1.(a) Here

$$
\begin{aligned}
Q_{N}(\boldsymbol{\beta})= & N^{-1} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2} \\
= & N^{-1} \sum_{i}\left\{\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]+\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right\}^{2} \\
= & N^{-1} \sum_{i}\left\{\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]^{2}+2\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right. \\
& \left.+\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]^{2}\right\} .
\end{aligned}
$$

(b) Now

$$
\begin{aligned}
Q_{0}(\boldsymbol{\beta})= & \operatorname{plim} Q_{N}(\boldsymbol{\beta}) \\
= & \operatorname{plim} N^{-1} \sum_{i}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]^{2} \\
& +2 \operatorname{plim} N^{-1} \sum_{i}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \\
& +\operatorname{plim} N^{-1} \sum_{i}\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]^{2} \\
= & \lim N^{-1} \sum_{i} \mathrm{E}_{\mathbf{x} i}\left[\sigma_{i 0}^{2}\right]+0+\lim N^{-1} \sum_{i} \mathrm{E}_{\mathbf{x}_{i}}\left[\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right]^{2}
\end{aligned}
$$

where apply a LLN to first term and use $\mathrm{E}\left[\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]^{2}\right]=\mathrm{E}_{\mathbf{x}_{i}}\left[\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right]^{2} \mid \mathbf{x}_{i}\right]=$ $\mathrm{E}_{\mathbf{x}_{i}}\left[\mathrm{~V}\left[y_{i} \mid \mathbf{x}_{i}\right]\right]=\mathrm{E}_{\mathbf{x}_{i}}\left[\sigma_{i 0}^{2}\right]$ where second last equality uses $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)$ and a LLN to the second term using $\mathrm{E}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right) \mid \mathbf{x}_{i}\right]=0$ since $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)$.
(c) $\widehat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}_{0}$ since by inspection $\operatorname{plim} Q_{N}(\boldsymbol{\beta})$ is clearly minimized at $\boldsymbol{\beta}=\boldsymbol{\beta}_{0}$, as then the third term (the only term involving $\boldsymbol{\beta}$) takes the minimum value of zero.
Or if you want to do more work in this example: differentiate w.r.t. $\boldsymbol{\beta}$ (not $\boldsymbol{\beta}_{0}$)

$$
\begin{aligned}
\frac{\partial Q_{0}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} & =\lim N^{-1} \sum_{i}-2 \mathrm{E}_{\mathbf{x}_{i}}\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\left[\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right] \\
& =0 \text { when } \boldsymbol{\beta}=\boldsymbol{\beta}_{0}
\end{aligned}
$$

(d) Consider the first term: $\operatorname{plim} \frac{1}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2}$.

This is the average $\bar{X}_{N}=N^{-1} \sum_{i} X_{i}$ where $X_{i}=\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2}$.
Here X_{i} is i.i.d. as $\left(\mathbf{x}_{i}, y_{i}\right)$ are iid - best to use Khinchines Theorem (as then minimal assumptions).
This requires $\mathrm{E}\left[X_{i}\right]=\mathrm{E}\left[\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2}\right]=\mathrm{E}_{\mathbf{x} i}\left[\sigma_{i 0}^{2}\right]$ exists.
Similarly for the second and third terms.
(e) No. In (b) the second term will no longer disappear if $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right] \neq \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)$, so $Q_{0}(\boldsymbol{\beta})$ will not necessarily be maximized at $\boldsymbol{\beta}=\boldsymbol{\beta}_{0}$. (Also the first term will change and now involve $\boldsymbol{\beta}$.)
So $\widehat{\boldsymbol{\beta}}$ will be consistent if the functional form for $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]$ is misspecified.
2.(a) Differentiating $Q_{N}(\boldsymbol{\beta})=\frac{1}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2}$

$$
\begin{aligned}
\frac{\partial Q_{N}}{\partial \boldsymbol{\beta}} & =\frac{1}{N} \sum_{i}-2\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \mathbf{x}_{i} \\
& =\frac{-2}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \mathbf{x}_{i}
\end{aligned}
$$

Can assume the result that $\left.\sqrt{N} \frac{\partial Q_{N}}{\partial \beta}\right|_{\beta_{0}} \xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \mathbf{B}_{0}\right]$, where

$$
\begin{aligned}
\mathbf{B}_{0} & =\left.\operatorname{plim} N \frac{\partial Q_{N}}{\partial \boldsymbol{\beta}} \frac{\partial Q_{N}}{\partial \boldsymbol{\beta}^{\prime}}\right|_{\boldsymbol{\beta}_{0}} \\
& =\operatorname{plim} N\left(\frac{-2}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right) \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right) \mathbf{x}_{i}\right)\left(\frac{-2}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right) \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right) \mathbf{x}_{i}\right)^{\prime} \\
& =\lim \frac{4}{N} \sum_{i} \mathrm{E}\left[\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2}\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right] \text { using independence and } \mathrm{E}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right) \mid \mathbf{x}_{i}\right]=0 \\
& =\lim \frac{4}{N} \sum_{i} \mathrm{E}_{\mathbf{x}_{i}}\left[\sigma_{i 0}^{2}\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right] .
\end{aligned}
$$

(b) We have differentiating $\partial Q_{N} / \partial \beta$ by parts

$$
\begin{aligned}
\frac{\partial^{2} Q_{N}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}} & =\frac{2}{N} \sum_{i}\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}-\frac{2}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} \\
\mathbf{A}_{0} & =\left.\operatorname{plim} \frac{\partial^{2} Q_{N}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}\right|_{\boldsymbol{\beta}_{0}}=\lim \frac{2}{N} \sum_{i}\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}, \quad \text { since } \mathrm{E}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right) \mid \mathbf{x}_{i}\right]=0 .
\end{aligned}
$$

(c) Combining and noting that $\left(\frac{-2}{N}\right)^{-1}\left(\frac{4}{N}\right)\left(\frac{-2}{N}\right)^{-1}=\left(\frac{1}{N}\right)^{-1}\left(\frac{1}{N}\right)\left(\frac{1}{N}\right)^{-1}$

$$
\begin{aligned}
& \sqrt{N}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \quad \mathbf{A}_{0}^{-1} \mathbf{B}_{0} \mathbf{A}_{0}{ }^{-1}\right] \\
& \xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \quad\left(\lim \frac{1}{N} \sum_{i} \mathrm{E}\left[\sigma_{i 0}^{2}\left(\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]\right)^{-1}\left(\lim \frac{1}{N} \sum_{i}\left\{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)\right\}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)()^{-1}\right] .
\end{aligned}
$$

(d) Use $\widehat{\mathbf{A}}^{-1} \widehat{\mathbf{B}} \widehat{\mathbf{A}}^{-1}$ where $\left.\left.\widehat{\mathbf{A}}=\frac{1}{N} \sum_{i} \exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)\right)^{2}\left(\exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]$ and $\widehat{\mathbf{B}}=\frac{1}{N} \sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)\right)^{2}\left(\exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.
(e) Reject $H_{0}: \beta_{j}=0$ against $H_{a}: \beta_{j} \neq 0$ at level a if $|t|>1.96$ where $t=\widehat{\beta}_{j} / s_{\widehat{\beta}_{j}}$ where $s_{\widehat{\beta}_{j}}^{2}$ is the $j^{\text {th }}$ diagonal entry in the matrix in (g).
3.(a) A sequence of random variables $\left\{b_{N}\right\}$ converges in probability to b if for any $\varepsilon>0$ and $\delta>0$, there exists $N^{*}=N^{*}(\varepsilon, \delta)$ such that for all $N>N^{*}, \operatorname{Pr}\left[\left|b_{N}-b\right|<\varepsilon\right]>1-\delta$.
(b) A sequence of random variables $\left\{b_{N}\right\}$ converges in distribution to a random variable b if $\lim _{N \rightarrow \infty} F_{N}=F$, at every continuity point of F, where F_{N} is the distribution of b_{N}, F is the distribution of b, and convergence is in the usual mathematical sense.
(c) In general it will not, unless b is a constant, rather than a random variable.
(d) Because the statistics we use, such as estimators, involve averages.
(e) Newton Raphson: $\widehat{\boldsymbol{\theta}}_{s+1}-\widehat{\boldsymbol{\theta}}_{s}=-\left[\partial^{2} Q_{N}(\boldsymbol{\theta}) /\left.\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}\right|_{\hat{\boldsymbol{\theta}}_{s}}\right]^{-1} \times \partial Q_{N}(\boldsymbol{\theta}) /\left.\partial \boldsymbol{\theta}\right|_{\widehat{\boldsymbol{\theta}}_{s}}$.
(f) When y_{i} equals 1 with probability $\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$ and 0 with probability $1-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$, we can write the density as $f\left(y_{i} \mid \mathbf{x}_{i}\right)=\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{y_{i}}\left(1-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{1-y_{i}}$. Then $\ln L=\ln \left(\prod_{i=1}^{N} f\left(y_{i} \mid \mathbf{x}_{i}\right)\right)=\sum_{i=1}^{N} \ln f\left(y_{i} \mid \mathbf{x}_{i}\right)=\sum_{i=1}^{N} \ln \left(\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{y_{i}}\left(1-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{1-y_{i}}\right)$ $=\sum_{i=1}^{N}\left\{y_{i} \ln \Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)+\left(1-y_{i}\right) \ln \left(1-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right).\right\}$
4. I expected answer to cover both parameter interpretation (ME's) and statistical significance. The coefficients are jointly statistically significant at 5%.
Individually the coefficient of x_{2} is statistically significant at 5% but that of x_{3} is not.
Here $\mathrm{ME}_{j}=g^{\prime}\left(\beta_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}\right) \beta_{j}$ where $g^{\prime}(\cdot)<0$ so sign of ME is the reverse of the sign of β_{j}. It follows that $\mathrm{E}\left[y \mid x_{2}, x_{3}\right]$ decreases when x_{2} increases and when x_{3} increases.
As $.42 / .27 \simeq 1.5$, a one unit change in x_{3} has about 1.5 times the effect of a one unit change in x_{2}. Aside: Also since standard errors reported were not labelled "robust" might also want to check this.

Overall - question 1 done well. Questions 2-4 not done as well. Some fundamental errors were made at times - so check for my hand-written comments on your answers.
The course grade will be based on a curve from the combined scores of midterm (35\%), final (50\%) and assignments (15%).
The curve for this exam is only a guide to give you a rough idea of how you are doing.

Scores out of 35
75th percentile 28 (83\%)
Median 26.5 (76\%)
25th percentile 21.5 (61\%)

A 28 and above
A- 22 and above
B+ 17 and above

