240D Winter 2012 Solutions to Final Exam

1.(a) Here $\ln L(\boldsymbol{\beta}, \alpha) = \sum_{i} \ln f(y_{i}) = \sum_{i} \left\{ (\alpha - 1) \ln y_{i} - \frac{y_{i}}{\exp(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta})} - \alpha \mathbf{x}_{i}^{\prime}\boldsymbol{\beta} - \ln \Gamma(\alpha) \right\}$ (b) Differentiation yields

(b) Differentiation yields

$$\frac{\partial \ln L}{\partial \boldsymbol{\beta}} = \sum_{i} \left(\frac{y_{i}}{\exp(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta})} \mathbf{x}_{i} - \alpha \mathbf{x}_{i} \right) = \sum_{i} \left(\frac{y_{i} - \alpha \exp(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta})}{\exp(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta})} \mathbf{x}_{i} \right) = \mathbf{0}.$$

$$\frac{\partial \ln L}{\partial \alpha} = \sum_{i} \left(\ln y_{i} - \mathbf{x}_{i}^{\prime}\boldsymbol{\beta} - \frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)} \right) = 0.$$

(c) Easiest to derive the outer product of the gradient estimate $\widehat{\mathbf{B}}^{-1}$. This yields for $\boldsymbol{\theta} = [\boldsymbol{\beta}' \ \alpha]'$.

$$\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}] = \begin{bmatrix} \sum_{i} \left(\frac{y_{i} - \widehat{\alpha} \exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})}{\exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})} \right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}' & \sum_{i} \left(\ln y_{i} - \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} - \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} \right) \left(\frac{y_{i} - \widehat{\alpha} \exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})}{\exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})} \right) \mathbf{x}_{i} \\ \sum_{i} \left(\frac{y_{i} - \widehat{\alpha} \exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})}{\exp(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})} \right) \left(\ln y_{i} - \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} - \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} \right) \mathbf{x}_{i} & \sum_{i} \left(\ln y_{i} - \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} - \frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} \right)^{2} \end{bmatrix}^{-1}$$

Or can use Hessian which $-\widehat{\mathbf{A}}^{-1}$ yields after some algebra yields

$$\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}] = \begin{bmatrix} \sum_{i} \left(\frac{y_i}{\exp(\mathbf{x}'_i \widehat{\boldsymbol{\theta}})} \right) \mathbf{x}_i \mathbf{x}'_i & \sum_{i} \mathbf{x}_i \\ \sum_{i} \mathbf{x}_i & \sum_{i} \left(\frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} - \frac{\Gamma'(\widehat{\alpha})^2}{\Gamma(\widehat{\alpha})^2} \right) \end{bmatrix}^{-1}$$

Note: In general we use $\left(-E\left[\frac{\partial^2 \ln L}{\partial \theta \partial \theta'}\right]\right)^{-1}$. Here $\left(\begin{bmatrix} E\left[\frac{\partial^2 \ln L}{\partial \beta \partial \beta'}\right] & E\left[\frac{\partial^2 \ln L}{\partial \alpha \partial \beta'}\right] \\ E\left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha}\right] & E\left[\frac{\partial^2 \ln L}{\partial \alpha^2}\right] \end{bmatrix}\right)^{-1} \neq -\begin{bmatrix} \left(E\left[\frac{\partial^2 \ln L}{\partial \beta \partial \beta'}\right]\right)^{-1} & \left(E\left[\frac{\partial^2 \ln L}{\partial \alpha \partial \beta'}\right]\right)^{-1} \\ \left(E\left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha}\right]\right)^{=1} & \left(E\left[\frac{\partial^2 \ln L}{\partial \alpha^2}\right]\right)^{-1} \end{bmatrix}$ except in the special case that $E\left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha}\right] = \mathbf{0}$.

(d) In general the MLE for both $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ will be inconsistent. Here there is some hope that MLE for $\boldsymbol{\beta}$ may be consistent, since $\mathbb{E}[\partial \ln L/\partial \boldsymbol{\beta}] = \mathbf{0}$ requires only correct specification of the mean (then $\mathbb{E}\left[\sum_{i} \frac{y_i - \alpha \exp(\mathbf{x}'_i \boldsymbol{\beta})}{\exp(\mathbf{x}'_i \boldsymbol{\beta})} \mathbf{x}_i\right] = 0$). [Half credit for saying this]. But $\mathbb{E}[\partial \ln L/\partial \alpha] = 0$ requires the much stronger assumption that $\mathbb{E}[\ln y_i] = \mathbf{x}'_i \boldsymbol{\beta} + \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$

(then $E\left[\sum_{i} \left(\ln y_{i} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} - \frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}\right)\right] = 0$). This fails and the two equations jointly estimated will yield inconsistent estimates.

One way to see this is that $\hat{\alpha}$ inconsistent then contaminates $\boldsymbol{\beta}$ that solves $\sum_{i} \left(\frac{y_{i} - \hat{\alpha} \exp(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta})}{\exp(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta})} \mathbf{x}_{i} \right) = \mathbf{0}$. More formally, the information matrix is not block-diagonal as $\mathbb{E}[\partial^{2} \ln L/\partial \boldsymbol{\beta} \partial \alpha] \neq \mathbf{0}$ and estiamtion of $\boldsymbol{\alpha}$ effects etimation of $\boldsymbol{\beta}$.

(e) Two possible methods are based on $E[y_i|\mathbf{x}_i] = \exp(\mathbf{x}'_i\boldsymbol{\beta})$ are NLS of y_i on $\exp(\mathbf{x}'_i\boldsymbol{\beta})$ which minimizes $\sum_i (y_i - \exp(\mathbf{x}'_i\boldsymbol{\beta}))^2$. MM estimation based on $E[(y_i - \exp(\mathbf{x}'_i\boldsymbol{\beta}))\mathbf{x}_i] = \mathbf{0}$ which solves $\sum_i (y_i - \exp(\mathbf{x}'_i\boldsymbol{\beta}))\mathbf{x}_i = \mathbf{0}$.

(f) Here $E[y] = \alpha \lambda$ and $V[y] = \alpha \lambda^2$. So $E[\mathbf{x}(y - \alpha \exp(\mathbf{x}'\boldsymbol{\beta}))] = 0$ and $E[(y - \alpha \exp(\mathbf{x}'\boldsymbol{\beta}))^2 - 1] = 0$. Let $h(y_i, \mathbf{x}_i, \alpha, \boldsymbol{\beta}) = [(\mathbf{x}_i(y_i - \alpha \exp(\mathbf{x}'_i\boldsymbol{\beta})))' \quad ((y_i - \alpha \exp(\mathbf{x}'_i\boldsymbol{\beta}))^2 - 1)]'$. The GMM estimator minimizes

$$Q_N(\alpha, \beta) = \frac{1}{N} \left(\sum_i h(y_i, \mathbf{x}_i, \alpha, \beta) \right)' \mathbf{W}_N \left(\sum_i h(y_i, \mathbf{x}_i, \alpha, \beta) \right),$$

where any full rank weighting matrix will do since this is just-identified.

2.(a) Here $\Pr[y=0] = \Pr[y^*=0] = e^{-\mu} = \exp(-\exp(\mathbf{x}'\boldsymbol{\beta}))$. So $\Pr[y=1] = 1 - \Pr[y=0] = 1 - \exp(-\exp(\mathbf{x}'\boldsymbol{\beta})).$

Estimate by binary MLE. $\hat{\boldsymbol{\beta}}$ maximizes $L_N(\boldsymbol{\beta}) = \sum_i y_i \ln(1 - \exp(-\exp(\mathbf{x}'\boldsymbol{\beta})) + (1 - y_i) \ln(\exp(-\exp(\mathbf{x}'\boldsymbol{\beta})))).$ (b) This is ordered model

$$p_{0} = \Pr[y = 0] = \Pr[y^{*} = 0] = e^{-\mu} = \exp(-\exp(\mathbf{x}'\boldsymbol{\beta})).$$

$$p_{1} = \Pr[y = 1] = \Pr[y^{*} = 1] = \mu e^{-\mu} = \exp(\mathbf{x}'\boldsymbol{\beta})\exp(-\exp(\mathbf{x}'\boldsymbol{\beta}))$$

$$p_{2} = \Pr[y = 2] = 1 - p_{0} - p_{1}.$$

Estimate by multinomial MLE. $\hat{\boldsymbol{\beta}}$ maximizes $L_N(\boldsymbol{\beta}) = \sum_i (y_{0i} \ln p_{0i} + y_{1i} \ln p_{1i} + y_{2i} \ln p_{2i})$ where $y_{0i} = 1$ if $y_i = 0, y_{1i} = 1$ if $y_i = 1, y_{2i} = 1$ if $y_i = 2$.

(c) For notational simplicity initially suppress conditioning on \mathbf{x}

$$f(y) = f(y^*|y^* \ge 1) = \frac{f(y^*)}{\Pr[y^* \ge 1]} = \frac{e^{-\mu}\mu^y/y^*!}{(1 - \Pr[y^* = 0])} = \frac{e^{-\mu}\mu^y/y^*!}{(1 - e^{-\mu})^2}$$

So

$$\ln f(y|\mathbf{x}) = -\exp(\mathbf{x}_i'\boldsymbol{\beta}) + y_i\mathbf{x}_i'\boldsymbol{\beta} - \ln y_i! - \ln(1 - e^{-\exp(\mathbf{x}_i'\boldsymbol{\beta})}).$$

(d) Very few got this.

$$\begin{split} \mathbf{E}[y] &= \mathbf{E}[y^*|y^* \ge 1] \\ &= \sum_{y^*=1}^{\infty} \frac{y^* f(y^*)}{\Pr[y^* \ge 1]} = \frac{1}{\Pr[y^* \ge 1]} \sum_{y^*=1}^{\infty} y^* f(y^*) = \frac{1}{\Pr[y^* \ge 1]} \sum_{y^*=0}^{\infty} y^* f(y^*) = \frac{1}{1 - e^{-\mu}} \mu, \end{split}$$

using $\sum_{y^*=0}^{\infty} y^* f(y^*)$ is $E[y^*]$ and we were told that for the Poisson that $E[y^*] = \mu$. (e) Since

$$\mathbf{E}[y_i|\mathbf{x}_i] = \frac{\exp(\mathbf{x}_i'\boldsymbol{\beta})}{1 - e^{-\exp(\mathbf{x}_i'\boldsymbol{\beta})}}$$

do nonlinear least squares regression of y_i on $\exp(\mathbf{x}'_i\boldsymbol{\beta})/(1-e^{-\exp(\mathbf{x}'_i\boldsymbol{\beta})})$. Or do MM based on $\sum_i \mathbf{x}_i(y_i - \exp(\mathbf{x}'_i\boldsymbol{\beta})/(1-e^{-\exp(\mathbf{x}'_i\boldsymbol{\beta})})) = \mathbf{0}$.

3.(a) A sequence of random variables $\{b_N\}$ converges in probability to b if for any $\varepsilon > 0$ and $\delta > 0$, there exists $N^* = N^*(\varepsilon, \delta)$ such that for all $N > N^*$, $\Pr[|b_N - b| < \varepsilon] > 1 - \delta$.

(b) Remarkably dew got this completely correct. Simplest is Lindeberg-Levy CLT. Let $\{X_i\}$ be iid with $E[X_i] = \mu$ and $V[X_i] = \sigma^2$. Then $Z_N = \frac{\bar{X}_N - \mu}{\sigma/\sqrt{N}} \xrightarrow{d} \mathcal{N}[0, 1]$. [Other CLT's can be given].

(c) $y^* = 1 + 2x + u$ where $x \sim N[0, 1]$ and $u \sim N[0, x^2]$ We observe y = 1 if $y^* > 0$ and y = 0 if $y^* \le 0$.

(d) In (c) I had meant to generate y from a Tobit model but mistekenly generated a binary variable. So the natural thing would be to try probit estimation. Tobit is inappropriate.

But I gave full vredit if you thought Tobit was still appropriate, but then noted that the Tobit MLE of y on x will be **inconsistent** for β as the error here is heteroskedastic. It is not enough to say that standard errors will be wrong. Inconsistency is the most serious problem.

(e) I had intended the question to be about the sample selection model, but if you answered correctly for the Tobit model you also got full credit. The sample selection model is

$$\begin{aligned} y_1^* &= \mathbf{x}_1' \boldsymbol{\beta}_1 + \varepsilon_1 \\ y_2^* &= \mathbf{x}_2' \boldsymbol{\beta}_2 + \varepsilon_2, \end{aligned}$$

and we observe $y_1 = \begin{cases} 1 & \text{if } y_1^* > 0 \\ 0 & \text{if } y_1^* \le 0, \end{cases}$ and $y_2 = \begin{cases} y_2^* & \text{if } y_1^* > 0 \\ - & \text{if } y_1^* \le 0. \end{cases}$ The errors $(\varepsilon_1, \varepsilon_2)$ have means (0, 0), variances $(1, \sigma_2^2)$ and covariance $\rho \sigma_2^2$. ε_1 is standard normal. If the MLE is used $(\varepsilon_1, \varepsilon_2)$ are joint normal.

(f) B times do the following.

- Completely resample with replacement all the data $\{(y_{1i}, y_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}), i = 1, ..., N\}$ - For each resample get estimate $\widehat{\beta}_b$ and form $\widehat{\mathrm{ME}}_b = \exp(\overline{\mathbf{x}}_b' \widehat{\beta}_b)$. Standard error is the standard deviation of the $B \le \widehat{\mathrm{ME}}_b' s$.

(g) This is optimal two-step GMM. Minimize

$$Q_N(\boldsymbol{\theta}) = \frac{1}{N} \left(\sum_i h(\mathbf{w}_i, \boldsymbol{\theta}) \right)' \widehat{\mathbf{S}}^{-1} \left(\sum_i h(\mathbf{w}_i, \boldsymbol{\theta}) \right)$$

where $\widehat{\mathbf{S}} = \sum_{i=1}^{N} h(\mathbf{w}_i, \widetilde{\boldsymbol{\theta}}) h(\mathbf{w}_i, \widetilde{\boldsymbol{\theta}})'$ and $\widetilde{\boldsymbol{\theta}}$ is a consistent initial estimate such as first-step GMM.

4.(a) No. The default se's assume independence of u_{it} and u_{is} . But the error u_{it} is likely to be positively correlated with u_{is} , $i \neq s$, decreasing the informational content of the data. Panel robust se's adjust for this.

(b) Yes. The RE-GLS does control for clustering so might exposed the two to be similar. The difference is due to the wrong model for clustered errors (equicorrelation) or heteroskedasticity.

(c) $y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it} \Rightarrow (y_{it} - \bar{y}_i) = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)'\boldsymbol{\beta} + (u_{it} - \bar{u}_i).$ So do OLS of $(y_{it} - \bar{y}_i)$ on $(\mathbf{x}_{it} - \bar{\mathbf{x}}_i)$. (Other methods are possible).

(d) xtreg y x, vce(robust) or xtreg y x, vce(Cluster id).

(e) That the RE estimator is fully efficient under H_0 . This requires that the error $y_{it} = \alpha_i + \varepsilon_{it}$ where both α_i and ε_{it} are i.i.d.

(f) Usual Hausman test is $H = (\hat{\theta}_{FE} - \tilde{\theta}_{RE})' (\hat{V}[\hat{\theta}_{FE}] - \hat{V}[\hat{\theta}_{RE}])^{-1} (\hat{\theta}_{FE} - \tilde{\theta}_{RE}) \sim \chi^2(q)$. $\hat{\beta}_{FE} = 0.17$ with default standard error 0.03 and $\hat{\beta}_{RE} = 0.12$ with default standard error 0.02. Note that if indeed the RE is fully efficient then the default standard errors are correct and we would use these.

H= $(0.17 - 0.12)^2/(0.03^2 - 0.02^2) = .0025/.0005 = 5 > \chi^2_{0.05}(1) = 3.84$. Reject H_0 . Conclude that there is a difference so FE is the model.

(g) Now H= $(\hat{\theta}_{\text{FE}} - \tilde{\theta}_{\text{RE}})'(\hat{V}[\hat{\theta}_{\text{FE}}] + \hat{V}[\tilde{\theta}_{\text{RE}}] - 2 + \hat{\text{Cov}}[\tilde{\theta}_{\text{RE}}, \hat{\theta}_{\text{FE}}])^{-1}(\hat{\theta}_{\text{FE}} - \tilde{\theta}_{\text{RE}}) \stackrel{a}{\sim} \chi^2(q).$ $\hat{\beta}_{\text{FE}} = 0.17$ with robust s.e. $0.08, \hat{\beta}_{\text{RE}} = 0.12$ with robust s.e. $0.05, \text{ and } \hat{\text{Cov}}[\tilde{\beta}_{\text{RE}}, \hat{\beta}_{\text{FE}}] = 0.02^2.$ H= $(0.17 - 0.12)^2/(0.08^2 + 0.05^2 - 2 \times 0.02^2) = .0025/.0081 = 0.31 < \chi^2_{0.05}(1) = 3.84.$ Reject H_0 . Conclude that there is no difference so RE is the model.

(h) Stacking we have $\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i$, where \mathbf{y}_i and \mathbf{u}_i are $T \times 1$ and \mathbf{X}_i is $T \times k$ with i^{th} row \mathbf{x}'_i . Then $\hat{\boldsymbol{\beta}} = (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \sum_i \mathbf{X}'_i \mathbf{y}_i = \boldsymbol{\beta} + (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \sum_i \mathbf{X}'_i \mathbf{u}_i$. The asymptotic variance is $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \operatorname{Var}(\sum_i \mathbf{X}'_i \mathbf{u}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$. Given independence over i and $\operatorname{E}[\mathbf{u}_i | \mathbf{x}_i] = 0$ this becomes $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} (\sum_i \operatorname{E}[\mathbf{X}'_i \mathbf{u}_i \mathbf{u}'_i \mathbf{X}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$. So use $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} (\sum_i \mathbf{X}'_i \widehat{\mathbf{u}}_i \widehat{\mathbf{u}}'_i \mathbf{X}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$ where $\widehat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}$.

The curve for this exam is only a guide. The course grade is based on course score.

Scores out of	50	۸	26 and shows
75th percentile	38 (76%)	\boldsymbol{A}	30 and above
<i>four</i> percentile	30 (1070)	A-	30 and above
Median	31.5~(63%)		
$0 \mathbb{E}_{+} L$ = $0 \mathbb{E}_{+} L^{1}$	∂c $(r \partial t)$	B+	24 and above
25 <i>th</i> percentile	20 (32%)		