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A Ten Minute Summary

A ten minute summary: 1. Prediction

Think of machine learning as potentially better nonparametric
regression.

We wish to predict y given x using �tted function bf (x).
We could use various nonparametric methods

I kernel regression such as local linear, nearest neighbors, sieves
I but these perform poorly if x is high dimensional

F the curse of dimensionality.

Machine learning uses di¤erent algorithms that may predict better
I including lasso, neural networks, deep nets and random forests.
I these require setting tuning parameter(s)

F just as e.g. kernel regression requires setting bandwidths.

Machine learning focuses purely on prediction
I sometimes useful in microeconomics applications
I e.g. predict one-year survival following hip transplant operation.
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A Ten Minute Summary

A ten minute summary: 2. Inference for Economics

But much empirical microeconomics emphasizes estimating a partial
e¤ect.

In principle can perturb an x to get ∆bf (x)
I but very black box especially if bf (x) is very nonlinear
I and statistical inference is a problem.

Instead economists impose more structure.

A leading example is the partially linear model
I estimate β in the model y = βx1 + g(x2) + u.

A second leading example is an average treatment e¤ect
I rather than an individual treatment e¤ect.
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A Ten Minute Summary

A ten minute summary: 3. Orthogonalization

A standard semiparametric estimator is the Robinson (1988)
di¤erencing estimator in the partially linear model

I y = βx1 + g(x2) + u
I β is OLS estimate in model y � bmy = β(x1 � bmx1 )+ error.
I where use kernel regression of y on x2 for bmy and x on x2 for bmx1 .

Remarkable result
I the asymptotic distribution of β at the second stage
I is not a¤ected by the �rst step estimation of bmy and bmx1
I an example of using an �orthogonal moment condition�.

This generalizes
I use a machine learner for bmy and bmx1 instead of kernel regression
I and apply to other settings with an �orthogonal moment condition�

F e.g. ATE, ATET and LATE where x1 is a binary treatment.

I this is a big, big deal.
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A Ten Minute Summary

A ten minute summary: 4. Other contributions of machine
learning

Estimators over�t the sample at hand
I e.g. chasing outliers
I so use out-of-sample prediction as criteria

F in particular k-fold cross-validation

I or use penalties such as AIC, BIC.

Biased estimators can outperform unbiased estimators
I e.g. shrinkage estimators such as LASSO and ridge.

Data carpentry that creates y and x
I web scraping, text mining, digitizing images, SQL.
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A Ten Minute Summary

Overview
1 Terminology
2 Model selection - especially cross-validation.
3 Variance-bias trade-o¤ and shrinkage (LASSO and Ridge)
4 Dimension reduction (principal components)
5 Nonparametric and semiparametric regression
6 Flexible regression (splines, sieves, neural networks,...)
7 Regression trees and random forests
8 Classi�cation (support vector machines)
9 Unsupervised learning (cluster analysis)
10 Prediction for economics
11 LASSO for causal homogeneous e¤ects
12 Heterogeneous treatment e¤ects
13 Double / debiased machine learning
14 Conclusions
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1. Terminology

1. Terminology

The term machine learning is used because the machine (computer)
�gures out from data the model bf (x)

I compared to a modeler who e.g. speci�es x and y = x0β+ u.

The data may be big or small
I typically dim(x) is large but n can be small or large.

Supervised learning = Regression
I We have both outcome y and regressors (or features) x
I 1. Regression: y is continuous
I 2. Classi�cation: y is categorical.

Unsupervised learning
I We have no outcome y - only several x
I 3. Cluster Analysis: e.g. determine �ve types of individuals given
many psychometric measures.

Focus on 1. as this is most used by economists.

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 7 / 60



1. Terminology

Terminology (continued)

Consider two types of data sets
I 1. training data set (or estimation sample)

F used to �t a model.

I 2. test data set (or hold-out sample or validation set)
F additional data used to determine how good is the model �t
F a test observation (x0, y0) is a previously unseen observation.
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2. Model Selection

2. Model selection

Can choose x 0s by
I start from smallest and build
I start from largest and prune
I best subsets: �nd best model of given size and then choose best size.

Traditionally use statistical signi�cance (p < 0.05)

I but pre-testing changes the distribution of bβ.
Machine learners instead use predictive ability

I typically mean squared error MSE = 1
n ∑ni=1(yi � byi )2.

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 9 / 60



2. Model Selection

Over�tting

Problem: models �over�t�within sample.
I e.g. bu = (y�XbβOLS ) = (I�M)u where M = X(X0X)�1X

F so jbui j < jui j on average.
Two solutions:

I penalize for over�tting e.g. R̄2, AIC, BIC, Mallows Cp
I use out-of-estimation sample prediction (cross-validation)

F new to econometrics
F can apply to other loss functions and not just MSE.
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2. Model Selection

K-fold cross-validation is standard method
K -fold cross-validation

I split data into K mutually exclusive folds of roughly equal size
I for j = 1, ...,K �t using all folds but fold j and predict on fold j
I standard choices are K = 5 and K = 10.

The following shows case K = 5

Fit on folds Test on fold
j = 1 2,3,4,5 1 ! MSE(1)
j = 2 1,3,4,5 2 ! MSE(2)
j = 3 1,2,4,5 3 ! MSE(3)
j = 4 1,2,3,5 4 ! MSE(4)
j = 5 1,2,3,4 5 ! MSE(5)

The K -fold CV estimate is

CVK = 1
K ∑K

j=1MSE(j), where MSE(j) is the MSE for fold j .
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3. Bias-Variance Trade-o¤ and Shrinkage Estimation

3. Bias-Variance Trade-o¤ and Shrinkage Estimation

The goal is minimize MSE = Variance + Bias-squared.

More �exible models have
I less bias (good) and more variance (bad).
I this trade-o¤ is fundamental to machine learning.

Shrinkage reduces variance and may o¤set increased bias.
I e.g. bβ = 0 has reduced variance to zero.

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 12 / 60



3. Bias-Variance Trade-o¤ and Shrinkage Estimation

Shrinkage Methods: Ridge

Shrinkage estimators minimize RSS (residual sum of squares) with a
penalty for model size

I this shrinks parameter estimates towards zero.

The ridge estimator bβλ of β minimizes

Qλ(β) = ∑n
i=1(yi � x

0
iβ)

2 + λ ∑p
j=1 β2j = RSS + λ ∑p

j=1 β2j

I where λ � 0 is a tuning parameter to be determined

This yields bβλ = (X
0X+ λI)�1X0y

I bβλ ! bβOLS as λ ! 0 and bβλ ! 0 as λ ! ∞.

Typically �rst standardize x 0s to have mean zero and variance 1.

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 13 / 60



3. Bias-Variance Trade-o¤ and Shrinkage Estimation

Shrinkage Methods: LASSO

Instead of squared penalty use absolute penalty.

The Least Absolute Shrinkage and Selection (LASSO) estimator bβλ

of β minimizes

Qλ(β) = ∑n
i=1(yi � x

0
iβ)

2 + λ ∑p
j=1 jβj j = RSS + λ ∑p

j=1 jβj j

I where λ � 0 is a tuning parameter to be determined.

No closed form solution
I sets some β0s to zero and shrinks others towards zero
I hence name.
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3. Bias-Variance Trade-o¤ and Shrinkage Estimation

LASSO versus Ridge (key �gure from ISL)
LASSO is likely to set some coe¢ cients to zero.
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4. Dimension Reduction

4. Dimension Reduction

Reduce from p regressors to M < p linear combinations of regressors.

Principal components (or factor analysis) is standard method
I The �rst principal component has the largest sample variance among all
normalized linear combinations of the columns of n� p data matrix X

Considers only x without considering y
I but still generally does good job of explaining y .
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5. Nonparametric and Semiparametric Regression

5. Nonparametric regression and semiparametric regression

Nonparametric regression is the most �exible approach.

Nonparametric regression methods for f (x0) = E[y jx = x0] borrow
from observations near to x0

I k-nearest neighbors
F average yi for the k observations with xi closest to x0.

I kernel-weighted local regression
F use a weighted average of yi with weights declining as jjxi � x0 jj
increases.

But are not practical for high p = dim(x)
I due to the curse of dimensionality
I e.g. if 10 bins in one dimension need 102 bins in two dimensions, .....
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5. Nonparametric and Semiparametric Regression

Semiparametric regression

Semiparametric models provide some structure to reduce the
nonparametric component from many dimensions to fewer dimensions
(often one).

I Econometricians focus on

F partially linear models y = f (x, z) + u = x0β+ g (z) + u
F single-index models (y = g (x0β)).

I Statisticians use

F generalized additive models and project pursuit regression.

Later we will work with partially linear models.
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6. Flexible Regression

6. Flexible Regression

Basis function models
I scalar case: yi = β0 + β1b1(xi ) + � � �+ βK (xi ) + εi

F where b1(�), ..., bK (�) are basis functions that are �xed and known.
I global polynomial regression
I splines: step functions, regression splines, smoothing splines
I wavelets
I polynomial is global while the others break range of x into pieces.

Other methods
I neural networks.
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6. Flexible Regression

Neural Networks

A neural network involves a series of nested logit regressions.

A single hidden layer neural network explaining y by x has
I y depends on z0s (a hidden layer)
I z0s depend on x0s.

A neural network with two hidden layers explaining y by x has
I y depends on w0s (a hidden layer)
I w0s depend on z0s (a hidden layer)
I z0s depend on x0s.

Neural nets are good for prediction
I especially in speech recognition (Google Translate), image recognition,
...

I but require much tuning and very di¢ cult (impossible) to interpret
I and basis for deep nets and deep learning.
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6. Flexible Regression

Neural Network Example
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7. Regression Trees and Random Forests

7. Regression Trees and Random Forests

Regression trees sequentially split regressors x into regions that best
predict y .

Sequentially split x0s into rectangular regions in way that reduces RSS
I then byi is the average of y 0s in the region that xi falls in
I with J blocks RSS= ∑Jj=1 ∑i2Rj (yi � ȳRj )

2.

Simplest case is a single x
I split at x� that minimizes ∑i :xi�x �(yi � ȳR1 )

2 +∑i :xi>x �(yi � ȳR1 )
2

F where ȳR1 is average of yi for i : xi � x�
F and ȳR2 is average of yi for i : xi > x�.

I second split is then best split within R1 and R2
I then predicted y 0s are a step function of x .
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7. Regression Trees and Random Forests

Tree example from ISL page 308

(1) split X1 in two;
(2) split the lowest X1 values on the basis of X2 into R1 and R2;
(3) split the highest X1 values into two regions (R3 and R4/R5);
(4) split the highest X1 values on the basis of X2 into R4 and R5.
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7. Regression Trees and Random Forests

Tree example from ISL (continued)

The left �gure gives the tree.

The right �gure shows the predicted values of y .

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 24 / 60



7. Regression Trees and Random Forests

Improvements to regression trees

Regression trees are easy to understand if there are few regressors.

But they do not predict as well as methods given so far
I due to high variance (e.g. split data in two then can get quite di¤erent
trees).

Better methods are
I bagging

F bootstrap aggregating averages regression trees over many samples

I random forests

F averages regression trees over many sub-samples

I boosting

F trees build on preceding trees (�t residuals not y ).
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7. Regression Trees and Random Forests

Random Forests
If we bootstrap resample with replacement (bagging) the B estimates
are correlated

I e.g. if a regressor is important it will appear near the top of the tree in
each bootstrap sample.

I the trees look similar from one resample to the next.

Random forests get bootstrap resamples (like bagging)
I but within each bootstrap sample use only a random sample of m < p
predictors in deciding each split.

I usually m ' pp
I this reduces correlation across bootstrap resamples.

Random forests are related to kernel and k-nearest neighbors
I as use a weighted average of nearby observations
I but with a data-driven way of determining which nearby observations
get weight

I see Lin and Jeon (JASA, 2006).
I Susan Athey and coauthors are big on random forests.
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7. Regression Trees and Random Forests

Tree as alternative to k-NN or kernel regression
Figure from Athey and Imbens (2019), �Machine Learning Methods
Economists should Know About�

I axes are x1 and x2
I note that tree used explanation of y in determining neighbors
I tree may not do so well near boundaries of region

F random forests form many trees so not always at boundary.
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8. Classi�cation

8. Classi�cation

y 0s are now categorical e.g. binary.

Interest lies in predicting y using by (classi�cation)
I whereas economist typically want bPr[y = j jx]
I use number misclassi�ed as loss function (not MSE).

Some methods choose category with highest bPr[y = j jx]
I logit, k-nearest neighbors, discriminant analysis

Support vector machines skip bPr[y = j jx] and directly get by
I can do better.
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8. Classi�cation

ISL Figure 9.9: Support Vector Machine
Example with y = 1 blue and y = 0 red

I a linear (logit or linear discriminant analysis) or quadratic classi�er
(quadratic DA) won�t work whereas SVM does.
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9. Unsupervised Learning

9. Unsupervised Learning: cluster analysis

Challenging area: no y , only x.
Example is determining several types of individual based on responses
to many psychological questions.

Principal components analysis
I already presented earlier.

Clustering Methods
I k-means clustering.
I hierarchical clustering.
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9. Unsupervised Learning

ISL Figure 10.5

Data is (x1.x2) with K = 2, 3 and 4 clusters identi�ed.
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10. Prediction for Economics

10. Prediction for Economics: Mullainathan and Spiess

Microeconometrics focuses on estimation of β or of partial e¤ects.

But in some cases we are directly interested in predicting y
I probability of one-year survival following hip transplant operation

F if low then do not have the operation.

I probability of re-o¤ending

F if low then grant parole to prisoner.

Mullainathan and Spiess (2017)
I consider prediction of housing prices
I detail how to do this using machine learning methods
I and then summarize many recent economics ML applications.

So summarize Mullainathan and Spiess (2017).
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10. Prediction for Economics

Summary of Machine Learning Algorithms
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10. Prediction for Economics

Table 2 (continued)
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10. Prediction for Economics

Example: Predict housing prices

y is log house price in U.S. 2011
I n = 51, 808 is sample size
I p = 150 is number of potential regressors.

Predict using
I OLS (using all regressors)
I regression tree
I LASSO
I random forest
I ensemble: an optimal weighted average of the above methods.

1. Train model on 10,000 observations using 8-fold CV.

2. Fit preferred model on these 10,000 observations.

3. Predict on remaining 41,808 observations
I and do 500 bootstraps to get 95% CI for R2.
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10. Prediction for Economics

Random forest (and subsequent ensemble) does best out of sample.
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10. Prediction for Economics

Further details

Downloadable appendix to the paper gives more details and R code.

1. Divide into training and hold-out sample.

2. On the training sample do 8-fold cross-validation to get tuning
parameter(s) such as λ.

I If e.g. two tuning parameters then do two-dimensional grid search.

3. The prediction function bf (x) is estimated using the entire sample
with optimal λ.

4. Now apply this bf (x) to the hold-out sample and can compute R2
and MSE.

5. A 95% CI for R2 can be obtained by bootstrapping hold-out
sample.

Ensemble weights are obtained by 8-fold CV in the training sample.
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10. Prediction for Economics

LASSO

LASSO does not pick the �correct� regressors
I it just gets the correct bf (x) especially when regressors are correlated
with each other.

Diagram on next slide shows which of the 150 variables are included
in separate models for 10 subsamples

I there are many variables that appear sometimes but not at other times

F appearing sometimes in white and sometimes in black.
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10. Prediction for Economics
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10. Prediction for Economics

Some Thoughts on ML Prediction

Clearly there are many decisions to make in implementation
I how are features converted into x�s
I tuning parameter values
I which ML method to use
I even more with an ensemble forecast.

For commercial use this may not matter
I all that matters is that predict well enough.

But for published research we want reproducibility
I At the very least document exactly what you did
I provide all code (and data if it is publicly available)
I keep this in mind at the time you are doing the project.

For public policy we prefer some understanding of the black box
I this may be impossible.
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11. LASSO for causal homogeneous e¤ects

11. LASSO for causal homogeneous e¤ects
Here the basic model is y = βx1 + g(x2) + u.
Good choice of controls g(x2) makes the unconfoundedness
assumption that Cov(x1, u) = 0 more plausible so can give β a
plausible interpretation.
Suppose g(x2) ' w0γ

I the w are various transformations of the x2 variables
I so powers, interactions, logs, .....
I this allows for nonlinearity in g(x2).

There are now many potential w
I assume only a few matter (most have γ = 0) - a sparsity assumption.
I use LASSO to pick these.

Double selection method
I LASSO of y on w picks subset wy of the w variables
I LASSO of x1 on w picks subset wx1 of the w variables.bβ obtained from OLS of y on x1 and the union of wy and wx1
I can use the usual asymptotic theory for bβ!

A. Colin Cameron U.C.-Davis . Presented at U.C.-Davis ()Machine Learning: A Brief Overview June 7 2019 41 / 60



11. LASSO for causal homogeneous e¤ects

Key LASSO References

Belloni, Chernozhukov and Hansen and coauthors have many papers.

The following is accessible with three applications
I Belloni, Chernozhukov and Hansen (2014), �High-dimensional methods
and inference on structural and treatment e¤ects,� Journal of
Economic Perspectives, Spring, 29-50

F has the preceding example and a many IV example.

This gives more detail on LASSO methods as well as on Stata
commands in the Stata add-on package lassopack

I Ahrens, Hansen and Scha¤er (2019), �lassopack: Model selection and
prediction with regularized regression in Stata,� arXiv:1901.05397.
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11. LASSO for causal homogeneous e¤ects

Lassopack
Consider a variant of LASSO with variable weights

I useful for extension to heteroskedastic and clustered errors.

The LASSO estimator bβλ of β minimizes

Qλ(β) =
1
n ∑n

i=1(yi � x
0
iβ)

2 + λ
n ∑p

j=1 ψj jβj j

I where yi and xij are demeaned so ȳ = 0 and x̄j = 0
I and λ � 0 is a tuning parameter to be determined.

Weights vary with errors homoskedastic, heteroskedastic or clustered.
Tuning parameter λ determined in three di¤erent ways

I cvlasso uses K -fold cross-validation
I lasso2 uses goodness-of-�t (AIC, BIC, AICC, EBIC)
I rlasso uses user-speci�ed value �theory-driven�or �rigorous�

F defaults are c = 1.1 and γ = 0.1/ log(n)

pdslasso handles the above model y = βx1 + g(x2) + u.
ivlasso allows x1 to be endogenous with potentially many
instruments z .
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11. LASSO for causal homogeneous e¤ects

Caution

The LASSO methods are easy to estimate using the lassopack
program

I they�ll be (blindly) used a lot.

However in any application
I is the underlying assumption of sparsity reasonable?
I has the asymptotic theory kicked in?
I are the default values of c and γ reasonable?
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12. Heterogeneous Treatment E¤ects

12. Heterogeneous treatment e¤ects

Consider a binary treatment, so x1 = d 2 f0, 1g
The preceding partially linear model y = βd + x02δ+ u

I restricts the same response β for each individual
I requires that E [ujd , x2 ] = 0 for unconfoundedness.

The heterogeneous e¤ects approach is more �exible
I di¤erent responses for di¤erent individuals
I and unconfoundness assumptions may be more reasonable.
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12. Heterogeneous Treatment E¤ects

Heterogeneous e¤ects model

Consider a binary treatment d 2 f0, 1g
I for some individuals we observe y only when d = 1 (treated)
I for others we observe y only when d = 0 (untreated or control).

Denote potential outcomes y (1) if d = 1 and y (0) if d = 0

I for a given individual we observe only one of y (1)i and y (0)i .

The goal is to estimate the average treatment e¤ect

I ATE= E [y (1)i � y (0)i ]

The key assumption is the conditional independence assumption

I di ? fy
(0)
i , y (1)i gjxi .

I conditional on x, treatment is independent of the potential outcome
I a good choice of x makes this assumption more reasonable.
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12. Heterogeneous Treatment E¤ects

ATE estimates

ATE can be estimated in several ways
I regression adjustment models E [y (1)jx] and E [y (0)jx]

F then compute the average di¤erence in predicted values

I propensity score matching models Pr[d = 1jx]
F then compare y (0) and y (1) for people with similar propensity score

I doubly-robust methods combine the two.

Machine learning can help in getting good models for E [y (1)jx] and
E [y (0)jx] and Pr[d = 1jx]

I to date the LASSO is used.
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12. Heterogeneous Treatment E¤ects

Heterogeneous E¤ects using Random Forests

Here the goal is to obtain the treatment e¤ect at a given level of x
I and not just the overall average (ATE)
I e.g. useful for customized treatment.

Random forests predict very well
I Susan Athey�s research emphasizes random forests.

Stefan Wager and Susan Athey (2018), �Estimation and Inference of
Heterogeneous Treatment E¤ects using Random Forests,� JASA,
1228-1242.

Standard binary treatment and heterogeneous e¤ects with
unconfoundness assumption

I use random forests to determine the controls.
I proves asymptotic normality and gives point-wise con�dence intervals

F This is a big theoretical contribution.
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12. Heterogeneous Treatment E¤ects

Heterogeneous E¤ects using Random Forests (continued)
Let L denote a speci�c leaf in tree b.
τ(x) = E [y (1) � y (0)jx] in a single regression tree b is estimated bybτb(x) = 1

#fi :di=1,xi2Lg ∑i :di=1,xi2L yi �
1

#fi :di=0,xi2Lg ∑i :di=0,xi2L yi
= ȳ1 in leaf L� ȳ0 in leaf L.

Then a random forest with sub-sample size s gives B trees withbτb(x) = 1
B ∑B

b=1 bτb(x)dVar [bτb(x)] = n�1
n

� n
n�2

�2
∑n
i=1 Cov(bτb(x), dib)

I where dib = 1 if i th observation in tree b and 0 otherwise
I and the covariance is taken over all B trees.

Key is that a tree is honest.
A tree is honest if for each training observation i it only uses yi to

I either estimate bτ(x)within leaf
I or to decide where to place the splits
I but not both.
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13. Double or Debiased Machine Learning

13. Double or Debiased Machine Learning
Chernozhukov, Chetverikov, Demirer, Du�o, Hansen, Newey and
Robins (2018), �Double/debiased machine learning for treatment and
structural parameters,�The Econometrics Journal.
Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.
There are two components to double ML or debiased ML and
subsequent inference

I work with orthogonalized moment conditions to estimate
parameter(s) of interest.

I use sample splitting (cross �tting) to remove bias induced by
over�tting.

This yields asymptotic normal distribution for parameters of interest
I where a variety of ML methods can be used

F random forests, lasso, ridge, deep neural nets, boosted trees, ensembles.

Can apply to partial linear model, ATE and ATET under
unconfoundedness, LATE in an IV setting.
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13. Double or Debiased Machine Learning

Orthogonalization de�ned
De�ne β as parameters of interest and η as nuisance parameters.
Estimate bβ is obtained following �rst step estimate bη of η

I First stage: bη solves ∑ni=1 ω(wi , η) = 0 on 90% (say) of sample
I Second stage: bβ solves ∑ni=1 ψ(wi , β,bη) = 0 on the other 10%.

The distribution of bβ is usually a¤ected by the noise due to
estimating η

I e.g. Heckman�s two-step estimator in selection models.

But this is not always the case
I e.g. the asymptotic distribution of feasible GLS is not a¤ected by
�rst-stage estimation of variance model parameters to get bΩ.

Result: The distribution of bβ is una¤ected by �rst-step estimation of
η if the function ψ(�) satis�es

I E [∂ψ(wi , β, η)/∂η] = 0; see next slide.

So choose functions ψ(�) that satisfy the orthogonalization condition
E [∂ψ(wi , β, η)/∂η] = 0.
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13. Double or Debiased Machine Learning

Orthogonalization (continued)

Why does this work?

1p
n

n
∑
i=1

ψ(wi , bβ,bη)
=

1p
n

n
∑
i=1

ψ(wi , β0, η0) +
1
n

n
∑
i=1

∂ψ(wi , β, η)
∂β0

����
β0,η0

�
p
n(bβ� β0)

+
1
n

n
∑
i=1

∂ψ(wi , β, η)
∂η0

����
β0,η0

�
p
n(bη� η0)

By a law of large numbers 1n ∑n
i=1

∂ψ(wi ,β,η)
∂η

���
β0,η0

converges to its

expected value which is zero if E [∂ψ(wi , β, η)/∂η] = 0.
So the term involving bη drops out.
For more detail see e.g. Cameron and Trivedi (2005, p.201).
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13. Double or Debiased Machine Learning

Orthogonalization in partially linear model

Recall OLS of yi = βxi + ui
I solves sample moment condition ∑i xiui = ∑i xi (yi � βxi ) = 0
I with underlying population moment condition E [x(yi � βx)] = 0.

Partial linear model y = βx1 + g(x2) + u.
Robinson estimator is OLS in

I (y � E [y jx2 ]) = β(x1 � E [x1 jx2 ]) + error .

So solve population moment condition E [ψ(�)] = 0 where
I ψ(�) = (x1 � E [x1 jx2 ])fy � E [y jx2 ]� β(x1 � E [x1 jx2 ])g.

De�ne η1 = E [x1jx2] and η2 = E [y jx2] , so
I ψ(w , β, η) = (x1 � η1))fy � η2 � β(x1 � η1)g

This satis�es the orthogonalization condition
I E [∂ψ(w, β, η)/∂η1 ] = E [2(x1 � η1)β] = 0 as η1 = E [x1 jx2 ]
I E [∂ψ(w, β, η)/∂η2 ] = E [�(x1 � η1)] = 0 as η1 = E [x1 jx2 ].
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13. Double or Debiased Machine Learning

Orthogonalization for doubly robust ATE (continued)

Doubly-robust ATE solves E [ψ(w , τ, η)] = 0 where

I ψ(w , τ, η) = 1[d=1](y�η1)
η3

+ η1 �
1[d=0](y�η2)

1�η3
� η2 + τ

I η1 = µ1(x) = E [y1 jx], η2 = µ0(x) = E [y0 jx], η3 = Pr[y = 1jx].

This satis�es the orthogonalization condition

I E [∂ψ(w, τ, η)/∂η1 ] = E [�
1[d=1])

η3
+ 1] = 0

F as E [1[d = 1]] = p(x) = η3

I E [∂ψ(w, τ, η)/∂η2 ] = E [
1[d=0])
1�η3

� 1] = 0
F as E [1[d = 0]] = 1� p(x) = 1� η3

I E [∂ψ(w, τ, η)/∂η2 ] = E [�
1[d=1](y�η1)

η23
� 1[d=0](y�η2)

(1�η3)
2 ] = 0� 0 = 0

F as E [1[d = 1](y � η1)] = E [y1 jx]� η1 = 0
F and E [1[d = 0](y � η0)] = E [y0 jx]� η0 = 0.
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14. Conclusions

14. Conclusions
Guard against over�tting

I use K -fold cross validation or penalty measures such as AIC.

Biased estimators can be better predictors
I shrinkage towards zero such as Ridge and LASSO.

For �exible models popular choices are
I neural nets
I random forests.

Though what method is best varies with the application
I and best are ensemble forecasts that combine di¤erent methods.

Machine learning methods can outperform nonparametric and
semiparametric methods

I so wherever econometricians use nonparametric and semiparametric
regression in higher dimensional models it may be useful to use ML
methods

I though the underlying theory still relies on assumptions such as sparsity.
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Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.
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I ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009),
The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer.

I free legal pdf at
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I $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
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15. References

References (continued)
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