
240D Winter 2012 Solutions to Final Exam
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(c) Easiest to derive the outer product of the gradient estimate bB�1. This yields for � = [�0 �]0:
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Or can use Hessian which �bA�1 yields after some algebra yields
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except in the special case that E
h
@2 lnL
@�@�

i
= 0.

(d) In general the MLE for both � and � will be inconsistent.
Here there is some hope that MLE for � may be consistent, since E[@ lnL=@�] = 0 requires only

correct speci�cation of the mean (then E
hP

i
yi�� exp(x0i�)
exp(x0i�)

xi

i
= 0). [Half credit for saying this].

But E[@ lnL=@�] = 0 requires the much stronger assumption that E[ln yi] = x0i� +
�0(�)
�(�)

(then E
hP

i

�
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= 0).

This fails and the two equations jointly estimated will yield inconsistent estimates.

One way to see this is that b� inconsistent then contaminates � that solvesPi

�
yi�b� exp(x0i�)
exp(x0i�)

xi

�
= 0:

More formally, the information matrix is not block-diagonal as E[@2 lnL=@�@�] 6= 0 and estiamtion
of � e¤ects etimation of �.

(e) Two possible methods are based on E[yijxi] = exp(x0i�) are
NLS of yi on exp(x0i�) which minimizes

P
i(yi � exp(x0i�))2.

MM estimation based on E[(yi � exp(x0i�))xi] = 0 which solves
P
i(yi � exp(x0i�))xi = 0.

(f) Here E[y] = �� and V[y] = ��2.
So E[x(y � � exp(x0�))] = 0 and E[(y � � exp(x0�))2 � 1] = 0:
Let h(yi;xi; �;�) = [(xi(yi � � exp(x0i�)))0 ((yi � � exp(x0i�))2 � 1)]0:
The GMM estimator minimizes
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where any full rank weighting matrix will do since this is just-identi�ed.
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2.(a) Here Pr[y = 0] = Pr[y� = 0] = e�� = exp(� exp(x0�)). So

Pr[y = 1] = 1� Pr[y = 0] = 1� exp(� exp(x0�)):

Estimate by binary MLE. b� maximizes LN (�) =Pi yi ln(1�exp(� exp(x0�))+(1�yi) ln(exp(� exp(x0�))):

(b) This is ordered model

p0 = Pr[y = 0] = Pr[y� = 0] = e�� = exp(� exp(x0�)):
p1 = Pr[y = 1] = Pr[y� = 1] = �e�� = exp(x0�) exp(� exp(x0�)):
p2 = Pr[y = 2] = 1� p0 � p1:

Estimate by multinomial MLE. b� maximizes LN (�) = P
i(y0i ln p0i + y1i ln p1i + y2i ln p2i) where

y0i = 1 if yi = 0, y1i = 1 if yi = 1, y2i = 1 if yi = 2.

(c) For notational simplicity initially suppress conditioning on x

f(y) = f(y�jy��1) = f(y�)

Pr[y��1] =
e���y=y�!

(1� Pr[y� = 0]) =
e���y=y�!

(1� e��)
So

ln f(yjx) = � exp(x0i�) + yix0i� � ln yi!� ln(1� e� exp(x
0
i�)):

(d) Very few got this.
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using
P1
y�=0 y

�f(y�) is E[y�] and we were told that for the Poisson that E[y�] = �.
(e) Since

E[yijxi] =
exp(x0i�)

1� e� exp(x0i�)

do nonlinear least squares regression of yi on exp(x0i�)=(1� e� exp(x
0
i�)).

Or do MM based on
P
i xi(yi � exp(x0i�)=(1� e� exp(x

0
i�))) = 0.

3.(a) A sequence of random variables fbNg converges in probability to b if for any " > 0 and � > 0,
there exists N� = N�("; �) such that for all N > N�, Pr[jbN � bj < "] > 1� �:

(b) Remarkably dew got this completely correct. Simplest is Lindeberg-Levy CLT.

Let fXig be iid with E[Xi] = � and V[Xi] = �2. Then ZN =
�XN��
�=
p
N

d! N [0; 1].
[Other CLT�s can be given].

(c) y� = 1 + 2x+ u where x � N[0; 1] and u � N[0; x2]
We observe y = 1 if y� > 0 and y = 0 if y� � 0:

(d) In (c) I had meant to generate y from a Tobit model but mistekenly generated a binary variable.
So the natural thing would be to try probit estimation. Tobit is inappropriate.
But I gave �ull vredit if you thought Tobit was still apropriate, but then noted that the Tobit MLE
of y on x will be inconsistent for � as the error here is heteroskedastic. It is not enough to say
that standard errors will be wrong. Inconsistency is the most serious problem.

(e) I had intended the question to be about the sample selection model, but if you answered
correctly for the Tobit model you also got full credit. The sample selection model is

y�1 = x01�1 + "1

y�2 = x02�2 + "2;
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and we observe y1 =
�
1 if y�1 > 0
0 if y�1 � 0;

and y2 =
�
y�2 if y�1 > 0
� if y�1 � 0:

The errors ("1; "2) have means (0; 0), variances (1; �22) and covariance ��
2
2:

"1 is standard normal. If the MLE is used ("1; "2) are joint normal.

(f) B times do the following.
- Completely resample with replacement all the data f(y1i; y2i;x1i;x2i); i = 1; :::; Ng
- For each resample get estimate b�b and form dMEb = exp(�x0bb�b):
Standard error is the standard deviation of the B s dME0bs:
(g) This is optimal two-step GMM. Minimize

QN (�) =
1

N

�X
i
h(wi;�)

�0 bS�1 �X
i
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�
;

where bS =PN
i=1 h(wi;

e�)h(wi; e�)0 and e� is a consistent initial estimate such as �rst-step GMM.
4.(a) No. The default se�s assume independence of uitand uis. But the error uit is likely to be
positively correlated with uis, i 6= s, decreasing the informational content of the data. Panel robust
se�s adjust for this.

(b) Yes. The RE-GLS does control for clustering so might expoect the two to be similar. The
di¤erence is due to the wrong model for clustered errors (equicorrelation) or heteroskedasticity.

(c) yit = �i + x0it� + uit ) (yit � �yi) = (xit � �xi)0� + (uit � �ui).
So do OLS of (yit � �yi) on (xit � �xi). (Other methods are possible).

(d) xtreg y x, vce(robust) or xtreg y x, vce(Cluster id).

(e) That the RE estimator is fully e¢ cient under H0. This requires that the error yit = �i + "it
where both �i and "it are i.i.d.

(f) Usual Hausman test is H= (b�FE � e�RE)0(bV[b�FE]� bV[e�RE])�1(b�FE � e�RE) a� �2(q).b�FE = 0:17 with default standard error 0:03 and b�RE = 0:12 with default standard error 0:02:
Note that if indeed the RE is fully e¢ cient then the default standard errors are correct and we
would use these.
H= (0:17� 0:12)2=(0:032 � 0:022) = :0025=:0005 = 5 > �20:05(1) = 3:84:
Reject H0. Conclude that there is a di¤erence so FE is the model.

(g) Now H= (b�FE � e�RE)0(bV[b�FE]+ bV[e�RE]� 2 +dCov[e�RE; b�FE])�1(b�FE � e�RE) a� �2(q).b�FE = 0:17 with robust s.e. 0:08, b�RE = 0:12 with robust s.e. 0:05, and dCov[e�RE; b�FE] = 0:022:
H= (0:17� 0:12)2=(0:082 + 0:052 � 2� 0:022) = :0025=:0081 = 0:31 < �20:05(1) = 3:84:
Reject H0. Conclude that there is no di¤erence so RE is the model.

(h) Stacking we have yi = Xi� + ui, where yi and ui are T � 1 and Xi is T � k with ith row x0i.
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�1 where bui = yi �Xib�.
The curve for this exam is only a guide. The course grade is based on course score.
Scores out of 50
75th percentile 38 (76%)
Median 31:5 (63%)
25th percentile 26 (52%)

A 36 and above
A- 30 and above
B+ 24 and above
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