ANSWERS TO PRACTICE PROBLEMS 4

1. It is not strategy proof.
y
Example with $\mathrm{n}=2$ and $\mathrm{m}=3$: Suppose that 1 's true preferences are x and 2's stated x
preferences are y. Then if 1 tells the truth the chosen outcome is x, while if she strategically

$$
{ }^{\mathrm{z}}
$$

reports the ranking z the chosen outcome is y , her most preferred.
x
2.(i)

(ii) $\mathbf{1}$ is not a dictator: row 2, column 4 chosen outcome is z , not the top-ranked of 1 .

2 is not a dictator: column 1 , row 4 chosen outcome is y, not the top-ranked of 2 .
Manipulable: 1 with true preferences y , x z (row 3) has an incentive to state $\mathrm{y}, \mathrm{z}, \mathrm{x}$ (row 4) if she expects 2 to state $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (column 1).
3.
(a)

1's $a b c$ acb bac bca $c a b$ cba					$c a b$	cba	2's $a b c$ acb bac bca $c a b$ cba						$c b a$
	a	a	a	a	a	a		a	a	a	a	a	a
	a	a	a	a	a	a		a	a	a	a	a	a
	a	a	b	b	a	b		a	a	b	b	a	c
	a	a	b	b	c	b		a	a	b	b	c	c
	a	a	a	c	c	c		a	a	a	c	c	c
	a	a	b	b	c	c		a	a	c	c	c	c
3 reports abc							3 reports acb						
2's $\rightarrow a b c$ acb bac bca cab cba							bac bca cab cba			bac	$b c a$	$c a b$	$c b a$
$a b c$	a	a	b	b	a	b		a	a	b	b	c	b
$a c b$	a	a	b	b	a	c		a	a	b	b	c	c
bac	b	b	b	b	b	b		b	b	b	b	b	b
$b c a$	b	b	b	b	b	b		b	b	b	b	b	b
$c a b$	a	a	b	b	c	c		c	c	b	b	c	c
cba	b	c	b	b	c	c		b	c	b	b	c	c
3 reports bac							3 reports bca						
$a b c$ $a c b$ bac bca $c a b$ $c b a$	a	a	a	c	c	c	$a b c$	a	a	b	b	c	c
	a	a	a	c	c	c	$a c b$	a	a	c	c	c	c
	a	a	b	b	c	c	bac	b	c	b	b	c	c
	c	c	b	b	c	c	$b c a$	b	c	b	b	c	c
	c	c	c	c	c	c	cab	c	c	c	c	c	c
	c	c	c	c	c	c	cba	c	c	c	c	c	c
	3 reports cab						3 reports cba						

(b) Suppose that 2 reports $c a b$ and 3 reports $b c a$ and that 1 's true ranking is $a b c$. Then if 1 reports sincerely, the outcome is $c\left(4^{\text {th }}\right.$ table, $1^{\text {st }}$ row and $4^{\text {th }}$ column $)$, which is the worst outcome according to his true ranking. If, instead, he reports bac then the outcome is b, which according to his true ranking $a b c-$ is better than c.

