This is Stata 16 command xporegress

Using orthogonalization and cross-�tting is called
I Double machine learning
I Debiased machine learning
I Neyman machine learning (after Neyman�s 1959 c-alpha test).
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4. Further Discussion

4. Further Discussion

In principle the preceding approach of orthogonalization and
cross-�tting works for any machine learner, not just LASSO

I ridge regression, neural networks and random forests
I though assumptions and convergence rates may vary.

The preceding example can be adapted to allow d to be endogenous
I in Stata poivregress

In principle the preceding approach applies to any orthogonalization
condition in a �regular�model

I though there may be an e¢ ciency loss in using an orthogonalization
condition.

In particular in the binary treatment model with heterogeneous e¤ects
a standard estimator of ATE and ATT is the doubly-robust estimator
of Robins and Roznitsky (1995) and Hahn (1998)

I this satis�es the orthogonalization condition.
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5. A Very Few References

5. A Very Few References
My webpage has slides of several talks plus references

I http://cameron.econ.ucdavis.edu/e240f/machinelearning.html

Undergraduate / Masters level book
I ISL: Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.

I free legal pdf at http://www-bcf.usc.edu/~gareth/ISL/
I $25 hardcopy via www.springer.com/gp/products/books/mycopy

Accessible paper on LASSO for partial linear and many instrument IV
I Alex Belloni, Victor Chernozhukov and Christian Hansen (2014),
�High-dimensional methods and inference on structural and treatment
e¤ects,� Journal of Economic Perspectives, Spring, 29-50.

Key paper on double machine learning
I Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Du�o,
Christian Hansen, Whitney Newey and James Robins (2018),
�Double/debiased machine learning for treatment and structural
parameters,�The Econometrics Journal, 21, C1-C68.
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5. A Very Few References

Susan Athey has a lot. She emphasizes random forests and
heterogeneous e¤ects.

I Stefan Wager and Susan Athey (2018), "Estimation and Inference of
Heterogeneous Treatment E¤ects using Random Forests,� JASA,
1228-1242.

A paper with great detail on the current literature with many
references.

I Susan Athey and Guido Imbens (2019), �Machine Learning Methods
Economists Should Know About.�

Applied economics focusing on prediction
I Sendhil Mullainathan and J. Spiess: �Machine Learning: An Applied
Econometric Approach�, Journal of Economic Perspectives, Spring
2017, 87-106.

Forthcoming book chapter
I Colin Cameron and Pravin Trivedi (2020), �Machine Learning for
Prediction and Inference�, chapter 28 in Microeconometrics using
Stata, second edition, forthcoming.
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