1.(a) Here $\ln L(\boldsymbol{\beta}, \alpha)=\sum_{i} \ln f\left(y_{i}\right)=\sum_{i}\left\{(\alpha-1) \ln y_{i}-\frac{y_{i}}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}-\alpha \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\ln \Gamma(\alpha)\right\}$
(b) Differentiation yields

$$
\begin{aligned}
\frac{\partial \ln L}{\partial \boldsymbol{\beta}} & =\sum_{i}\left(\frac{y_{i}}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i}-\alpha \mathbf{x}_{i}\right)=\sum_{i}\left(\frac{y_{i}-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i}\right)=\mathbf{0} . \\
\frac{\partial \ln L}{\partial \alpha} & =\sum_{i}\left(\ln y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}\right)=0 .
\end{aligned}
$$

(c) Easiest to derive the outer product of the gradient estimate $\widehat{\mathbf{B}}^{-1}$. This yields for $\boldsymbol{\theta}=\left[\boldsymbol{\beta}^{\prime} \alpha\right]^{\prime}$.

$$
\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}]=\left[\begin{array}{cc}
\sum_{i}\left(\frac{y_{i}-\widehat{\alpha} \exp \left(\mathbf{x}_{\mathbf{i}}^{\prime} \hat{\boldsymbol{\beta}}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}\right)}\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} & \sum_{i}\left(\ln y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}-\frac{\Gamma^{\prime}(\widehat{\alpha})}{\Gamma(\hat{\alpha})}\right)\left(\frac{y_{i}-\widehat{\alpha} \exp \left(\mathbf{x}_{\mathbf{i}}^{\prime} \widehat{\boldsymbol{\beta}}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}\right)}\right) \mathbf{x}_{i} \\
\sum_{i}\left(\frac{y_{i}-\widehat{\alpha} \exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right)\left(\ln y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}-\frac{\Gamma^{\prime}(\widehat{\alpha})}{\Gamma(\hat{\alpha})}\right) \mathbf{x}_{i} & \sum_{i}\left(\ln y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}-\frac{\Gamma^{\prime}(\widehat{\alpha})}{\Gamma(\hat{\alpha})}\right)^{2}
\end{array}\right]^{-1}
$$

Or can use Hessian which $-\widehat{\mathbf{A}}^{-1}$ yields after some algebra yields

$$
\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}]=\left[\begin{array}{cc}
\sum_{i}\left(\frac{y_{i}}{\exp \left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} & \sum_{i} \mathbf{x}_{i} \\
\sum_{i} \mathbf{x}_{i} & \sum_{i}\left(\frac{\Gamma^{\prime}(\widehat{\alpha})}{\Gamma(\widehat{\alpha})}-\frac{\Gamma^{\prime}(\widehat{\alpha})^{2}}{\Gamma(\widehat{\alpha})^{2}}\right)
\end{array}\right]^{-1}
$$

Note: In general we use $\left(-\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right]\right)^{-1}$. Here

$$
\left(\left[\begin{array}{ll}
\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \beta \partial \beta^{\prime}}\right] & \mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta^{\prime}}\right. \\
\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \boldsymbol{\beta} \partial \alpha}\right] & \mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \alpha^{2}}\right]
\end{array}\right]\right)^{-1} \neq-\left[\begin{array}{ll}
\left(\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \boldsymbol{\beta} \partial \beta^{\prime}}\right]\right)^{-1} & \left(\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta^{\prime}}\right]\right)^{-1} \\
\left(\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \boldsymbol{\beta} \partial \alpha}\right]\right)^{-1} & \left(\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \alpha^{2}}\right]\right)^{-1}
\end{array}\right]
$$

except in the special case that $\mathrm{E}\left[\frac{\partial^{2} \ln L}{\partial \boldsymbol{\beta} \partial \alpha}\right]=\mathbf{0}$.
(d) In general the MLE for both $\boldsymbol{\beta}$ and α will be inconsistent.

Here there is some hope that MLE for $\boldsymbol{\beta}$ may be consistent, since $\mathrm{E}[\partial \ln L / \partial \boldsymbol{\beta}]=\mathbf{0}$ requires only correct specification of the mean (then $\mathrm{E}\left[\sum_{i} \frac{y_{i}-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i}\right]=0$). [Half credit for saying this]. But $\mathrm{E}[\partial \ln L / \partial \alpha]=0$ requires the much stronger assumption that $\mathrm{E}\left[\ln y_{i}\right]=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}$ (then $\mathrm{E}\left[\sum_{i}\left(\ln y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}\right)\right]=0$).
This fails and the two equations jointly estimated will yield inconsistent estimates.
One way to see this is that $\widehat{\alpha}$ inconsistent then contaminates $\boldsymbol{\beta}$ that solves $\sum_{i}\left(\frac{y_{i}-\widehat{\alpha} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i}\right)=\mathbf{0}$.
More formally, the information matrix is not block-diagonal as $\mathrm{E}\left[\partial^{2} \ln L / \partial \boldsymbol{\beta} \partial \alpha\right] \neq \mathbf{0}$ and estiamtion of α effects etimation of $\boldsymbol{\beta}$.
(e) Two possible methods are based on $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$ are

NLS of y_{i} on $\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$ which minimizes $\sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2}$.
MM estimation based on $\mathrm{E}\left[\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \mathbf{x}_{i}\right]=\mathbf{0}$ which solves $\sum_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \mathbf{x}_{i}=\mathbf{0}$.
(f) Here $\mathrm{E}[y]=\alpha \lambda$ and $\mathrm{V}[y]=\alpha \lambda^{2}$.

So $\mathrm{E}\left[\mathbf{x}\left(y-\alpha \exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)\right]=0$ and $\mathrm{E}\left[\left(y-\alpha \exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)^{2}-1\right]=0$.
Let $h\left(y_{i}, \mathbf{x}_{i}, \alpha, \boldsymbol{\beta}\right)=\left[\left(\mathbf{x}_{i}\left(y_{i}-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right)^{\prime} \quad\left(\left(y_{i}-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2}-1\right)\right]^{\prime}$.
The GMM estimator minimizes

$$
Q_{N}(\alpha, \boldsymbol{\beta})=\frac{1}{N}\left(\sum_{i} h\left(y_{i}, \mathbf{x}_{i}, \alpha, \boldsymbol{\beta}\right)\right)^{\prime} \mathbf{W}_{N}\left(\sum_{i} h\left(y_{i}, \mathbf{x}_{i}, \alpha, \boldsymbol{\beta}\right)\right),
$$

where any full rank weighting matrix will do since this is just-identified.
2.(a) Here $\operatorname{Pr}[y=0]=\operatorname{Pr}\left[y^{*}=0\right]=e^{-\mu}=\exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)$. So

$$
\operatorname{Pr}[y=1]=1-\operatorname{Pr}[y=0]=1-\exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)
$$

Estimate by binary MLE. $\widehat{\boldsymbol{\beta}}$ maximizes $L_{N}(\boldsymbol{\beta})=\sum_{i} y_{i} \ln \left(1-\exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)+\left(1-y_{i}\right) \ln \left(\exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)\right)\right.$.
(b) This is ordered model

$$
\begin{aligned}
p_{0} & =\operatorname{Pr}[y=0]=\operatorname{Pr}\left[y^{*}=0\right]=e^{-\mu}=\exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) . \\
p_{1} & =\operatorname{Pr}[y=1]=\operatorname{Pr}\left[y^{*}=1\right]=\mu e^{-\mu}=\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \exp \left(-\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) . \\
p_{2} & =\operatorname{Pr}[y=2]=1-p_{0}-p_{1} .
\end{aligned}
$$

Estimate by multinomial MLE. $\widehat{\boldsymbol{\beta}}$ maximizes $L_{N}(\boldsymbol{\beta})=\sum_{i}\left(y_{0 i} \ln p_{0 i}+y_{1 i} \ln p_{1 i}+y_{2 i} \ln p_{2 i}\right)$ where $y_{0 i}=1$ if $y_{i}=0, y_{1 i}=1$ if $y_{i}=1, y_{2 i}=1$ if $y_{i}=2$.
(c) For notational simplicity initially suppress conditioning on \mathbf{x}

$$
f(y)=f\left(y^{*} \mid y^{*} \geq 1\right)=\frac{f\left(y^{*}\right)}{\operatorname{Pr}\left[y^{*} \geq 1\right]}=\frac{e^{-\mu} \mu^{y} / y^{*}!}{\left(1-\operatorname{Pr}\left[y^{*}=0\right]\right)}=\frac{e^{-\mu} \mu^{y} / y^{*}!}{\left(1-e^{-\mu}\right)}
$$

So

$$
\ln f(y \mid \mathbf{x})=-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)+y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\ln y_{i}!-\ln \left(1-e^{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right) .
$$

(d) Very few got this.

$$
\begin{aligned}
\mathrm{E}[y] & =\mathrm{E}\left[y^{*} \mid y^{*} \geq 1\right] \\
& =\sum_{y^{*}=1}^{\infty} \frac{y^{*} f\left(y^{*}\right)}{\operatorname{Pr}\left[y^{*} \geq 1\right]}=\frac{1}{\operatorname{Pr}\left[y^{*} \geq 1\right]} \sum_{y^{*}=1}^{\infty} y^{*} f\left(y^{*}\right)=\frac{1}{\operatorname{Pr}\left[y^{*} \geq 1\right]} \sum_{y^{*}=0}^{\infty} y^{*} f\left(y^{*}\right)=\frac{1}{1-e^{-\mu}} \mu,
\end{aligned}
$$

using $\sum_{y^{*}=0}^{\infty} y^{*} f\left(y^{*}\right)$ is $\mathrm{E}\left[y^{*}\right]$ and we were told that for the Poisson that $\mathrm{E}\left[y^{*}\right]=\mu$.
(e) Since

$$
\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{1-e^{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}}
$$

do nonlinear least squares regression of y_{i} on $\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) /\left(1-e^{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right)$.
Or do MM based on $\sum_{i} \mathbf{x}_{i}\left(y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) /\left(1-e^{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right)\right)=\mathbf{0}$.
3.(a) A sequence of random variables $\left\{b_{N}\right\}$ converges in probability to b if for any $\varepsilon>0$ and $\delta>0$, there exists $N^{*}=N^{*}(\varepsilon, \delta)$ such that for all $N>N^{*}, \operatorname{Pr}\left[\left|b_{N}-b\right|<\varepsilon\right]>1-\delta$.
(b) Remarkably dew got this completely correct. Simplest is Lindeberg-Levy CLT.

Let $\left\{X_{i}\right\}$ be iid with $\mathrm{E}\left[X_{i}\right]=\mu$ and $\mathrm{V}\left[X_{i}\right]=\sigma^{2}$. Then $Z_{N}=\frac{\bar{X}_{N}-\mu}{\sigma / \sqrt{N}} \xrightarrow{d} \mathcal{N}[0,1]$.
[Other CLT's can be given].
(c) $y^{*}=1+2 x+u$ where $x \sim \mathrm{~N}[0,1]$ and $u \sim \mathrm{~N}\left[0, x^{2}\right]$

We observe $y=1$ if $y^{*}>0$ and $y=0$ if $y^{*} \leq 0$.
(d) In (c) I had meant to generate y from a Tobit model but mistekenly generated a binary variable. So the natural thing would be to try probit estimation. Tobit is inappropriate.
But I gave fiull vredit if you thought Tobit was still apropriate, but then noted that the Tobit MLE of y on x will be inconsistent for $\boldsymbol{\beta}$ as the error here is heteroskedastic. It is not enough to say that standard errors will be wrong. Inconsistency is the most serious problem.
(e) I had intended the question to be about the sample selection model, but if you answered correctly for the Tobit model you also got full credit. The sample selection model is

$$
\begin{aligned}
y_{1}^{*} & =\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}+\varepsilon_{1} \\
y_{2}^{*} & =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\varepsilon_{2},
\end{aligned}
$$

and we observe $y_{1}=\left\{\begin{array}{ll}1 & \text { if } y_{1}^{*}>0 \\ 0 & \text { if } y_{1}^{*} \leq 0,\end{array}\right.$ and $y_{2}=\left\{\begin{array}{cl}y_{2}^{*} & \text { if } y_{1}^{*}>0 \\ - & \text { if } y_{1}^{*} \leq 0 .\end{array}\right.$
The errors $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ have means $(0,0)$, variances $\left(1, \sigma_{2}^{2}\right)$ and covariance $\rho \sigma_{2}^{2}$. ε_{1} is standard normal. If the MLE is used $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ are joint normal.
(f) B times do the following.

- Completely resample with replacement all the data $\left\{\left(y_{1 i}, y_{2 i}, \mathbf{x}_{1 i}, \mathbf{x}_{2 i}\right), i=1, \ldots, N\right\}$
- For each resample get estimate $\widehat{\boldsymbol{\beta}}_{b}$ and form $\widehat{\mathrm{ME}}_{b}=\exp \left(\overline{\mathbf{x}}_{b}^{\prime} \widehat{\boldsymbol{\beta}}_{b}\right)$.

Standard error is the standard deviation of the $B \mathrm{~s} \widehat{\mathrm{ME}}_{b}^{\prime} s$.
(g) This is optimal two-step GMM. Minimize

$$
Q_{N}(\boldsymbol{\theta})=\frac{1}{N}\left(\sum_{i} h\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)\right)^{\prime} \widehat{\mathbf{S}}^{-1}\left(\sum_{i} h\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)\right.
$$

where $\widehat{\mathbf{S}}=\sum_{i=1}^{N} h\left(\mathbf{w}_{i}, \widetilde{\boldsymbol{\theta}}\right) h\left(\mathbf{w}_{i}, \widetilde{\boldsymbol{\theta}}\right)^{\prime}$ and $\widetilde{\boldsymbol{\theta}}$ is a consistent initial estimate such as first-step GMM.
4.(a) No. The default se's assume independence of $u_{i t}$ and $u_{i s}$. But the error $u_{i t}$ is likely to be positively correlated with $u_{i s}, i \neq s$, decreasing the informational content of the data. Panel robust se's adjust for this.
(b) Yes. The RE-GLS does control for clustering so might expoect the two to be similar. The difference is due to the wrong model for clustered errors (equicorrelation) or heteroskedasticity.
(c) $y_{i t}=\alpha_{i}+\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+u_{i t} \Rightarrow\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i}\right)^{\prime} \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)$.

So do OLS of $\left(y_{i t}-\bar{y}_{i}\right)$ on ($\left.\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i}\right)$. (Other methods are possible).
(d) xtreg y x, vce(robust) or xtreg $y \mathrm{x}$, vce(Cluster id).
(e) That the RE estimator is fully efficient under H_{0}. This requires that the error $y_{i t}=\alpha_{i}+\varepsilon_{i t}$ where both α_{i} and $\varepsilon_{i t}$ are i.i.d.
(f) Usual Hausman test is $\mathrm{H}=\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right)^{\prime}\left(\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}\right]-\widehat{\mathrm{V}}\left[\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right]\right)^{-1}\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right) \stackrel{a}{\sim} \chi^{2}(q)$. $\widehat{\beta}_{\mathrm{FE}}=0.17$ with default standard error 0.03 and $\widehat{\beta}_{\mathrm{RE}}=0.12$ with default standard error 0.02 .
Note that if indeed the RE is fully efficient then the default standard errors are correct and we would use these.
$\mathrm{H}=(0.17-0.12)^{2} /\left(0.03^{2}-0.02^{2}\right)=.0025 / .0005=5>\chi_{0.05}^{2}(1)=3.84$.
Reject H_{0}. Conclude that there is a difference so FE is the model.
(g) Now $\mathrm{H}=\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right)^{\prime}\left(\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}\right]+\widehat{\mathrm{V}}\left[\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right]-2+\widehat{\operatorname{Cov}}\left[\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}, \widehat{\boldsymbol{\theta}}_{\mathrm{FE}}\right]\right)^{-1}\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right) \stackrel{a}{\sim} \chi^{2}(q)$. $\widehat{\beta}_{\mathrm{FE}}=0.17$ with robust s.e. $0.08, \widehat{\beta}_{\mathrm{RE}}=0.12$ with robust s.e. 0.05 , and $\widehat{\operatorname{Cov}}\left[\widetilde{\beta}_{\mathrm{RE}}, \widehat{\beta}_{\mathrm{FE}}\right]=0.02^{2}$. $\mathrm{H}=(0.17-0.12)^{2} /\left(0.08^{2}+0.05^{2}-2 \times 0.02^{2}\right)=.0025 / .0081=0.31<\chi_{0.05}^{2}(1)=3.84$.
Reject H_{0}. Conclude that there is no difference so RE is the model.
(h) Stacking we have $\mathbf{y}_{i}=\mathbf{X}_{i} \boldsymbol{\beta}+\mathbf{u}_{i}$, where \mathbf{y}_{i} and \mathbf{u}_{i} are $T \times 1$ and \mathbf{X}_{i} is $T \times k$ with $i^{\text {th }}$ row \mathbf{x}_{i}^{\prime}. Then $\widehat{\boldsymbol{\beta}}=\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{y}_{i}=\boldsymbol{\beta}+\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{u}_{i}$.
The asymptotic variance is $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \operatorname{Var}\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{u}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}$.
Given independence over i and $\mathrm{E}\left[\mathbf{u}_{i} \mid \mathbf{x}_{i}\right]=0$ this becomes $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\left(\sum_{i} \mathrm{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{u}_{i} \mathbf{u}_{i}^{\prime} \mathbf{X}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\right.$. So use $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\left(\sum_{i} \mathbf{X}_{i}^{\prime} \widehat{\mathbf{u}}_{i} \widehat{\mathbf{u}}_{i}^{\prime} \mathbf{X}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}$ where $\widehat{\mathbf{u}}_{i}=\mathbf{y}_{i}-\mathbf{X}_{i} \widehat{\boldsymbol{\beta}}$.

The curve for this exam is only a guide. The course grade is based on course score.
$\begin{array}{llll}\text { Scores out of } & 50 & & \text { A } \\ 75 \text { th percentile } & 38 & 36 \text { and above } \\ \text { Meian } & 31.5(63 \%) & \text { A- } & 30 \text { and above } \\ \text { Median } & \text { B+ } & 24 \text { and above } \\ \text { 25th percentile } & 26(52 \%) & & \end{array}$

