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APPENDIX C: Properties of OLS, IV and ML

Appendix C considers properties of OLS and related estimator.
C.1 OLS with Independent Homoskedastic Errors

C.2 Robust Standard errors

C.3 Instrumental Variables Estimation

C.4 OLS with Matrix Algebra

C.5 Maximum Likelihood Estimation
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C.1: OLS with Independent Homoskedastic Errors

@ Simplify model to make algebra easier by dropping intercept
yi = Bx + u;.
@ Then OLS estimator is
b= (L) Lixi
@ Also simplify by assume x; is a fixed regressor. Then assume.

Q@ Model: y; = Bx; + u;.

@ Zero error mean: E[u;] = 0.

2

© Constant error variance: Var[u;] = 07,.

© Uncorrelated errors: Cov[uj, uj] =0, i # .
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A key result

@ Given assumption 1 it is always the case that

b=p+ (LixF) (L xiui).
@ To obtain this result, note that

(Z: X/Y/)

X X,(ﬁx, + u;)) assuming y; = Bx; + u;.
EZ, Bx? + xju;)
2

Z/ﬁx) (X)X xiui)
( )N xiui),

@ The mean and variance of b will depend on assumptions about w;.

(X
= (X
(X
= (X
B+
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Mean of the OLS Estimator

e Since b= B+ (L; x*)"1(¥; xju;) we have

E[b] = E[B+ (%) (X xiu)]
= E[B]+ E[(Zix) (L xiu)]
= B+ (LX)t X E[ xiuj]
= B+ (Lix) ! x T Elxu]
= B ifE[xu]=0.

e E[xju;] = 0 given assumption 2 that E[u;] =0

> since x; is fixed so E[x;u;] = x;E[u;] = x; x 0 = 0 assuming E[u;] = 0.
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C.1 OLS with Independent Homoskedastic Errors

Variance of OLS with Independent Homoskedastic Errors
e Since b= B+ (L x*) (L xiui)
the variance of b is simply the variance of (¥; x?) 1 (X; x;u;).
@ Given independent and homoskedastic errors and fixed x;
Var[b] = Var[(¥, x?) (L xiui)]

= {(L;x?)"1}2 x Var [T x;u;] as Var[aY] = a®Var[Y]
= (T;x?) 72 x ¥; Var [xu/] by independence
= (¥ x?) 72 x ¥ x*Var|u/] as fixed x;
= (I x?) 72 x ¥; x? x 02 for homoskedastic errors.
=o2(Lix?)7? simplifying.

@ We estimate 02 using s2 = nil Y e,-2 where e; = y; — ;. Then
2
Estimated Var[b] = .
. X?

177
2

o With an intercept Var[b] = ﬁ where s2

n211'
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C.2 Robust Standard Errors Summary

e Since b= B+ (L; x?) " 1(X; x;u;) some algebra yields
Var[b] = () x7)~% x Var [, xuj]
= (Z, x?) 7% x ¥; Var [x;u;] if errors are independent
= (Y. X)X L, 5 xixiElujuj] in general.
@ This leads to robust standard error estimates where ¢; = y; — y;.
@ Heteroskedastic independent errors
\Erhet Z X - /2 /2
@ Clustered (and heteroskedastic errors) where 6;; = 1 if i and j in same
cluster
Var, [b] = Z x?) 72 x Y Y dyxixjeie;
@ Autocorrelated errors (to m perlods apart)

Varuac[b] = (Zex?) 2 x {L1 7€} + 22 Lo xoxe1€cee 1
_‘_..._{-mzt:thXt—metet*m}’
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Robust Standard Errors Algebra
o Since b= -+ (T, x2)~1 (T, xiu)
the variance of b is simply the variance of (¥; x?) "1 (¥ xiu;).

Var[b] = Var [{(¥X;x?) " L xiui}]
—{(Ex) P2 x Var £, xu]
= (¥ x?) 72 x Var [¥; xiuj]
@ In general Var[y_; Yi] = ¥, ¥;Cov]Y;, Yj]. So
Var [¥xu] = Y% Cov|[x;u;, xju;]
Yid xix;Cov[u;, uj]
= Y, ¥ xixiE[uju;] using E[u;] = 0.
@ So
Varlb] = (), x?) 72 x Var [¥; xjuj]
= () x?) 72 x ¥, 5y xixiEluiuj] in general.
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C.2 Robust Standard Errors Heteroskedastic Independent Errors

Variance with Heteroskedastic Independent Errors

@ Given independent and heteroskedastic errors and fixed x;
Eluiy] = E[uf]ifi=]
= 0ifi#j.
@ Then

Var[b] = (L;x?) 2 x Y 2IX,XJE[u,uJ] in general
= (L x7) 72 x Ly x E[uf].

o We estimate Y, x?E[u?] using Y_; x?e?. Then

Y xe?

\Erhet [b] = W .
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(OVANIITE S ENIEIC NI Clustered Errors

Variance with Clustered Errors
@ Define

6 = 1if observations i and j are in the same cluster

6 = 0 otherwise.
@ Then with clustered errors we assume
Covluj, uj] = E[uj,u] #0ifd;=1
COV[U,', UJ'] = 0if (5,'1' =0
@ So given clustered (and heteroskedastic) errors and fixed x;
Var[b] = (Y%, x,-z)_z X ¥ ¥ xixiE[ujuj] in general
= (Lix) 2 xY; Y, dijxixiElujuj].
o We estimate Y, Y 6;xxE[uju;] by Yo, Y5 dixix;ere;.
Y Zj 5inineiej
(X x7)?
November 2022
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(O NTTE RS ENIEI NS  Autocorrelated Errors

Variance with Autocorrelated Errors

@ Use subscript t for time series (rather than subscript 7).
@ Assume that errors are uncorrelated after m periods

Cov[us, us)] # Ofor|t—s|<m
= 0for |t—s| > m,

@ Then

Var[Y, xeur] = Y Yop XexsE[x¢ ur ug us] in general
= Y E[xeue] + 2%, E[xeuexe—1up—1]
+ -+ 2Y, E[x¢ur, Xe—mUs_m] as correlated up to m periods

o We estimate Var[b] = (¥, x?) "2 x Var[¥; x: u¢] with

\EVHAC[b] = (L ) ' x {Zt 1Xt2ﬁ? .Tl Yoflo XeXe—1Utle—1

4+ .o+ m_+1 Zt:m XtthmUtUt—m} X (Zt th)_ly
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C.3 Instrumental Variables

C.3 Instrumental Variables

Consider model without intercept: y; = Bx; + u;.
Suppose Cov(x;, u;) # 0. Then OLS is biased and inconsistent as

Elb] = B+ (T x*) " x ¥ E[xu] from earlier OLS results
# B because E[x;u;] # 0.
Instead assume there exists an instrument z that is uncorrelated
with the error. Specifically Cov(z;, uj) = 0 which implies the
average (Y zju;) — 0 as n — oco.
@ The instrumental variables estimator of § is
-1
by = (Yo zixi) — Lit1 ziyi
@ The instrumental variables estimator is consistent for 8 since
by =B+ (X zix) L, ziui) by algebra similar to OLS
1 ~1(1
=B+ (s Lizx) (5 L ziu)
— B+ (¥ zix) ! x0asn— oo as Cov(z,u) =0
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C.4 OLS with Matrix Algebra

o Let yi = By + Boxoi + Pyxzi + -+ + Byrxui + uj.
@ In vector notation this can be written as

P
B
vi=[1 x - x| S| i
B
@ Stacking all n equations for the n observations into vectors and
matrices yields

%1 1 X1 - X uy

P

B, '
Yi | =11 xi - X S| o
P

Yn 1 x0n -+ Xun Up
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OLS with Matrix Algebra (continued)

@ The stacked model can be written as

= X + u
(nZl) (nxk)(kél) (nx1)

for n x 1 vectors y and u, n X k matrix X, and k x 1 vector B.
@ The OLS estimator that minimizes the sum of squared residuals u’u
solves the so-called normal equations X'u = 0 or

X'(y —XpB) =0.
@ Solving for B yields the the OLS estimator:
b= (X'X)" X'y,
where b is a k x 1 vector with entries by, by, ..., by.
@ Under assumptions 1-4

Var[b] = 0%(X’X)~! and Var[b] = s2(X'X)"!

1 —
where s2 . kz, (0= =~ Ut where u =y — Xb.
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C.5 Maximum Likelihood Estimation

For some types of data OLS is not appropriate.

Then the maximum likelihood (ML) method is often used.

This specifies a particular model for the conditional probability of the
dependent variable given the regressors.

Let 7 (yi|x;, 0) denote the model for the ith observation.

The probability of observing the n independent observations is then

F(y1s e Ynlxt, oo X, 0) = F(ya]x1,0) X -+ X F(yn|xn, 0).
The likelihood function reframes this probability as a function of the
parameter(s) 6 given the data (y1,x1), ..., (x1, xn). Then
L) = L(O](y1,x1), - (Vn  Xn)) = Fya|x1,0) X -« X F(yn|xn, 0).

We estimate 6 by the value that is most likely given the data;
i.e. the maximum likelihood estimator maximizes L(6).
Equivalently use 6 that maximizes the natural logarithm of L(6)

InL(6) =Inf(yilx1,0) 4 +Inf(ynlxs0) =Y " Inf(yilx;,0).
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C.5 Maximum Likihood Estimation

Maximum Likelihood Estimation Properties

o The maximum likelihood estimator (MLE) of 6, denoted By,
maximizes In L(8) = Y7, Inf(y;|x;, 6).
@ For standard problems the MLE has very desirable properties.

e Assuming f(yi|x;, 0) is correctly specified the MLE is consistent, has
asymptotic distribution that is normal, and has the smallest variance
among consistent and asymptotically normal estimators.

o If inference is relaxed to allow for the possibility that f(y;|x;, 6) is
incorrectly specified then the MLE is called the quasi-MLE. Then
inference must be based on appropriate robust standard errors.

@ In general the quasi-MLE is inconsistent for 8, though in the leading
cases of logit, probit and Poisson regression, and the linear model
with independent normally distributed errors, the quasi-MLE is still
consistent for 6 provided that the functional form for the conditional
mean E[y;|x;] is correctly specified.
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C.5 Maximum Likihood Estimation

Maximum Likelihood Estimation Example
o Consider regression where y; is a binary outcome with probability
T pi ifyi=1
f(y,|pl)—{ 1_pi |fy,:O
@ This can be rewritten as
f(yilpi) = P (1 — i)'
@ The logit regression model specifies
pi = A(By + Boxi) = exp(By + Boxi) /{1 + exp(B; + Boxi) }-
@ The log-likelihood function given independent observations is then
InL(By.By) = H7:1 p(1— pi) Y
Yoo {yilnpi+ (1—y)In(1—pi)}
= YT Vil A(By + Byxi) + (1= yi) In(1— A(By + By
@ The ML estimates of B, and B, maximize this function.
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