Department of Economics, University of California, Davis 200C – Micro Theory – Professor Giacomo Bonanno

ANSWERS TO PRACTICE PROBLEMS 19

1. The core is the set of (x_1, x_2, x_3) such that

$x_1 \ge v(\{1\}) = 10$	(1)
$x_2 \ge v(\{2\}) = 6$	(2)
$x_3 \ge v(\{3\}) = 8$	(3)
$x_1 + x_2 \ge v(\{1,2\}) = 18$	(4)
$x_1 + x_3 \ge v(\{1,3\}) = 24$	(5)
$x_2 + x_3 \ge v(\{2,3\}) = 16$	(6)
$x_1 + x_2 + x_3 = v(\{1,2,3\}) = 30$	(7)

From (5) and (7) we get that $x_2 \le 6$. This, together with (2), gives

 $x_2 = 6.$ (8)

From (7) and (8) we get that $x_1 + x_3 = 24$ so that

From (4) and (8) we get that

 $x_1 \ge 12$. (10).

 $x_3 = 24 - x_1$. (9)

From (6) and (8) we get that $x_3 \ge 10$ and this, together with (9) gives $x_1 \le 14$.

Thus the core is the set of triples (x_1, x_2, x_3) such that $12 \le x_1 \le 14$, $x_2 = 6$ and $x_3 = 24 - x_1$.

2. The core is the set of (x_1, x_2, x_3) such that

$x_1 \ge v(\{1\}) = 0$	(1)
$x_2 \ge v(\{2\}) = 0$	(2)
$x_3 \ge v(\{3\}) = 0$	(3)
$x_1 + x_2 \ge v(\{1,2\}) = 40$	(4)
$x_1 + x_3 \ge v(\{1,3\}) = 0$	(5)
$x_2 + x_3 \ge v(\{2,3\}) = 50$	(6)
$x_1 + x_2 + x_3 = v(\{1,2,3\}) = 50$	(7)

From (6) and (7) we get that $x_1 \le 0$. This, together with (1), gives

 $x_1 = 0.$ (8)

From (7) and (8) we get that $x_2 + x_3 = 50$ so that

 $x_3 = 50 - x_2$. (9)

From (4) and (8) we get that

 $x_2 \ge 40.$ (10)

Thus the core is the set of triples (x_1, x_2, x_3) such that $x_1 = 0$, $x_2 \ge 40$ and $x_3 = 50 - x_2$.

- 3. (a) The core is the set of (x_1, x_2) such that $x_1 \ge 2$, $x_2 \ge 5$ and $x_1 + x_2 = 8$. Thus the set of pairs $(x_1, 8 x_1)$ such that $2 \le x_1 \le 3$. (b) Only two: (2, 6) and (3,5).
- 4. 1. (6, 6, 6) is not in the core because, for example, the coalition $\{1,2\}$ can block it with (7,7,0).
 - 2. (4, 6, 8) is not in the core because, for example, the coalition $\{1,2\}$ can block it with (7,7,0).
 - 3. (7, 7, 4) is not in the core because, for example, the coalition $\{2,3\}$ can block it with (0,8,8).
 - 4. (8, 8, 2) is not in the core because, for example, the coalition $\{2,3\}$ can block it with (0,9,7).
- **5.** If (x_1, x_2, x_3) is in the core it must satisfy the following inequalities:

(1) $x_1 + x_2 \ge 12$, (2) $x_1 + x_3 \ge 10$, (3) $x_2 + x_3 \ge 14$

Adding these inequalities we get $2x_1 + 2x_2 + 2x_3 \ge 36$, that is, $x_1 + x_2 + x_3 \ge 18$ which is impossible since $v(\{1,2,3\}) = 16$.

6. 1. (4, 4, 5, 5) is not in the core because, for example, the coalition {3,4} can block it with (0,0,6,6).
2. (2, 4, 6, 6) is not in the core because, for example, the coalition {1,2} can block it with (3,5,0,0).
3. (4, 5, 5, 4) is not in the core because, for example, the coalition {3,4} can block it with (0,0,6,6).

7. No, the core is empty because, in order to be in the core, an imputation (x_1, x_2, x_3, x_4) must be such that $x_3 + x_4 \ge 12$ (otherwise it can be blocked by the coalition $\{3,4\}$) and, furthermore, it must be such that $x_1 \ge 4$ (otherwise it can be blocked by the coalition $\{1\}$) and $x_2 \ge 4$ (otherwise it can be blocked by the coalition $\{2\}$), so that $x_1 + x_2 + x_3 + x_4 \ge 20$, which is impossible, since v(N) = 18.

v({1})	v({2})	v({3})	v({1,2})	v({1,3})	v({2,3})	v({1,2,3})
10	8	6	24	22	18	34
		player 1's	player 2's	player 3's		
order	probability	marginal contribution	marginal contribution	marginal contribution		
123	1/6	10	14	10		
132	1/6	10	12	12		
213	1/6	16	8	10		
231	1/6	16	8	10		
312	1/6	16	12	6		
321	1/6	16	12	6		
	sum	84	66	54		
					check sum	า
S	hapley value	14	11	9	34	

8. The Shapley value is $x_1 = 14$, $x_2 = 11$, $x_2 = 9$ and is calculated as follows:

9. The Shapley value is $x_1 = 115$, $x_2 = 85$, $x_2 = 60$ and is calculated as follows:

v({1})	v({2})	v({3})	v({1,2})	v({1,3})	v({2,3})	v({1,2,3})
80	60	30	180	160	120	260
		player 1's	player 2's	player 3's		
order	probability	marginal contribution	marginal contribution	marginal contribution		
123	1/6	80	100	80		
132	1/6	80	100	80		
213	1/6	120	60	80		
231	1/6	140	60	60		
312	1/6	130	100	30		
321	1/6	140	90	30		
	sum	690	510	360		
					check sum	1
S	hapley value	115	85	60	260	

- **10.** Player 1 is not a dummy player, because $v(\{1,2\}) v(\{2\}) = 180 60 = 120 > v(\{1\}) = 80$.
- **11.** Players 1 and 2 are not interchangeable because $v({1}) \neq v({2})$.
- 12. (a) Players 1 and 3 are interchangeable because $v({1}) = v({3})$ and $v({1,2}) v({2}) = v({2,3}) v({3}) = 4$.
 - **(b)** The Shapley value is (4, 4, 4).
 - (c) The Shapley value is not in the core because (4, 4, 4) can be blocked by the coalition $\{1,3\}$ with (5, 0, 5)
- **13.** (a) No two players are interchangeable because $v(\{i\}) \neq v(\{j\})$ for any $i \neq j$.
 - (b) Player 1 is a dummy player because $v(\{1,2\}) = v(\{2\}) + v(\{1\}), v(\{1,3\}) = v(\{3\}) + v(\{1\})$ and $v(\{1,2,3\}) = v(\{2,3\}) + v(\{1\})$.
 - (c) The Shapley value is (2, 5, 7).
 - (d) The Shapley value is in the core because it satisfies all the inequalities that define the core.