ANSWERS TO PRACTICE PROBLEMS 19

1. The core is the set of $\left(x_{1}, x_{2}, x_{3}\right)$ such that

$\mathrm{x}_{1} \geq \mathrm{v}(\{1\})=10$	(1)
$\mathrm{x}_{2} \geq \mathrm{v}(\{2\})=6$	(2)
$\mathrm{x}_{3} \geq \mathrm{v}(\{3\})=8$	(3)
$\mathrm{x}_{1}+\mathrm{x}_{2} \geq \mathrm{v}(\{1,2\})=18$	(4)
$\mathrm{x}_{1}+\mathrm{x}_{3} \geq \mathrm{v}(\{1,3\})=24$	(5)
$\mathrm{x}_{2}+\mathrm{x}_{3} \geq \mathrm{v}(\{2,3\})=16$	(6)
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=\mathrm{v}(\{1,2,3\})=30$	(7)

From (5) and (7) we get that $x_{2} \leq 6$. This, together with (2), gives

$$
\begin{equation*}
x_{2}=6 . \tag{8}
\end{equation*}
$$

From (7) and (8) we get that $x_{1}+x_{3}=24$ so that

$$
\begin{equation*}
\mathrm{x}_{3}=24-\mathrm{x}_{1} . \tag{9}
\end{equation*}
$$

From (4) and (8) we get that

$$
\mathrm{x}_{1} \geq 12
$$

From (6) and (8) we get that $x_{3} \geq 10$ and this, together with (9) gives $x_{1} \leq 14$.
Thus the core is the set of triples $\left(x_{1}, x_{2}, x_{3}\right)$ such that $12 \leq x_{1} \leq 14, x_{2}=6$ and $x_{3}=24-x_{1}$.
2. The core is the set of $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ such that

$\mathrm{x}_{1} \geq \mathrm{v}(\{1\})=0$	(1)
$\mathrm{x}_{2} \geq \mathrm{v}(\{2\})=0$	(2)
$\mathrm{x}_{3} \geq \mathrm{v}(\{3\})=0$	(3)
$\mathrm{x}_{1}+\mathrm{x}_{2} \geq \mathrm{v}(\{1,2\})=40$	(4)
$\mathrm{x}_{1}+\mathrm{x}_{3} \geq \mathrm{v}(\{1,3\})=0$	(5)
$\mathrm{x}_{2}+\mathrm{x}_{3} \geq \mathrm{v}(\{2,3\})=50$	(6)
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=\mathrm{v}(\{1,2,3\})=50$	(7)

From (6) and (7) we get that $x_{1} \leq 0$. This, together with (1), gives

$$
\begin{equation*}
x_{1}=0 \tag{8}
\end{equation*}
$$

From (7) and (8) we get that $x_{2}+x_{3}=50$ so that

$$
\begin{equation*}
\mathrm{x}_{3}=50-\mathrm{x}_{2} . \tag{9}
\end{equation*}
$$

From (4) and (8) we get that

$$
\mathrm{x}_{2} \geq 40
$$

Thus the core is the set of triples $\left(x_{1}, x_{2}, x_{3}\right)$ such that $x_{1}=0, x_{2} \geq 40$ and $x_{3}=50-x_{2}$.
3. (a) The core is the set of $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that $x_{1} \geq 2, x_{2} \geq 5$ and $x_{1}+x_{2}=8$. Thus the set of pairs $\left(x_{1}, 8-x_{1}\right)$ such that $2 \leq x_{1} \leq 3$.
(b) Only two: $(2,6)$ and $(3,5)$.
4. 1. $(6,6,6)$ is not in the core because, for example, the coalition $\{1,2\}$ can block it with $(7,7,0)$.
2. $(4,6,8)$ is not in the core because, for example, the coalition $\{1,2\}$ can block it with $(7,7,0)$.
3. $(7,7,4)$ is not in the core because, for example, the coalition $\{2,3\}$ can block it with $(0,8,8)$.
4. $(8,8,2)$ is not in the core because, for example, the coalition $\{2,3\}$ can block it with $(0,9,7)$.
5. If (x_{1}, x_{2}, x_{3}) is in the core it must satisfy the following inequalities:
(1) $x_{1}+x_{2} \geq 12$,
(2) $x_{1}+x_{3} \geq 10$,
(3) $x_{2}+x_{3} \geq 14$

Adding these inequalities we get $2 x_{1}+2 x_{2}+2 x_{3} \geq 36$, that is, $x_{1}+x_{2}+x_{3} \geq 18$ which is impossible since $\mathrm{v}(\{1,2,3\})=16$.
6. 1. $(4,4,5,5)$ is not in the core because, for example, the coalition $\{3,4\}$ can block it with $(0,0,6,6)$.
2. $(2,4,6,6)$ is not in the core because, for example, the coalition $\{1,2\}$ can block it with $(3,5,0,0)$.
3. $(4,5,5,4)$ is not in the core because, for example, the coalition $\{3,4\}$ can block it with $(0,0,6,6)$.
7. No, the core is empty because, in order to be in the core, an imputation ($x_{1}, x_{2}, x_{3}, x_{4}$) must be such that $x_{3}+x_{4} \geq 12$ (otherwise it can be blocked by the coalition $\{3,4\}$) and, furthermore, it must be such that $x_{1} \geq 4$ (otherwise it can be blocked by the coalition $\{1\}$) and $x_{2} \geq 4$ (otherwise it can be blocked by the coalition $\{2\}$), so that $x_{1}+x_{2}+x_{3}+x_{4} \geq 20$, which is impossible, since $\mathrm{v}(\mathrm{N})=18$.

$$
\begin{aligned}
& \text { ה ミ } / / / / 2 \\
& \text { ה in } / / / / 2
\end{aligned}
$$

8. The Shapley value is $x_{1}=14, x_{2}=11, x_{2}=9$ and is calculated as follows:

v(\{1\})	$\mathrm{v}(\{2\})$	$\mathrm{v}(\{3\})$	$\mathrm{V}(\{1,2\})$	$\mathrm{V}(\{1,3\})$	$\mathrm{v}(\{2,3\})$	$\mathrm{v}(\{1,2,3\})$
10	8	6	24	22	18	34
order	probability	player 1's marginal contribution	player 2's marginal contribution	player 3's marginal contribution		
123	1/6	10	14	10		
132	1/6	10	12	12		
213	1/6	16	8	10		
231	1/6	16	8	10		
312	1/6	16	12	6		
321	1/6	16	12	6		
	sum	84	66	54		
					check sum	
	hapley value	14	11	9	34	

9. The Shapley value is $x_{1}=115, x_{2}=85, x_{2}=60$ and is calculated as follows:

$\mathrm{v}(\{1\})$	$\mathrm{v}(\{2\})$	$\mathrm{v}(\{3\})$	$\mathrm{v}(\{1,2\})$	$\mathrm{v}(\{1,3\})$	$\mathrm{v}(\{2,3\})$	$\mathrm{V}(\{1,2,3\})$
80	60	30	180	160	120	260
order	probability	player 1's marginal contribution	player 2's marginal contribution	player 3's marginal contribution		
123	1/6	80	100	80		
132	1/6	80	100	80		
213	1/6	120	60	80		
231	1/6	140	60	60		
312	1/6	130	100	30		
321	1/6	140	90	30		
	sum	690	510	360		
					check sum	
Shapley value		115	85	60	260	

Page 4 of 5
10. Player 1 is not a dummy player, because $\mathrm{v}(\{1,2\})-\mathrm{v}(\{2\})=180-60=120>\mathrm{v}(\{1\})=80$.
11. Players 1 and 2 are not interchangeable because $\mathrm{v}(\{1\}) \neq \mathrm{v}(\{2\})$.
12. (a) Players 1 and 3 are interchangeable because $v(\{1\})=v(\{3\})$ and $v(\{1,2\})-v(\{2\})=v(\{2,3\})-v(\{3\})=4$.
(b) The Shapley value is $(4,4,4)$.
(c) The Shapley value is not in the core because $(4,4,4)$ can be blocked by the coalition $\{1,3\}$ with $(5,0,5)$
13. (a) No two players are interchangeable because $v(\{i\}) \neq v(\{j\})$ for any $\mathrm{i} \neq \mathrm{j}$.
(b) Player 1 is a dummy player because $\mathrm{v}(\{1,2\})=\mathrm{v}(\{2\})+\mathrm{v}(\{1\}), \mathrm{v}(\{1,3\})=\mathrm{v}(\{3\})+\mathrm{v}(\{1\})$ and $\mathrm{v}(\{1,2,3\})=\mathrm{v}(\{2,3\})+\mathrm{v}(\{1\})$.
(c) The Shapley value is $(2,5,7)$.
(d) The Shapley value is in the core because it satisfies all the inequalities that define the core.

