Analysis of Economics Data Appendix C: Properties of OLS, IV and ML

© A. Colin Cameron Univ. of Calif. Davis

November 2022

APPENDIX C: Properties of OLS, IV and ML

- Appendix C considers properties of OLS and related estimator.
- C.1 OLS with Independent Homoskedastic Errors
- C.2 Robust Standard errors
- C.3 Instrumental Variables Estimation
- C.4 OLS with Matrix Algebra
- C.5 Maximum Likelihood Estimation

C.1: OLS with Independent Homoskedastic Errors

Simplify model to make algebra easier by dropping intercept

$$y_i = \beta x + u_i$$
.

Then OLS estimator is

$$b = (\sum_i x_i^2)^{-1} \sum_i x_i y_i.$$

- Also simplify by assume x_i is a fixed regressor. Then assume.
- 2 Zero error mean: $E[u_i] = 0$.
- **3** Constant error variance: $Var[u_i] = \sigma_u^2$.
- Uncorrelated errors: $Cov[u_i, u_j] = 0$, $i \neq j$.

A key result

Given assumption 1 it is always the case that

$$b = \beta + (\sum_i x_i^2)^{-1} (\sum_i x_i u_i).$$

To obtain this result, note that

$$\begin{array}{ll} b &= (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} y_{i}) \\ &= (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} (\beta x_{i} + u_{i})) \quad \text{assuming } y_{i} = \beta x_{i} + u_{i}. \\ &= (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} \beta x_{i}^{2} + x_{i} u_{i}) \\ &= (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} \beta x_{i}^{2}) + (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} u_{i}) \\ &= \beta + (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} u_{i}), \end{array}$$

• The mean and variance of b will depend on assumptions about u_i .

Mean of the OLS Estimator

• Since $b = \beta + (\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$ we have

$$E[b] = E[\beta + (\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} u_{i})]$$

$$= E[\beta] + E[(\sum_{i} x_{i}^{2})^{-1} (\sum_{i} x_{i} u_{i})]$$

$$= \beta + (\sum_{i} x_{i}^{2})^{-1} \times E[\sum_{i} x_{i} u_{i}]$$

$$= \beta + (\sum_{i} x_{i}^{2})^{-1} \times \sum_{i} E[x_{i} u_{i}]$$

$$= \beta \quad \text{if } E[x_{i} u_{i}] = 0.$$

- $E[x_i u_i] = 0$ given assumption 2 that $E[u_i] = 0$
 - since x_i is fixed so $E[x_iu_i] = x_iE[u_i] = x_i \times 0 = 0$ assuming $E[u_i] = 0$.

Variance of OLS with Independent Homoskedastic Errors

- Since $b = \beta + (\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$ the variance of b is simply the variance of $(\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$.
- Given independent and homoskedastic errors and fixed x_i

$$\begin{array}{ll} \operatorname{Var}[b] &= \operatorname{Var}[(\sum_i x_i^2)^{-1}(\sum_i x_i u_i)] \\ &= \{(\sum_i x_i^2)^{-1}\}^2 \times \operatorname{Var}[\sum_i x_i u_i] \text{ as } \operatorname{Var}[aY] = a^2 \operatorname{Var}[Y] \\ &= (\sum_i x_i^2)^{-2} \times \sum_i \operatorname{Var}[x_i u_i] \text{ by independence} \\ &= (\sum_i x_i^2)^{-2} \times \sum_i x_i^2 \operatorname{Var}[u_i] \text{ as fixed } x_i \\ &= (\sum_i x_i^2)^{-2} \times \sum_i x_i^2 \times \sigma_u^2 \text{ for homoskedastic errors.} \\ &= \sigma_u^2 (\sum_i x_i^2)^{-1} \text{ simplifying.} \end{array}$$

• We estimate σ_u^2 using $s_e^2 = \frac{1}{n-1} \sum_i e_i^2$ where $e_i = y_i - \widehat{y}_i$. Then

Estimated
$$Var[b] = \frac{s_e^2}{\sum_i x_i^2}$$
.

• With an intercept $\widehat{\mathsf{Var}}[b] = \frac{s_e^2}{\sum_i (x_i - \bar{x})^2}$ where $s_e^2 = \frac{1}{n-2} \sum_i e_i^2$.

C.2 Robust Standard Errors Summary

• Since $b = \beta + (\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$ some algebra yields $\begin{aligned} \operatorname{Var}[b] &= (\sum_i x_i^2)^{-2} \times \operatorname{Var}[\sum_i x_i u_i] \\ &= (\sum_i x_i^2)^{-2} \times \sum_i \operatorname{Var}[x_i u_i] \end{aligned} \quad \text{if errors are independent} \\ &= (\sum_i x_i^2)^{-2} \times \sum_i \sum_i x_i x_i \operatorname{E}[u_i u_i] \qquad \text{in general.}$

- This leads to robust standard error estimates where $e_i = y_i \hat{y}_i$.
- Heteroskedastic independent errors

$$\widehat{\mathsf{Var}}_{het}[b] = (\sum_i x_i^2)^{-2} x_i^2 e_i^2.$$

ullet Clustered (and heteroskedastic errors) where $\delta_{ij}=1$ if i and j in same cluster

$$\widehat{\mathsf{Var}}_{\mathit{clu}}[b] = (\sum_i x_i^2)^{-2} \times \sum_i \sum_j \delta_{ij} x_i x_j e_i e_j.$$

Autocorrelated errors (to m periods apart)

$$\widehat{\mathsf{Var}}_{HAC}[b] = (\sum_{t} x_{t}^{2})^{-2} \times \{\sum_{t=1}^{T} x_{t}^{2} e_{t}^{2} + \frac{2m}{m+1} \sum_{t=2}^{m} x_{t} x_{t-1} e_{t} e_{t-1} + \dots + \frac{2}{m+1} \sum_{t=m}^{T} x_{t} x_{t-m} e_{t} e_{t-m} \},$$

Robust Standard Errors Algebra

• Since $b = \beta + (\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$

the variance of b is simply the variance of $(\sum_i x_i^2)^{-1}(\sum_i x_i u_i)$.

$$\begin{aligned} \mathsf{Var}[b] &= \mathsf{Var}\left[\left\{\left(\sum_{i} x_{i}^{2}\right)^{-1} \sum_{i} x_{i} u_{i}\right\}\right] \\ &= \left\{\left(\sum_{i} x_{i}^{2}\right)^{-1}\right\}^{2} \times \mathsf{Var}\left[\sum_{i} x_{i} u_{i}\right] \\ &= \left(\sum_{i} x_{i}^{2}\right)^{-2} \times \mathsf{Var}\left[\sum_{i} x_{i} u_{i}\right] \end{aligned}$$

• In general $Var[\sum_{i=1}^{n} Y_i] = \sum_{i} \sum_{j} Cov[Y_i, Y_j]$. So

$$Var \left[\sum_{i} x_{i} u_{i}\right] = \sum_{i} \sum_{j} Cov[x_{i} u_{i}, x_{j} u_{j}]$$

$$= \sum_{i} \sum_{j} x_{i} x_{j} Cov[u_{i}, u_{j}]$$

$$= \sum_{i} \sum_{i} x_{i} x_{j} E[u_{i} u_{i}] \text{ using } E[u_{i}] = 0.$$

So

$$Var[b] = (\sum_{i} x_{i}^{2})^{-2} \times Var[\sum_{i} x_{i} u_{i}]$$

$$= (\sum_{i} x_{i}^{2})^{-2} \times \sum_{i} \sum_{j} x_{i} x_{j} E[u_{i} u_{j}] \quad \text{in general.}$$

Variance with Heteroskedastic Independent Errors

Given independent and heteroskedastic errors and fixed x_i

$$E[u_i u_j] = E[u_i^2] \text{ if } i = j$$
$$= 0 \text{ if } i \neq j.$$

Then

$$\begin{aligned} \mathsf{Var}[b] &= (\sum_i x_i^2)^{-2} \times \sum_i \sum_j x_i x_j \mathsf{E}[u_i u_j] & \text{in general} \\ &= (\sum_i x_i^2)^{-2} \times \sum_i x_i^2 \mathsf{E}[u_i^2]. \end{aligned}$$

• We estimate $\sum_i x_i^2 E[u_i^2]$ using $\sum_i x_i^2 e_i^2$. Then

$$\widehat{\mathsf{Var}}_{het}[b] = \frac{\sum_i x_i^2 e_i^2}{(\sum_i x_i^2)^2}.$$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◆ 볼 → જ Q ©

Variance with Clustered Errors

Define

 $\delta_{ij} = 1$ if observations i and j are in the same cluster $\delta_{ij} = 0$ otherwise.

Then with clustered errors we assume

$$\mathsf{Cov}[u_i,u_j] = \mathsf{E}[u_i,u_j]
eq 0 \text{ if } \delta_{ij} = 1$$
 $\mathsf{Cov}[u_i,u_j] = 0 \text{ if } \delta_{ij} = 0$

• So given clustered (and heteroskedastic) errors and fixed x_i

$$\begin{aligned} \mathsf{Var}[b] &= (\sum_i x_i^2)^{-2} \times \sum_i \sum_j x_i x_j \mathsf{E}[u_i u_j] & \text{in general} \\ &= (\sum_i x_i^2)^{-2} \times \sum_i \sum_j \delta_{ij} x_i x_j \mathsf{E}[u_i u_j]. \end{aligned}$$

• We estimate $\sum_{i} \sum_{j} \delta_{ij} x_i x_j E[u_i u_j]$ by $\sum_{i} \sum_{j} \delta_{ij} x_i x_j e_i e_j$.

$$\widehat{\mathsf{Var}}_{clu}[b] = rac{\sum_i \sum_j \delta_{ij} x_i x_j e_i e_j}{(\sum_i x_i^2)^2}.$$

Variance with Autocorrelated Errors

- Use subscript t for time series (rather than subscript i).
- Assume that errors are uncorrelated after m periods

$$Cov[u_t, u_s] \neq 0 \text{ for } |t - s| \leq m$$

= 0 for $|t - s| > m$,

Then

$$\begin{aligned} & \mathsf{Var}[\sum_t x_t u_t] = \sum_t \sum_t x_t x_s \mathsf{E}[x_t u_t u_t u_s] & \text{in general} \\ &= \sum_t \mathsf{E}[x_t u_t] + 2 \sum_t \mathsf{E}[x_t u_t x_{t-1} u_{t-1}] \\ &+ \dots + 2 \sum_t \mathsf{E}[x_t u_t, x_{t-m} u_{t-m}] & \text{as correlated up to } m \text{ periods} \end{aligned}$$

• We estimate $Var[b] = (\sum_t x_t^2)^{-2} \times Var[\sum_t x_t u_t]$ with

$$\widehat{\mathsf{Var}}_{HAC}[b] = (\sum_{t} x_{t}^{2})^{-1} \times \{\sum_{t=1}^{T} x_{t}^{2} \widehat{u}_{t}^{2} + \frac{2m}{m+1} \sum_{t=2}^{m} x_{t} x_{t-1} \widehat{u}_{t} \widehat{u}_{t-1} + \dots + \frac{2}{m+1} \sum_{t=m}^{T} x_{t} x_{t-m} \widehat{u}_{t} \widehat{u}_{t-m}\} \times (\sum_{t} x_{t}^{2})^{-1},$$

C.3 Instrumental Variables

- Consider model without intercept: $y_i = \beta x_i + u_i$.
- Suppose $Cov(x_i, u_i) \neq 0$. Then **OLS** is biased and inconsistent as

$$\begin{array}{ll} \mathsf{E}[b] & = & \beta + (\sum_i x_i^2)^{-1} \times \sum_i \mathsf{E}[x_i u_i] \qquad \text{from earlier OLS results} \\ & \neq & \beta \qquad \text{because } \mathsf{E}[x_i u_i] \neq 0. \end{array}$$

- Instead assume there exists an instrument z_i that is uncorrelated with the error. Specifically $Cov(z_i, u_i) = 0$ which implies the average $(\frac{1}{n}\sum_i z_i u_i) \to 0$ as $n \to \infty$.
- ullet The instrumental variables estimator of eta is

$$b_{IV} = (\sum_{i=1}^{n} z_i x_i)^{-1} \sum_{i=1}^{n} z_i y_i.$$

ullet The instrumental variables estimator is **consistent** for eta since

$$b_{IV} = \beta + (\sum_{i} z_{i} x_{i})^{-1} (\sum_{i} z_{i} u_{i}) \quad \text{by algebra similar to OLS}$$

$$= \beta + (\frac{1}{n} \sum_{i} z_{i} x_{i})^{-1} (\frac{1}{n} \sum_{i} z_{i} u_{i})$$

$$\rightarrow \beta + (\frac{1}{n} \sum_{i} z_{i} x_{i})^{-1} \times 0 \text{ as } n \rightarrow \infty \text{ as } Cov(z_{i}, u_{i}) = 0$$

$$\rightarrow \beta.$$

C.4 OLS with Matrix Algebra

- Let $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \cdots + \beta_k x_{ki} + u_i$.
- In vector notation this can be written as

$$y_i = \begin{bmatrix} 1 & x_{2i} & \cdots & x_{ki} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + u_i.$$

 Stacking all n equations for the n observations into vectors and matrices yields

$$\begin{bmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{21} & \cdots & x_{k1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{2i} & \cdots & x_{ki} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{2n} & \cdots & x_{kn} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ \vdots \\ u_i \\ \vdots \\ u_n \end{bmatrix}.$$

OLS with Matrix Algebra (continued)

The stacked model can be written as

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{u},$$
 $(n \times 1) = (n \times k)(k \times 1) + (n \times 1),$

for $n \times 1$ vectors **y** and **u**, $n \times k$ matrix **X**, and $k \times 1$ vector β .

• The OLS estimator that minimizes the sum of squared residuals $\mathbf{u}'\mathbf{u}$ solves the so-called normal equations $\mathbf{X}'\mathbf{u} = \mathbf{0}$ or

$$\mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0}.$$

• Solving for β yields the the OLS estimator:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

where **b** is a $k \times 1$ vector with entries $b_1, b_2, ..., b_k$.

Under assumptions 1-4

$$\mathsf{Var}[\mathbf{b}] = \sigma_u^2(\mathbf{X}'\mathbf{X})^{-1} \text{ and } \widehat{\mathsf{Var}}[\mathbf{b}] = s_e^2(\mathbf{X}'\mathbf{X})^{-1}$$

where $s_e^2 = \frac{1}{n-k} \sum_{i=1}^n \widehat{u}_i^2 = \frac{1}{n-k} \widehat{\mathbf{u}}' \widehat{\mathbf{u}}$ where $\widehat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\mathbf{b}$.

C.5 Maximum Likelihood Estimation

- For some types of data OLS is not appropriate.
- Then the maximum likelihood (ML) method is often used.
- This specifies a particular model for the conditional probability of the dependent variable given the regressors.
- Let $f(y_i|x_i,\theta)$ denote the model for the *ith* observation.
- ullet The probability of observing the n independent observations is then

$$f(y_1, ..., y_n | x_1, ..., x_n, \theta) = f(y_1 | x_1, \theta) \times \cdots \times f(y_n | x_n, \theta).$$

• The **likelihood function** reframes this probability as a function of the parameter(s) θ given the data $(y_1, x_1), ..., (x_1, x_n)$. Then

$$L(\theta) = L(\theta|(y_1, x_1), ..., (y_n, x_n)) = f(y_1|x_1, \theta) \times \cdots \times f(y_n|x_n, \theta).$$

- We estimate θ by the value that is most likely given the data; i.e. the **maximum likelihood estimator** maximizes $L(\theta)$.
- ullet Equivalently use heta that maximizes the natural logarithm of L(heta)

$$\ln L(\theta) = \ln f(y_1|x_1,\theta) + \cdots + \ln f(y_n|x_n,\theta) = \sum_{i=1}^n \ln f(y_i|x_i,\theta).$$

Maximum Likelihood Estimation Properties

- The maximum likelihood estimator (MLE) of θ , denoted $\widehat{\theta}_{ML}$, maximizes $\ln L(\theta) = \sum_{i=1}^{n} \ln f(y_i|x_i, \theta)$.
- For standard problems the MLE has very desirable properties.
- Assuming $f(y_i|x_i,\theta)$ is correctly specified the MLE is consistent, has asymptotic distribution that is normal, and has the smallest variance among consistent and asymptotically normal estimators.
- If inference is relaxed to allow for the possibility that $f(y_i|x_i,\theta)$ is incorrectly specified then the MLE is called the **quasi-MLE**. Then inference must be based on appropriate robust standard errors.
- In general the quasi-MLE is inconsistent for θ , though in the leading cases of logit, probit and Poisson regression, and the linear model with independent normally distributed errors, the quasi-MLE is still consistent for θ provided that the functional form for the conditional mean $E[y_i|x_i]$ is correctly specified.

Maximum Likelihood Estimation Example

 \bullet Consider regression where y_i is a binary outcome with probability

$$f(y_i|p_i) = \begin{cases} p_i & \text{if } y_i = 1\\ 1 - p_i & \text{if } y_i = 0 \end{cases}$$

This can be rewritten as

$$f(y_i|p_i) = p_i^{y_i}(1-p_i)^{1-y_i}.$$

• The logit regression model specifies

$$p_i = \Lambda(\beta_1 + \beta_2 x_i) = \exp(\beta_1 + \beta_2 x_i) / \{1 + \exp(\beta_1 + \beta_2 x_i)\}.$$

The log-likelihood function given independent observations is then

$$\begin{array}{lll} \ln L(\beta_1,\beta_2) & = & \prod_{i=1}^n \rho_i^{y_i} (1-\rho_i)^{1-y_i} \\ & = & \sum_{i=1}^n \{y_i \ln \rho_i + (1-y_i) \ln (1-\rho_i)\} \\ & = & \sum_{i=1}^n \{y_i \ln \Lambda(\beta_1+\beta_2 x_i) + (1-y_i) \ln (1-\Lambda(\beta_1+\beta_2 x_i) + (1-y_i) \ln (1-\rho_i)\} \end{array}$$

• The ML estimates of β_1 and β_2 maximize this function.