1.(a) We have

$$
\begin{aligned}
\ln f\left(y_{i}\right) & \left.=-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)-e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right) \\
\ln L(\boldsymbol{\beta}) & =\sum_{i=1}^{N}\left\{-y_{i}+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right\} \\
\partial \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} & =\sum_{i=1}^{N}\left\{\mathbf{x}_{i}-e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i}\right\}=\sum_{i=1}^{N}\left\{1-e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right\} \mathbf{x}_{i}=\mathbf{0} .
\end{aligned}
$$

(b) Since $\partial^{2} \ln L(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}=-\sum_{i=1}^{N} e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$ we have $\sqrt{N}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} \mathcal{N}\left[\mathbf{0},-\mathbf{A}_{0}^{-1}\right]$ by the information matrix equality $\left.\mathbf{A}_{0}=\operatorname{plim} N^{-1} \partial^{2} \ln L(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}\right|_{\boldsymbol{\beta}_{0}}=-\operatorname{plim} \frac{1}{N} \sum_{i=1}^{N} e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{0}\right)} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right\}$.
(c) For consistency need $\mathrm{E}\left[e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)} \mid \mathbf{x}_{i}\right]=1$ so that $\mathrm{E}\left[\partial \ln L(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}\right|_{\boldsymbol{\beta}_{0}}\right]=-\sum_{i=1}^{N}\left\{1-e^{-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right\} \mathbf{x}_{i}=$ 0.

This is unlikely to be the case, and is not implied by $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=c+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$.
Most likely inconsistent.
(d) For method of moments use $\mathrm{E}\left[y_{i} \mid \mathbf{x}_{i}\right]=c+\mathbf{x}_{i}^{\prime} \boldsymbol{\beta} \Longrightarrow \mathrm{E}\left[\mathbf{x}_{i}\left(y_{i}-c-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]=\mathbf{0}$.

Method of moments $\widehat{\boldsymbol{\beta}}$ solves $\sum_{i} \mathbf{x}_{i}\left(y_{i}-c-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=\mathbf{0}$.
$\widehat{\boldsymbol{\beta}}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i} \mathbf{x}_{i}\left(y_{i}-c\right)$.
(e) But this is just the OLS estimator, except for the intercept (with coefficient β_{1}) OLS estimates $c+\beta_{1}$ rather than β_{1}. Can get distribution using the usual OLS theory: $\sqrt{N}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} \mathcal{N}[\mathbf{0}$, $\left.\mathbf{A}_{0}^{-1} \mathbf{B}_{0} \mathbf{A}_{0}^{-1}\right]$ where $\mathbf{A}_{0}=\operatorname{plim} \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$ and $\mathbf{A}_{0}=\operatorname{plim} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-c-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.
2.(a) A sequence of random variables $\left\{b_{N}\right\}$ converges in probability to b if for any $\varepsilon>0$ and $\delta>0$, there exists $N^{*}=N^{*}(\varepsilon, \delta)$ such that for all $N>N^{*}, \operatorname{Pr}\left[\left|b_{N}-b\right|<\varepsilon\right]>1-\delta$.
(b) A sequence of random variables $\left\{b_{N}\right\}$ converges in distribution to a random variable b if $\lim _{N \rightarrow \infty} F_{N}=F$, at every continuity point of F, where F_{N} is the distribution of b_{N}, F is the distribution of b, and convergence is in the usual mathematical sense.
(c) $\mathbf{g}(\widehat{\boldsymbol{\beta}})=\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)+\partial \mathbf{g}(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}\right|_{\boldsymbol{\beta}_{0}} \times\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)$ by a first-order Taylor series expansion.

So $\sqrt{N}\left(\mathbf{g}(\widehat{\boldsymbol{\beta}})-\mathbf{g}\left(\boldsymbol{\beta}_{0}\right)\right)=\partial \mathbf{g}(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}^{\prime}\right|_{\boldsymbol{\beta}_{0}} \times\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{d} \partial \mathbf{g}(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}\right|_{\boldsymbol{\beta}_{0}} \times \mathcal{N}\left[0, \mathrm{~V}_{0}\right]$
$\xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \partial \mathbf{g}(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}^{\prime}\right|_{\boldsymbol{\beta}_{0}} \times \mathrm{V}_{0} \times \partial \mathbf{g}(\boldsymbol{\beta}) /\left.\partial \boldsymbol{\beta}\right|_{\boldsymbol{\beta}_{0}}\right]$
(d),(e) $\operatorname{Pr}\left[y_{i}=1 \mid \mathbf{x}_{i}\right]=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) . \quad \partial \operatorname{Pr}\left[y_{i}=1 \mid \mathbf{x}_{i}\right] / \partial \mathbf{x}_{i k}=\phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \times \beta_{k}$, where $\phi(\cdot)$ is the standard normal density.
MEM: $\phi\left(\overline{\mathbf{x}}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right) \times \widehat{\beta}_{k}$ use mfx or margins, dydx (*) atmean
AME: $\frac{1}{N} \sum_{i} \phi\left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right) \times \widehat{\beta}_{k}$ use margeff or margins, $\operatorname{dydx}(*)$
3.(a) This is logit since

$$
\operatorname{Pr}[y=1]=\operatorname{Pr}\left[y^{*} \geq 0\right]=\operatorname{Pr}\left[\mathbf{x}^{\prime} \boldsymbol{\beta}+u \geq 0\right]=\operatorname{Pr}\left[-u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right]=F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)=1 /\left(1+\exp \left(-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) .
$$

Equivalently $\operatorname{Pr}[y=1]=\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) /\left(1+\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)$.
Estimate by logit MLE. $\widehat{\boldsymbol{\beta}}$ maximizes $L_{N}(\boldsymbol{\beta})=\sum_{i} y_{i} \ln F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)+\left(1-y_{i}\right) \ln \left(1-F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)$.
(b) This is ordered logit since
$\operatorname{Pr}[y=2]=\operatorname{Pr}\left[y^{*}>\alpha\right]=\operatorname{Pr}\left[\mathbf{x}^{\prime} \boldsymbol{\beta}+u>\alpha\right]=\operatorname{Pr}\left[-u<\mathbf{x}^{\prime} \boldsymbol{\beta}-\alpha\right]=F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}-\alpha\right)=1 /\left(1+\exp \left(\alpha-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)$. $\left.\operatorname{Pr}[y=1]=\operatorname{Pr}\left[0 \leq y^{*}<\alpha\right]=\operatorname{Pr}\left[y^{*}>0\right]-\operatorname{Pr} y^{*} \geq \alpha\right]=F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)-F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}-\alpha\right)$.
$\operatorname{Pr}[y=0]=1-\operatorname{Pr}[y=1]-\operatorname{Pr}[y=2]$
Estimate by ordered logit MLE that maximizes the resulting log-likelihood function.
(c) This is a truncated model. MLE maximizes log-likelihood $\sum \ln f\left(y_{i}\right)$ where $f(y)$ is the density

$$
\begin{aligned}
f(y) & =f^{*}\left(y^{*}\right) / \operatorname{Pr}\left(y^{*} \geq 0\right) \\
& =\left\{f_{u}\left(y-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right\} \times / \operatorname{Pr}\left(-u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right) \\
& =f\left(y-\mathbf{x}^{\prime} \boldsymbol{\beta}\right) / F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right), \text { where } f \text { and } F \text { are given in question. } \\
& =\left(\frac{\exp \left(y-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}{\left(1+\exp \left(-y+\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right)^{2}}\right) /\left(\frac{1}{1+\exp \left(-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}\right)
\end{aligned}
$$

The second line uses change of variables result that $f\left(y^{*}\right) d y^{*}=g(u)\left|\frac{d y^{*}}{d u}\right| d u=g(u) d u$ here since $\left|\frac{d y^{*}}{d u}\right|=1$.
The third line uses symmetry of F so $\operatorname{Pr}\left(-u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right)=\operatorname{Pr}\left(u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right)$.
(d) Least squares is based on the conditional mean. Here

$$
\begin{aligned}
\mathrm{E}[y] & =\mathrm{E}\left[y^{*} \mid y^{*} \geq 0\right]=\mathbf{x}^{\prime} \boldsymbol{\beta}+\mathrm{E}\left[u \mid \mathbf{x}^{\prime} \boldsymbol{\beta}+u \geq 0\right] \\
& =\mathbf{x}^{\prime} \boldsymbol{\beta}+\mathrm{E}\left[u \mid-u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right]=\mathbf{x}^{\prime} \boldsymbol{\beta}-\mathrm{E}\left[-u \mid-u \leq \mathbf{x}^{\prime} \boldsymbol{\beta}\right] \\
& =\mathbf{x}^{\prime} \boldsymbol{\beta}-\mathbf{x}^{\prime} \boldsymbol{\beta}-\ln \left(1-F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) / F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \\
& =-\ln \left(1-F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)\right) / F\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right) \\
& =-\ln \left(1-\frac{1}{1+\exp \left(-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}\right) /\left(\frac{1}{1+\exp \left(-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}\right)
\end{aligned}
$$

So do NLS regression of y_{i} on $-\ln \left(1-F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) / F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)$.
4.(a) Use code similar to the following (here command tobit should return values close to 1)

```
set obs 100000
set seed 10101
generate x = rnormal()
generate ystar = 1 + 1*x + rnormal()
generate d = ystar > 0
generate y = ystar
replace y = 0 if ystar < 0
tobit y x
```

(b) First do probit on $y_{1 i}$ on $x_{1 i}$ to get $\widehat{\boldsymbol{\beta}}_{1}$ and hence $\lambda\left(\mathbf{x}_{1 i}^{\prime} \widehat{\boldsymbol{\beta}}_{1}\right)$.

Second do OLS for those with $y_{2 i}>0$ of $y_{2 i}$ on $\mathbf{x}_{2 i}$ and $\lambda\left(\mathbf{x}_{1 i}^{\prime} \widehat{\boldsymbol{\beta}}_{1}\right)$.
(c) B times do the following.

- Completely resample with replacement all the data $\left\{\left(y_{1 i}, y_{2 i}, \mathbf{x}_{1 i}, \mathbf{x}_{2 i}\right), i=1, \ldots, N\right\}$
- For each resample perform both stages of the two-steep procedure getting estimates $\widehat{\boldsymbol{\beta}}_{1, b}$ and $\widehat{\boldsymbol{\beta}}_{2, b}$ at the $b^{\text {th }}$ round.
Then $\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\beta}}_{2}\right]=\frac{1}{B-1} \sum_{b=1}^{B}\left(\widehat{\boldsymbol{\beta}}_{2}-\overline{\widehat{\boldsymbol{\beta}}}_{2}\right)\left(\widehat{\boldsymbol{\beta}}_{2}-\overline{\widehat{\boldsymbol{\beta}}}_{2}\right)^{\prime}$.
Standard errors are the square root of the diagonal entries in $\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\beta}}_{2}\right]$.
(d) Assume \mathbf{z}_{i} satisfies $\mathrm{E}\left[\mathbf{z}_{i}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right]=\mathbf{0}$.
$\widehat{\boldsymbol{\beta}}$ minimizes $\left[\sum_{i=1}^{N} \mathbf{z}_{i}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right]^{\prime} \mathbf{W}\left[\sum_{i=1}^{N} \mathbf{z}_{i}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right]$ where e.g. $\mathbf{W}=\left[\sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right]^{-1}$.
(e) In general $\mathbf{W}=\left(\mathrm{V}\left[\sum_{i=1}^{N} \mathbf{z}_{i}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right]\right)^{-1}$.

Given independence $\mathbf{W}=\left(\left[\sum_{i=1}^{N} \mathrm{E}\left[\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{2} \mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right]\right)^{-1}\right.$.
So use $\mathbf{W}=\left(\left[\sum_{i=1}^{N}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}\right)\right)^{2} \mathbf{z}_{i} \mathbf{z}_{i}^{\prime}\right]\right)^{-1}$ where $\widehat{\boldsymbol{\beta}}$ is consistent for $\boldsymbol{\beta}$.
5.(a) FE model: $y_{i t}=\alpha_{i}+\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+u_{i t}$.

Three methods (not exhaustive) are (1) OLS of $\left(y_{i t}-\bar{y}_{i}\right)$ on ($\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i}$); (2) OLS of $y_{i t}$ on $\mathbf{x}_{i t}$ and $\overline{\mathbf{x}}_{i}$; and (3) OLS of $y_{i t}$ on $\mathbf{x}_{i t}$ and a complete set of individual dummies.
(b) $y_{i t}=\alpha_{i}+\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+u_{i t}$ where α_{i} i.i.d. $\left(\alpha, \sigma_{\alpha}^{2}\right)$ and $u_{i t}$ i.i.d. $\left(\alpha, \sigma_{u}^{2}\right)$.
(c) Usual Hausman test is $\mathrm{H}=\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right)^{\prime}\left(\widehat{\mathrm{V}}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}\right]-\widehat{\mathrm{V}}\left[\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right]\right)^{-1}\left(\widehat{\boldsymbol{\theta}}_{\mathrm{FE}}-\widetilde{\boldsymbol{\theta}}_{\mathrm{RE}}\right) \stackrel{a}{\sim} \chi^{2}(q)$.

Weakness is that this requires $\widetilde{\boldsymbol{\theta}}_{\text {RE }}$ to be fully efficient which requires the assumptions in part (b). In practice these assumptions of homoskedasticity and equicorrelation are unlikely to be met.
(d) Stacking we have $\mathbf{y}_{i}=\mathbf{X}_{i} \boldsymbol{\beta}+\mathbf{u}_{i}$, where \mathbf{y}_{i} and \mathbf{u}_{i} are $T \times 1$ and \mathbf{X}_{i} is $T \times k$ with $i^{\text {th }}$ row \mathbf{x}_{i}^{\prime}. Then $\widehat{\boldsymbol{\beta}}=\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{y}_{i}=\boldsymbol{\beta}+\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{u}_{i}$.
The asymptotic variance is $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1} \operatorname{Var}\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{u}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}$.
Given independence over i and $\mathrm{E}\left[\mathbf{u}_{i} \mid \mathbf{x}_{i}\right]=0$ this becomes $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\left(\sum_{i} \mathrm{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{u}_{i} \mathbf{u}_{i}^{\prime} \mathbf{X}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\right.$. So use $\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}\left(\sum_{i} \mathbf{X}_{i}^{\prime} \widehat{\mathbf{u}}_{i} \widehat{\mathbf{u}}_{i}^{\prime} \mathbf{X}_{i}\right)\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{X}_{i}\right)^{-1}$ where $\widehat{\mathbf{u}}_{i}=\mathbf{y}_{i}-\mathbf{X}_{i} \widehat{\boldsymbol{\beta}}$.

The curve for this exam is only a guide. The course grade is based on course score.

Scores out of	50			
75th percentile	38	(77%)	A	38 and above
Median	34	(68%)	A-	31 and above
25th percentile	29	(58%)	B+ 24 and above	

