
240D Winter 2011 Solutions to Final Exam

1.(a) We have
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(b) Since @2 lnL(�)=@�@�0 = �
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i=1 e

�(yi�x0i�)xix0i we have
p
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(c) For consistency need E[e�(yi�x
0
i�)jxi] = 1 so that E[@ lnL(�)=@�j�0 ] = �

PN
i=1f1�e�(yi�x

0
i�)gxi =

0:
This is unlikely to be the case, and is not implied by E[yijxi] = c+ x0i�.
Most likely inconsistent.

(d) For method of moments use E[yijxi] = c+ x0i� =) E[xi(yi � c� x0i�)] = 0.
Method of moments b� solves Pi xi(yi � c� x0i�) = 0.b� = (Pi xix

0
i)
�1P

i xi(yi � c):

(e) But this is just the OLS estimator, except for the intercept (with coe¢ cient �1) OLS estimates

c + �1 rather than �1. Can get distribution using the usual OLS theory:
p
N(b� � �0) d! N [0,

A�10 B0A
�1
0 ] where A0 = plim

1
N

PN
i=1 xix

0
i and A0 = plim

1
N

PN
i=1(yi � c� x0i�)2xix0i.

2.(a) A sequence of random variables fbNg converges in probability to b if for any " > 0 and � > 0,
there exists N� = N�("; �) such that for all N > N�, Pr[jbN � bj < "] > 1� �:

(b) A sequence of random variables fbNg converges in distribution to a random variable b if
lim
N!1

FN = F , at every continuity point of F , where FN is the distribution of bN , F is the distrib-

ution of b, and convergence is in the usual mathematical sense.

(c) g(b�) = g(�0) + @g(�)=@�j�0 � (b� � �0) by a �rst-order Taylor series expansion.
So
p
N(g(b�)� g(�0)) = @g(�)=@�0

��
�0
� (b� � �0) d! @g(�)=@�j�0 �N [0; V0]

d! N [0; @g(�)=@�0
��
�0
�V0 � @g(�)=@�j�0 ]

(d),(e) Pr[yi = 1jxi] = �(x0i�). @ Pr[yi = 1jxi]=@xik = �(x0i�) � �k, where �(�) is the standard
normal density.
MEM: �(x0ib�)� b�k use mfx or margins, dydx(*) atmean
AME: 1

N

P
i �(x

0
i
b�)� b�k use margeff or margins, dydx(*)
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3.(a) This is logit since

Pr[y = 1] = Pr[y� � 0] = Pr[x0� + u � 0] = Pr[�u � x0�] = F (x0�) = 1=(1 + exp(�x0�)):

Equivalently Pr[y = 1] = exp(x0�)=(1 + exp(x0�)):
Estimate by logit MLE. b� maximizes LN (�) =Pi yi lnF (x

0
i�) + (1� yi) ln(1� F (x0i�)):

(b) This is ordered logit since

Pr[y = 2] = Pr[y� > �] = Pr[x0� + u > �] = Pr[�u < x0� � �] = F (x0� � �) = 1=(1 + exp(�� x0�)):
Pr[y = 1] = Pr[0 � y� < �] = Pr[y� > 0]� Pr y� � �] = F (x0�)� F (x0� � �):
Pr[y = 0] = 1� Pr[y = 1]� Pr[y = 2]

Estimate by ordered logit MLE that maximizes the resulting log-likelihood function.

(c) This is a truncated model. MLE maximizes log-likelihood
P
ln f(yi) where f(y) is the density

f(y) = f�(y�)=Pr(y� � 0)
= ffu(y � x0�)g � =Pr(�u � x0�)
= f(y � x0�)=F (x0�); where f and F are given in question:

=
�

exp(y�x0�)
(1+exp(�y+x0�))2

�
=
�

1
1+exp(�x0�)

�
The second line uses change of variables result that f(y�)dy� = g(u)jdy

�

du j du = g(u)du here since
jdy

�

du j = 1.
The third line uses symmetry of F so Pr(�u � x0�) = Pr(u � x0�):

(d) Least squares is based on the conditional mean. Here

E[y] = E[y�jy� � 0] = x0� + E[ujx0� + u � 0]
= x0� + E[uj � u � x0�] = x0� � E[�uj � u � x0�]
= x0� � x0� � ln(1� F (x0�))=F (x0�)
= � ln(1� F (x0�))=F (x0�)

= � ln
�
1� 1

1+exp(�x0�)

�
=
�

1
1+exp(�x0�)

�
So do NLS regression of yi on � ln(1� F (x0i�))=F (x0i�).
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4.(a) Use code similar to the following (here command tobit should return values close to 1)

set obs 100000
set seed 10101
generate x = rnormal()
generate ystar = 1 + 1*x + rnormal()
generate d = ystar > 0
generate y = ystar
replace y = 0 if ystar < 0
tobit y x

(b) First do probit on y1i on x1i to get b�1 and hence �(x01ib�1):
Second do OLS for those with y2i > 0 of y2i on x2i and �(x01ib�1):
(c) B times do the following.
- Completely resample with replacement all the data f(y1i; y2i;x1i;x2i); i = 1; :::; Ng
- For each resample perform both stages of the two-steep procedure getting estimates b�1;b and b�2;b
at the bth round.
Then bV[b�2] = 1

B�1
PB
b=1(

b�2 � b�2)(b�2 � b�2)0.
Standard errors are the square root of the diagonal entries in bV[b�2].
(d) Assume zi satis�es E[zi(yi � �(x0i�))] = 0:b� minimizes hPN

i=1 zi(yi � �(x0i�))
i0
W
hPN

i=1 zi(yi � �(x0i�))
i
where e.g. W =

hPN
i=1 ziz

0
i

i�1
:

(e) In generalW =
�
V
hPN

i=1 zi(yi � �(x0i�))
i��1

:

Given independenceW =
�hPN

i=1 E[(yi � �(x0i�))2ziz0i
i��1

:

So useW =
�hPN

i=1(yi � �(x0ib�))2ziz0ii��1 where b� is consistent for �.
5.(a) FE model: yit = �i + x0it� + uit.
Three methods (not exhaustive) are (1) OLS of (yit � �yi) on (xit � �xi); (2) OLS of yit on xit and
�xi; and (3) OLS of yit on xit and a complete set of individual dummies.

(b) yit = �i + x0it� + uit where �i i.i.d. (�; �
2
�) and uit i.i.d. (�; �

2
u).

(c) Usual Hausman test is H= (b�FE � e�RE)0(bV[b�FE]� bV[e�RE])�1(b�FE � e�RE) a� �2(q).
Weakness is that this requires e�RE to be fully e¢ cient which requires the assumptions in part (b).
In practice these assumptions of homoskedasticity and equicorrelation are unlikely to be met.

(d) Stacking we have yi = Xi� + ui, where yi and ui are T � 1 and Xi is T � k with ith row x0i.
Then b� = (PiX

0
iXi)

�1P
iX

0
iyi = � + (

P
iX

0
iXi)

�1P
iX

0
iui.

The asymptotic variance is (
P
iX

0
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P
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�1:
Given independence over i and E[uijxi] = 0 this becomes (
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�1.
So use (
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0
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�1 where bui = yi �Xib�.
The curve for this exam is only a guide. The course grade is based on course score.
Scores out of 50
75th percentile 38 (77%)
Median 34 (68%)
25th percentile 29 (58%)

A 38 and above
A- 31 and above
B+ 24 and above
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