240D Winter 2011 Solutions to Final Exam

1.(a) We have

$$\ln f(y_i) = -(y_i - \mathbf{x}'_i \boldsymbol{\beta}) - e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})})$$

$$\ln L(\boldsymbol{\beta}) = \sum_{i=1}^N \{-y_i + \mathbf{x}'_i \boldsymbol{\beta} - e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})}\}$$

$$\partial \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} = \sum_{i=1}^N \{\mathbf{x}_i - e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})} \mathbf{x}_i\} = \sum_{i=1}^N \{1 - e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})}\} \mathbf{x}_i = \mathbf{0}.$$

(b) Since $\partial^2 \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}' = -\sum_{i=1}^N e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})} \mathbf{x}_i \mathbf{x}'_i$ we have $\sqrt{N} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{d} \mathcal{N} [\mathbf{0}, -\mathbf{A}_0^{-1}]$ by the information matrix equality $\mathbf{A}_0 = \operatorname{plim} N^{-1} \partial^2 \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta} \Big|_{\boldsymbol{\beta}_0} = -\operatorname{plim} \frac{1}{N} \sum_{i=1}^N e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta}_0)} \mathbf{x}_i \mathbf{x}'_i$.

(c) For consistency need $\mathbb{E}[e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})} | \mathbf{x}_i] = 1$ so that $\mathbb{E}[\partial \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0}] = -\sum_{i=1}^N \{1 - e^{-(y_i - \mathbf{x}'_i \boldsymbol{\beta})}\} \mathbf{x}_i = \mathbf{0}.$

This is unlikely to be the case, and is not implied by $E[y_i|\mathbf{x}_i] = c + \mathbf{x}'_i \boldsymbol{\beta}$. Most likely inconsistent.

(d) For method of moments use $E[y_i|\mathbf{x}_i] = c + \mathbf{x}'_i \boldsymbol{\beta} \implies E[\mathbf{x}_i(y_i - c - \mathbf{x}'_i \boldsymbol{\beta})] = \mathbf{0}.$ Method of moments $\hat{\boldsymbol{\beta}}$ solves $\sum_i \mathbf{x}_i(y_i - c - \mathbf{x}'_i \boldsymbol{\beta}) = \mathbf{0}.$ $\hat{\boldsymbol{\beta}} = (\sum_i \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum_i \mathbf{x}_i(y_i - c).$

(e) But this is just the OLS estimator, except for the intercept (with coefficient β_1) OLS estimates $c + \beta_1$ rather than β_1 . Can get distribution using the usual OLS theory: $\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{d} \mathcal{N}[\mathbf{0}, \mathbf{A}_0^{-1}\mathbf{B}_0\mathbf{A}_0^{-1}]$ where $\mathbf{A}_0 = \text{plim} \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}'_i$ and $\mathbf{A}_0 = \text{plim} \frac{1}{N} \sum_{i=1}^N (y_i - c - \mathbf{x}'_i \boldsymbol{\beta})^2 \mathbf{x}_i \mathbf{x}'_i$.

2.(a) A sequence of random variables $\{b_N\}$ converges in probability to b if for any $\varepsilon > 0$ and $\delta > 0$, there exists $N^* = N^*(\varepsilon, \delta)$ such that for all $N > N^*$, $\Pr[|b_N - b| < \varepsilon] > 1 - \delta$.

(b) A sequence of random variables $\{b_N\}$ converges in distribution to a random variable b if $\lim_{N\to\infty} F_N = F$, at every continuity point of F, where F_N is the distribution of b_N , F is the distribution of b, and convergence is in the usual mathematical sense.

(c) $\mathbf{g}(\widehat{\boldsymbol{\beta}}) = \mathbf{g}(\boldsymbol{\beta}_0) + \partial \mathbf{g}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0} \times (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$ by a first-order Taylor series expansion. So $\sqrt{N}(\mathbf{g}(\widehat{\boldsymbol{\beta}}) - \mathbf{g}(\boldsymbol{\beta}_0)) = \partial \mathbf{g}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}'|_{\boldsymbol{\beta}_0} \times (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{d} \partial \mathbf{g}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0} \times \mathcal{N}[0, V_0]$ $\xrightarrow{d} \mathcal{N}[\mathbf{0}, \ \partial \mathbf{g}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}'|_{\boldsymbol{\beta}_0} \times V_0 \times \partial \mathbf{g}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}|_{\boldsymbol{\beta}_0}]$

(d),(e) $\Pr[y_i = 1 | \mathbf{x}_i] = \Phi(\mathbf{x}'_i \boldsymbol{\beta})$. $\partial \Pr[y_i = 1 | \mathbf{x}_i] / \partial \mathbf{x}_{ik} = \phi(\mathbf{x}'_i \boldsymbol{\beta}) \times \beta_k$, where $\phi(\cdot)$ is the standard normal density. MEM: $\phi(\overline{\mathbf{x}'_i \boldsymbol{\beta}}) \times \hat{\beta}_k$ use mfx or margins, dydx(*) atmean AME: $\frac{1}{N} \sum_i \phi(\mathbf{x}'_i \boldsymbol{\beta}) \times \hat{\beta}_k$ use margeff or margins, dydx(*) **3.(a)** This is logit since

$$\Pr[y=1] = \Pr[y^* \ge 0] = \Pr[\mathbf{x}'\boldsymbol{\beta} + u \ge 0] = \Pr[-u \le \mathbf{x}'\boldsymbol{\beta}] = F(\mathbf{x}'\boldsymbol{\beta}) = 1/(1 + \exp(-\mathbf{x}'\boldsymbol{\beta}))$$

Equivalently $\Pr[y=1] = \exp(\mathbf{x}'\boldsymbol{\beta})/(1 + \exp(\mathbf{x}'\boldsymbol{\beta})).$ Estimate by logit MLE. $\hat{\boldsymbol{\beta}}$ maximizes $L_N(\boldsymbol{\beta}) = \sum_i y_i \ln F(\mathbf{x}'_i\boldsymbol{\beta}) + (1-y_i) \ln(1 - F(\mathbf{x}'_i\boldsymbol{\beta})).$

(b) This is ordered logit since

$$\begin{aligned} \Pr[y &= 2] = \Pr[y^* > \alpha] = \Pr[\mathbf{x}'\boldsymbol{\beta} + u > \alpha] = \Pr[-u < \mathbf{x}'\boldsymbol{\beta} - \alpha] = F(\mathbf{x}'\boldsymbol{\beta} - \alpha) = 1/(1 + \exp(\alpha - \mathbf{x}'\boldsymbol{\beta})). \\ \Pr[y &= 1] = \Pr[0 \le y^* < \alpha] = \Pr[y^* > 0] - \Pr y^* \ge \alpha] = F(\mathbf{x}'\boldsymbol{\beta}) - F(\mathbf{x}'\boldsymbol{\beta} - \alpha). \\ \Pr[y &= 0] = 1 - \Pr[y = 1] - \Pr[y = 2] \end{aligned}$$

Estimate by ordered logit MLE that maximizes the resulting log-likelihood function.

(c) This is a truncated model. MLE maximizes log-likelihood $\sum \ln f(y_i)$ where f(y) is the density

$$\begin{aligned} f(y) &= f^*(y^*) / \Pr(y^* \ge 0) \\ &= \{ f_u(y - \mathbf{x}'\boldsymbol{\beta}) \} \times / \Pr(-u \le \mathbf{x}'\boldsymbol{\beta}) \\ &= f(y - \mathbf{x}'\boldsymbol{\beta}) / F(\mathbf{x}'\boldsymbol{\beta}), \text{ where } f \text{ and } F \text{ are given in question.} \\ &= \left(\frac{\exp(y - \mathbf{x}'\boldsymbol{\beta})}{(1 + \exp(-y + \mathbf{x}'\boldsymbol{\beta}))^2} \right) / \left(\frac{1}{1 + \exp(-\mathbf{x}'\boldsymbol{\beta})} \right) \end{aligned}$$

The second line uses change of variables result that $f(y^*)dy^* = g(u)\left|\frac{dy^*}{du}\right| du = g(u)du$ here since $\left|\frac{dy^*}{du}\right| = 1.$ The third line uses symmetry of F so $\Pr(-u \leq \mathbf{x}'\boldsymbol{\beta}) = \Pr(u \leq \mathbf{x}'\boldsymbol{\beta}).$

(d) Least squares is based on the conditional mean. Here

$$E[y] = E[y^*|y^* \ge 0] = \mathbf{x}'\boldsymbol{\beta} + E[u|\mathbf{x}'\boldsymbol{\beta} + u \ge 0]$$

$$= \mathbf{x}'\boldsymbol{\beta} + E[u| - u \le \mathbf{x}'\boldsymbol{\beta}] = \mathbf{x}'\boldsymbol{\beta} - E[-u| - u \le \mathbf{x}'\boldsymbol{\beta}]$$

$$= \mathbf{x}'\boldsymbol{\beta} - \mathbf{x}'\boldsymbol{\beta} - \ln(1 - F(\mathbf{x}'\boldsymbol{\beta}))/F(\mathbf{x}'\boldsymbol{\beta})$$

$$= -\ln(1 - F(\mathbf{x}'\boldsymbol{\beta}))/F(\mathbf{x}'\boldsymbol{\beta})$$

$$= -\ln\left(1 - \frac{1}{1 + \exp(-\mathbf{x}'\boldsymbol{\beta})}\right) / \left(\frac{1}{1 + \exp(-\mathbf{x}'\boldsymbol{\beta})}\right)$$

So do NLS regression of y_i on $-\ln(1 - F(\mathbf{x}'_i\boldsymbol{\beta}))/F(\mathbf{x}'_i\boldsymbol{\beta})$.

4.(a) Use code similar to the following (here command tobit should return values close to 1)

```
set obs 100000
set seed 10101
generate x = rnormal()
generate ystar = 1 + 1*x + rnormal()
generate d = ystar > 0
generate y = ystar
replace y = 0 if ystar < 0
tobit y x</pre>
```

(b) First do probit on y_{1i} on x_{1i} to get $\hat{\beta}_1$ and hence $\lambda(\mathbf{x}'_{1i}\hat{\beta}_1)$. Second do OLS for those with $y_{2i} > 0$ of y_{2i} on \mathbf{x}_{2i} and $\lambda(\mathbf{x}'_{1i}\hat{\beta}_1)$.

(c) B times do the following.

- Completely resample with replacement all the data $\{(y_{1i}, y_{2i}, \mathbf{x}_{1i}, \mathbf{x}_{2i}), i = 1, ..., N\}$

- For each resample perform both stages of the two-steep procedure getting estimates $\hat{\beta}_{1,b}$ and $\hat{\beta}_{2,b}$ at the b^{th} round.

Then $\widehat{\mathcal{V}}[\widehat{\boldsymbol{\beta}}_2] = \frac{1}{B-1} \sum_{b=1}^{B} (\widehat{\boldsymbol{\beta}}_2 - \overline{\widehat{\boldsymbol{\beta}}}_2) (\widehat{\boldsymbol{\beta}}_2 - \overline{\widehat{\boldsymbol{\beta}}}_2)'.$

Standard errors are the square root of the diagonal entries in $\widehat{V}[\widehat{\beta}_2]$.

(d) Assume
$$\mathbf{z}_i$$
 satisfies $\mathbf{E}[\mathbf{z}_i(y_i - \Lambda(\mathbf{x}'_i\boldsymbol{\beta}))] = \mathbf{0}$.
 $\hat{\boldsymbol{\beta}}$ minimizes $\left[\sum_{i=1}^N \mathbf{z}_i(y_i - \Lambda(\mathbf{x}'_i\boldsymbol{\beta}))\right]' \mathbf{W} \left[\sum_{i=1}^N \mathbf{z}_i(y_i - \Lambda(\mathbf{x}'_i\boldsymbol{\beta}))\right]$ where e.g. $\mathbf{W} = \left[\sum_{i=1}^N \mathbf{z}_i\mathbf{z}'_i\right]^{-1}$.

(e) In general $\mathbf{W} = \left(V \left[\sum_{i=1}^{N} \mathbf{z}_{i}(y_{i} - \Lambda(\mathbf{x}'_{i}\boldsymbol{\beta})) \right] \right)^{-1}$. Given independence $\mathbf{W} = \left(\left[\sum_{i=1}^{N} E[(y_{i} - \Lambda(\mathbf{x}'_{i}\boldsymbol{\beta}))^{2}\mathbf{z}_{i}\mathbf{z}'_{i}] \right)^{-1}$. So use $\mathbf{W} = \left(\left[\sum_{i=1}^{N} (y_{i} - \Lambda(\mathbf{x}'_{i}\hat{\boldsymbol{\beta}}))^{2}\mathbf{z}_{i}\mathbf{z}'_{i} \right] \right)^{-1}$ where $\hat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.

5.(a) FE model: $y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$.

Three methods (not exhaustive) are (1) OLS of $(y_{it} - \bar{y}_i)$ on $(\mathbf{x}_{it} - \bar{\mathbf{x}}_i)$; (2) OLS of y_{it} on \mathbf{x}_{it} and $\bar{\mathbf{x}}_i$; and (3) OLS of y_{it} on \mathbf{x}_{it} and a complete set of individual dummies.

(b) $y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$ where α_i i.i.d. $(\alpha, \sigma_{\alpha}^2)$ and u_{it} i.i.d. (α, σ_u^2) .

(c) Usual Hausman test is $H = (\widehat{\theta}_{FE} - \widetilde{\theta}_{RE})' (\widehat{V}[\widehat{\theta}_{FE}] - \widehat{V}[\widetilde{\theta}_{RE}])^{-1} (\widehat{\theta}_{FE} - \widetilde{\theta}_{RE}) \sim \chi^2(q)$.

Weakness is that this requires θ_{RE} to be fully efficient which requires the assumptions in part (b). In practice these assumptions of homoskedasticity and equicorrelation are unlikely to be met.

(d) Stacking we have $\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i$, where \mathbf{y}_i and \mathbf{u}_i are $T \times 1$ and \mathbf{X}_i is $T \times k$ with i^{th} row \mathbf{x}'_i . Then $\hat{\boldsymbol{\beta}} = (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \sum_i \mathbf{X}'_i \mathbf{y}_i = \boldsymbol{\beta} + (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \sum_i \mathbf{X}'_i \mathbf{u}_i$. The asymptotic variance is $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} \operatorname{Var}(\sum_i \mathbf{X}'_i \mathbf{u}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$. Given independence over i and $\mathbf{E}[\mathbf{u}_i | \mathbf{x}_i] = 0$ this becomes $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} (\sum_i \mathbf{E}[\mathbf{X}'_i \mathbf{u}_i \mathbf{u}'_i \mathbf{X}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$. So use $(\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1} (\sum_i \mathbf{X}'_i \hat{\mathbf{u}}_i \hat{\mathbf{u}}'_i \mathbf{X}_i) (\sum_i \mathbf{X}'_i \mathbf{X}_i)^{-1}$ where $\hat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}$.

The curve for this exam is only a guide. The course grade is based on course score.

Scores out of	50		۸	28 and above
75th percentile	38	(77%)	A	so and above
Total percentile	00	(1170)	A-	31 and above
Median	34	(68%)	D	
25th poreoptile	20	(5007)	B+	- 24 and above
20 <i>in</i> percentile	<i>29</i>	(00/0)		