MIDTERM EXAM

ANSWER ALL QUESTIONS (total 100 points)

1. [52 points] A travel agent is auctioning two one-week vacations for the first week of July. The first (call it prize A) is a vacation in Hawaii and the second (call it prize B) a vacation in Texas. There are three bidders, imaginatively called 1,2 and 3. All bidders consider prize A more desirable than prize B and none of the bidders is interested in winning both prizes (they find it hard to be in two places at the same time). Let a_{i} be the value of prize A to bidder i and b_{i} the value of prize B to bidder i. Thus $a_{i}>b_{i}$ for all $i \in\{1,2,3\}$. Having read about the good properties of Vickrey's second-price auction, the travel agent has decided to organize the following auction: a sealed bid auction in which each bidder submits a non-negative price p_{i}; the highest bidder wins prize A and pays the second-highest price; the second-highest bidder wins prize B and pays the lowest price; in case of ties, the player with the lower index prevails over the bidder(s) who have submitted the same bid as she did. For example, if $p_{1}=\$ 10, p_{2}=\$ 12, p_{3}=\$ 10$ then bidder 2 wins prize A and pays $\$ 10$, bidder 1 wins prize B and pays $\$ 10$ and bidder 3 pays nothing and wins nothing. [Note that the second-highest price is the higher of the two prices remaining after removing the bid of the highest bidder: for example if the bids are 15,15 and 8 then the highest bid is 15 , the second highest is also 15 and the lowest is 8 ; if all the players bid $\$ 23$ then the highest, second highest and lowest are all the same and equal to 23.] Each player is selfish and greedy (that is, each player cares only about his/her own net gain).
(a) [10 points] For the case where $a_{1}=100, b_{1}=70, a_{2}=90, b_{2}=60, a_{3}=75, b_{3}=40$ and the possible bids are $\$ 100$ and $\$ 50$, write the strategic-form of the game.

From now on assume that bids can be any non-negative numbers and that all you know about the $a_{i} \mathrm{~S}$ and $b_{i} \mathrm{~S}$ is that $a_{i}>b_{i}>0$ for all $i \in\{1,2,3\}$.
(b) $[8$ points $]$ Write the payoff function of Player 1.
(c) [10 points] Does Player 1 have a dominant strategy? Prove your claim.
(d) [2 points] Is there a dominant-strategy equilibrium?
(e) [10 points] Assume that $a_{1}>a_{2}>a_{3}$. What further restrictions on the parameters a_{i} and b_{i} ($i \in\{1,2,3\}$) are necessary and sufficient for $\left(a_{1}, a_{2}, a_{3}\right)$ to be a Nash equilibrium? Prove your claim (prove both sufficiency and necessity).
(f) [6 points] Suppose that $a_{1}=180, b_{1}=95, a_{2}=120, b_{2}=88, a_{3}=80, b_{3}=68$. Is $(180,120,80)$ a Nash equilibrium?
(g) [6 points] Suppose that $a_{1}=180, b_{1}=95, a_{2}=120, b_{2}=78, a_{3}=80, b_{3}=68$. Is $(180,120,80)$ a Nash equilibrium?
2. [36 points]. Consider the following game, where the payoffs are von Neumann-Morgenstern payoffs:

(a) [10 points] Find the best reply function of Player 1 (against every possible mixed strategy of Player 2).
(b) $[8$ points $]$ Explain why there are no pure-strategy weak sequential equilibria.
(c) $[10$ points] Find a weak sequential equilibrium. For the strategy profile σ that you suggest find all the assessments that contain σ and are weak sequential equilibria.
(d) [8 points] Find a sequential equilibrium (one is enough; prove your claim).
3. [12 points] Consider the following game:

(a) [3 points] Are there values of x for which Player 3 has a strictly dominant strategy? Explain your answer.
(b) [2 points] Does Player 1 have a weakly dominated strategy? (If your answer is Yes, name the strategy; if your answer is No prove your claim.)
(c) [4 points] What strategy profiles are Nash equilibria irrespective of the value of x ?
(d) [3 points] Find all the backward induction solutions for the cases where $x=0$ and $x=10$.

Midterm Exam ANSWERS

1. (a) The strategic form is as follows:

Player 2

Player 1

$\mathbf{5 0}$				100			
50	50	10	0	20	40	0	
100	50	10	0	0	10	0	

Player 3 bids
50

Player 2
$50 \quad 100$

Player 1

50					100		
50	20	0	25	0	-10	-10	
100	0	0	-10	0	-40	0	

Player 3 bids

(b) The payoff function of player 1 is as follows:

$$
\pi_{1}= \begin{cases}a_{1}-\max \left\{p_{2}, p_{3}\right\} & \text { if } p_{1} \geq \max \left\{p_{2}, p_{3}\right\} \\ b_{1}-p_{3} & \text { if } p_{1}<p_{2} \text { and } p_{1} \geq p_{3} \\ b_{1}-p_{2} & \text { if } p_{1}<p_{3} \text { and } p_{1} \geq p_{2} \\ 0 & \text { if } p_{1}<p_{2} \text { and } p_{1}<p_{3}\end{cases}
$$

(c) Player 1 does not have a dominant strategy.

Proof: suppose that bidding \hat{p} were a dominant strategy for player 1 . It cannot be $\hat{p} \geq a_{1}$ because in the case where $p_{2}=\hat{p}$ and $p_{3}=0$ we have that $\pi_{1}(\hat{p}, \hat{p}, 0)=a_{1}-\hat{p} \leq 0$ while $\pi_{1}\left(b_{1}, \hat{p}, 0\right)=b_{1}>0$. It cannot be $b_{1} \leq \hat{p}<a_{1}$ because in the case where $p_{2}=\hat{p}+\varepsilon<a_{1}$ and $p_{3}=b_{1}$ (where $\varepsilon>0$) we have that $\pi_{1}\left(\hat{p}, \hat{p}+\varepsilon, b_{1}\right)=b_{1}-b_{1}=0$ while $\pi_{1}\left(a_{1}, \hat{p}+\varepsilon, b_{1}\right)=a_{1}-(\hat{p}+\varepsilon)>0$. Finally, it cannot be $\hat{p}<b_{1}$ because in the case where $p_{2}=p_{3}=b_{1}$ we have that $\pi_{1}\left(\hat{p}, b_{1}, b_{1}\right)=0$ while $\pi_{1}\left(a_{1}, b_{1}, b_{1}\right)=a_{1}-b_{1}>0$.
(d) Since there is at least one player who does not have a dominant strategy, there is no dominant strategy equilibrium.
(e) The restrictions are: (1) $b_{1}-a_{3} \leq a_{1}-a_{2}$ and (2) $b_{2}-a_{3} \geq 0$.

Proof that these restrictions are sufficient for $\left(a_{1}, a_{2}, a_{3}\right)$ to be a Nash equilibrium:
(i) $\pi_{1}\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-a_{2}>0$ (since $\left.a_{1}>a_{2}\right)$; for every $p_{1} \geq a_{2}, \pi_{1}\left(p_{1}, a_{2}, a_{3}\right)=a_{1}-a_{2}$; for $p_{1}<a_{2}$, either $\pi_{1}\left(p_{1}, a_{2}, a_{3}\right)=b_{1}-a_{3}$ (if $\left.p_{1} \geq a_{3}\right)$ or $\pi_{1}\left(p_{1}, a_{2}, a_{3}\right)=0$ (if $\left.p_{1}<a_{3}\right)$, so that, by restriction (1), player 1 cannot increase his payoff.
(ii) $\pi_{2}\left(a_{1}, a_{2}, a_{3}\right)=b_{2}-a_{3}$. For $p_{2}>a_{1}, \pi_{2}\left(a_{1}, p_{2}, a_{3}\right)=a_{2}-a_{1}<0$. For $a_{3} \leq p_{2} \leq a_{1}$, $\pi_{2}\left(a_{1}, p_{2}, a_{3}\right)=b_{2}-a_{3}$. For $p_{2}<a_{3}, \pi_{2}\left(a_{1}, p_{2}, a_{3}\right)=0$. Thus player 2 cannot increase her payoff if constraint (2) is satisfied.
(iii) $\pi_{3}\left(a_{1}, a_{2}, a_{3}\right)=0$. For $p_{3} \leq a_{2}, \pi_{3}\left(a_{1}, a_{2}, p_{3}\right)=0$. For $a_{2}<p_{3} \leq a_{1}, \pi_{3}\left(a_{1}, a_{2}, p_{3}\right)=b_{3}-a_{2}$. For $p_{3}>a_{1}, \pi_{3}\left(a_{1}, a_{2}, p_{3}\right)=a_{3}-a_{1}$. Since $b_{3}<a_{3}<a_{2}<a_{1}$, player 3 cannot increase his payoff.

Proof that they are necessary: (1) if $b_{1}-a_{3}>a_{1}-a_{2}$ then player 1 can increase his payoff by switching to any $p_{1}=a_{3}$; (2) if $b_{2}-a_{3}<0$ then player 2 can increase her payoff by switching to $p_{2}=0$.
(f) Yes because $b_{1}-a_{3}=15<a_{1}-a_{2}=60$ and $b_{2}-a_{3}=8>0$.
(g) No, because $b_{2}-a_{3}=-2<0$.
2.
(a) Let p be the probability with which Player 2 plays D. The following diagram shows the Player 1 's expected payoff from each of her pure strategies:

From the diagram it is clear that Player 1's best reply function is as follows:

$$
B R_{1}(p)= \begin{cases}B & \\
\left(\begin{array}{lll}
A & B & C \\
0 & q & 1-q
\end{array}\right) \text { if } p<\frac{1}{3} \\
C & \\
\left(\begin{array}{lll}
A & B & C \\
q & 0 & 1-q
\end{array}\right) \text { with any } q \in[0,1] & \text { if } \frac{1}{3}<p<\frac{1}{3} \\
A & \\
\text { if } p=\frac{2}{3} \\
& \text { if } \frac{2}{3}<p \leq 1\end{cases}
$$

(b) Since (the strategy component of) a weak sequential equilibrium is a Nash equilibrium, it is sufficient to show that there are no pure-strategy Nash equilibria.

- $\quad(A, D)$ is not a Nash equilibrium because D is not a best reply to A.
- $\quad(A, E)$ is not a Nash equilibrium because A is not a best reply to E.
- $\quad(B, D)$ is not a Nash equilibrium because B is not a best reply to D.
- $\quad(B, E)$ is not a Nash equilibrium because E is not a best reply to B.
- (C, D) is not a Nash equilibrium because C is not a best reply to D.
- $\quad(C, E)$ is not a Nash equilibrium because C is not a best reply to E.
(c) Let x denote the left node of Player 2's information set and y the right node. Consider the assessment (σ, μ), where $\quad \sigma=\left(\left(\begin{array}{ccc}A & B & C \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{cc}D & E \\ p & 1-p\end{array}\right)\right)$ and $\mu=\left(\begin{array}{cc}x & y \\ q & 1-q\end{array}\right)$. For C to be sequentially rational it is necessary and sufficient that $\frac{1}{3} \leq p \leq \frac{2}{3}$. For $\left(\begin{array}{cc}D & E \\ p & 1-p\end{array}\right)$ to be sequentially rational with $0<p<1$ it must be that Player 2 is indifferent between playing D and E; a necessary and sufficient condition for this to be the case is that $q=\frac{1}{2}$. Thus any assessment of the form $\sigma=\left(\left(\begin{array}{lll}A & B & C \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{cc}D & E \\ p & 1-p\end{array}\right)\right)$, $\mu=\left(\begin{array}{cc}x & y \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ with $\frac{1}{3} \leq p \leq \frac{2}{3}$ is a weak sequential equilibrium.
(d) $\sigma=\left(\left(\begin{array}{ccc}A & B & C \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{cc}D & E \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\right), \mu=\left(\begin{array}{cc}x & y \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ is a sequential equilibrium. To see this, consider the completely mixed strategy profile $\sigma_{n}=\left(\left(\begin{array}{ccc}A & B & C \\ \frac{1}{n} & \frac{1}{n} & 1-\frac{2}{n}\end{array}\right),\left(\begin{array}{ll}D & E \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\right)$. Then $\sigma_{n} \rightarrow \sigma$ as $n \rightarrow \infty$. The beliefs obtained from σ_{n} using Bayes' rule are $\mu_{n}=\left(\begin{array}{cc}x & y \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$, so convergence to μ is trivial. Sequential rationality is satisfied because the given assessment is a weak sequential equilibrium.

3.

(a) For no values of x does Player 3 have a strictly dominant strategy: if Player 1 plays A then Player 3 's two strategies yield the same payoff, namely 1 .
(b) Yes: B is weakly dominated by A.
(c) The following 4 strategy profiles: $(A, D G, H),(A, E G, H),(A, D G, L)$ and $(A, E G, L)$.
(d) When $x=0$ there are two: $(A, D G, L)$ and $(B, D G, L)$. When $x=10$ there is only one: $(A, E G, H)$.

FINAL EXAM

ANSWER ALL QUESTIONS (total 100 points)

1. [30 points] There are N individuals who are identical in terms of initial wealth W, potential loss x and von Neumann-Morgenstern utility-of-wealth function $U(m)=\sqrt{m}$. Let $N=8,000$, $W=\$ 3,600, x=\$ 2,700$. The proportion q_{H} of these N consumers $\left(0<q_{H}<1\right)$ have a probability of incurring the loss equal to p_{H} (call them the H type) and the remaining proportion $\left(1-q_{H}\right)$ have a probability of incurring the loss equal to p_{L} (call them the L type).
Let $p_{L}=\frac{1}{10}, p_{H}=\frac{1}{4}, q_{H}=\frac{1}{8}$. The insurance industry is a monopoly.
(a) $[4$ points $]$ Find the maximum premium that each type of consumer is willing to pay for full insurance.
(b) [5 points] Suppose that the monopolist decides to offer only a partial insurance contract with premium $h=\$ 575$ and deductible $D=\$ 800$. Calculate the total profit of the monopolist.
(c) $[3$ points $]$ Suppose that the monopolist decides to offer only a full insurance contract with premium $h=\$ 350$. Calculate the total profit of the monopolist.
(d) Suppose now that the monopolist decides to offer a menu consisting of two contracts: A and B, where A is the contract $(h=684, D=416)$ and B is a contract such that (1) the L people prefer B to NI (NI means no insurance) and (2) the H people prefer A to B. (d.1) Represent these two contracts in a diagram where wealth in the bad state is measured on the horizontal axis and wealth in the good state on the vertical axis. In particular,
(d.1.a) [4 points] draw the indifference curve of the H type that goes through contract A and the indifference curve of the L type that goes through NI and clearly show where contracts A and B are situated and
(d.1.b) $[2$ points] give the coordinates of contract A.
(d.2) [4 points] Write an expression that gives the monopolist's profits when it offers the pair of contracts $\{A, B\}$. [There will be some numbers and some unknowns in this expression, since the details of contract B are not given.]
(d.3) [8 points] Find another contract C such that the pair $\{B, C\}$ yields higher profits for the monopolist and compute the increase in profits relative to the profits from the pair $\{A, B\}$.
2. [20 points] Let y denote the amount of education. There are three types of potential workers: those (Group I) with productivity 36 (a constant, thus independent of education), those (Group II) with productivity $(\mathbf{6 0}+\mathbf{3 y})$ and those (Group III) with productivity $(\mathbf{7 2}+\mathbf{2 y})$. Each worker knows whether she belongs to Group I or Group II or Group III, while the potential employer does not. The cost of acquiring y units of education is $\mathbf{2 4 y}$ for Group I, $\mathbf{1 2 y}$ for Group II and $\mathbf{6} \boldsymbol{y}$ for Group III. The potential employer believes that those applicants with education less than \boldsymbol{a} belong to Group I, those with education at least \boldsymbol{a} but less than \boldsymbol{b} belong to Group II and those with education at least \boldsymbol{b} belong to Group III and offers each applicant a wage equal to the applicant's estimated productivity, given the applicant's level of education (the level of education can be verified by the employer during the job interview).
(a) [10 points] Write down a list of inequalities (involving the parameters a and b) that are necessary and sufficient for the existence of a signaling equilibrium.
(b) [5 points] Explain why $a=2$ and $b=2.5$ is not a signaling equilibrium.
(c) [5 points] Is $a=2.5$ and $b=4$ a signaling equilibrium? [Explain your answer.]
3. [50 points] Players 1 and 2 are involved in a dispute over which of them owns an item, which is currently in the possession of Player 1; Player 2 may be able to sue Player 1 in an attempt to take possession of the item. Player l's legal claim to the item may be strong (type S) or weak (type W), and Player 2 may be informed (type i) or uninformed (type u) about the strength of Player l's legal claim. Each type of Player 1 assigns probability $\frac{4}{5}$ to Player 2 being uninformed. An uninformed Player 2 assigns probability $\frac{1}{4}$ to Player 1 having a weak legal claim, while an informed Player 2 knows whether Player 1 has a strong or weak legal claim. Each player knows his own type. The interaction between the players proceeds as follows: first, Player 1 decides whether to trade the item to a third party (T) or to keep the item (K). If he trades the item, the game ends, and the payoffs are $(3,0)$ (the first number is Player 1's payoff and the second number Player 2's payoff). If Player 1 keeps the item, then Player 2 has three options: give up (g), sue cautiously (c) or act boldly (b). If Player 2 gives up, Player 1 will be able to spend more time searching for a buyer, and so payoffs are (5,0). If Player 2 sues cautiously, much of the surplus generated by the item is used up in court fees: in this event, payoffs are $(-1,2)$ if Player 1 has a weak legal claim and $(2,-1)$ if Player 1 has a strong legal claim. Finally, "acting boldly" means that Player 2 attempts to obtain the item by quasi-legal means. This attempt succeeds if Player 1 has a weak legal claim - in which case payoffs are $(0,5)$ - but leads to Player 2's imprisonment if Player 1 has a strong legal claim - in which case payoffs are (5, 10). All these payoffs are von Neumann-Morgenstern payoffs.
(a) [10 points] Describe this situation using states and information partitions. For at least one state write the game associated with that state.
(b) $[6$ points $]$ Find the common prior.
(c) [10 points] Use the Harsanyi transformation to convert the representation of part (a) into an extensive-form game.
(d) [4 points] How many pure strategies does Player 2 have?
(e) [20 points] Find all the (pure- and mixed-strategy) weak sequential equilibria of the game of part (c) in which Player 1 uses a "pooling" pure strategy, that is, he chooses the same action at all his information sets.

Final Exam ANSWERS

1.

(a) Let h_{H}^{*} be the maximum premium that the H type is willing to pay for full insurance. Then h_{H}^{*} is given by the solution to the equation $p_{H} \sqrt{W-x}+\left(1-p_{H}\right) \sqrt{W}=\sqrt{W-h}$, which is $h_{H}^{*}=843.75$. Let h_{L}^{*} be the maximum premium that the L type is willing to pay for full insurance. Then h_{L}^{*} is given by the solution to the equation $p_{L} \sqrt{W-x}+\left(1-p_{L}\right) \sqrt{W}=\sqrt{W-h}$, which is $h_{L}^{*}=351$.
(b) The expected utility of NI (No Insurance) is 52.5 for the H people and 57 for the L people. For the H people the expected utility of contract $(h=575, D=800)$ is 53.04 and thus they will purchase the contract. For the L people the expected utility of contract $(h=575, D=800)$ is 54.22 and thus they will not purchase the contract. Hence the monopolists profits are
$\frac{1}{8} 8,000\left(575-\frac{1}{4}(2,700-800)\right)=\$ 100,000$.
(c) From part (a) we know that everybody will buy and thus the monopolist's profits will be $\frac{1}{8} 8,000\left(350-\frac{1}{4} 2,700\right)+\frac{7}{8} 8,000\left(350-\frac{1}{10} 2,700\right)=\$ 235,000$.
(d) (d.1)

(d.2) The H type will buy A (with an expected utility of $\frac{1}{4} \sqrt{2,500}+\frac{3}{4} \sqrt{2,916}=53$) and the L type will buy B. Let h_{B} be the premium of contract B and D_{B} be the deductible. Then the monopolist's profits will be
$\frac{1}{8} 8,000\left[684-\frac{1}{4}(2,700-416)\right]+\frac{7}{8} 8,000\left[h_{B}-\frac{1}{10}\left(2,700-D_{B}\right)\right]=113,000+7,000\left[h_{B}-\frac{1}{10}\left(2,700-D_{B}\right)\right]$
(d.3) If the monopolist replaces contract A with contract C, given by the intersection of the 45° line and the H-indifference curve that goes through A, then the L people will still buy contact B while the H
people will buy contract C, which they prefer to B. Contract C is a full-insurance contract whose premium is given by the solution to $\sqrt{3,600-h}=\underbrace{\frac{1}{4} \sqrt{2,500}+\frac{3}{4} \sqrt{2,916}}_{E U_{H}(A)}$, which is $h=791$. With the pair $\{B, C\}$ the monopolist's profits would be
$\frac{1}{8} 8,000\left[791-\frac{1}{4} 2,700\right]+\frac{7}{8} 8,000\left[h_{B}-\frac{1}{10}\left(2,700-D_{B}\right)\right]=116,000+7,000\left[h_{B}-\frac{1}{10}\left(2,700-D_{B}\right)\right]$ thus an increase of $\$ 3,000$.
2. (a) First of all, since for every group the marginal cost of one extra unit of education exceeds the marginal benefit (in terms of increased salary), everybody will consider only $y=0, y=a$ and $y=b$. The inequalities are as follows.
For Group I:
(I.1) $36>60+3 a-24 a$, that is, $a>\frac{8}{7}$
(I.2) $36>72+2 b-24 b$, that is, $b>\frac{18}{11}$

For Group II:
(II.1) $60+3 a-12 a>36$, that is, $a<\frac{8}{3}$
(II.2) $60+3 a-12 a>72+2 b-12 b$, that is, $b>\frac{6}{5}+\frac{9}{10} a$

For Group III:
(III.1) $72+2 b-6 b>36$, that is, $b<9$
(III.2) $72+2 b-6 b>60+3 a-6 a$, that is, $b<3+\frac{3}{4} a$
(b) When $a=2$ and $b=2.5$, inequality (II.2) is violated. Thus Group II individuals would be better off pretending to be Group III by choosing $y=2.5$.
(c) Yes, when $a=2.5$ and $b=4$, all the above inequalities are satisfied.
3. (a) Let $a=S i, b=S u, c=W i$ and $d=W u$:

The game associated with states a and b is the same, namely:

(a) The common prior is $\left(\begin{array}{cccc}a & b & c & d \\ \frac{3}{20} & \frac{12}{20} & \frac{1}{20} & \frac{4}{20}\end{array}\right)$.
(b) The game is as follows, where Nature is denoted as Player 0:

(c) Player 2 has $3^{3}=27$ pure strategies.
(d) Clearly 2 plays g^{\prime} and $b^{\prime \prime}$ in any weak sequential equilibrium. Furthermore, by Bayes' rule, Player 1 must assign probability $\frac{1}{5}$ to the left node at each of his information sets. We take all this as given in the rest of the analysis. We have to consider the pure strategies $\left(K, K^{\prime}\right)$ and $\left(T, T^{\prime}\right)$ of Player 1.

1. $\left(K, K^{\prime}\right)$. In this case Player 2 must assign probability $\frac{3}{4}$ to node x so that the expected payoffs are: 0 from $g,-\frac{1}{4}$ from c and $-\frac{25}{4}$ from b, so that g is uniquely sequentially rational. Given that Player 2 plays g then at the left information set Player 1 (who must assign probability $\frac{1}{5}$ to the left node) gets 3 with T and 5 with K, so that K is indeed sequentially rational; at the right information set Player 1 (who must assign probability $\frac{1}{5}$ to the left node) gets 3 with T and $\frac{1}{5} 0+\frac{4}{5} 5=4$, so that K^{\prime} is indeed sequentially rational. Thus we have a WSE given by $\left(\left(K, K^{\prime}\right),\left(g^{\prime}, b^{\prime \prime}, g\right)\right)$ with $\mu(x)=\frac{3}{4}$.
2. $\left(T, T^{\prime}\right)$. In this case any beliefs are allowed at Player 2's information set. At that information set g is optimal when $\mu(x) \in\left[\frac{2}{3}, 1\right], c$ is optimal when $\mu(x) \in\left[\frac{1}{4}, \frac{2}{3}\right]$ and b is optimal when $\mu(x) \in\left[0, \frac{1}{4}\right]$. Thus g and b are never simultaneously optimal. At the left information set Player 1 weakly prefers T to K if and only if $3 \geq \frac{1}{5} 5+\frac{4}{5}\left(2 \sigma_{2}(c)+5\left(1-\sigma_{2}(c)\right)\right)$, that is, if and only if $\sigma_{2}(c) \geq \frac{5}{6}$. At the right information set Player 1 weakly prefers T^{\prime} to K^{\prime} if and only if $3 \geq \frac{1}{5} 0+\frac{4}{5}\left(5 \sigma_{2}(\mathrm{~g})+-\sigma_{2}(c)\right)$, that is, if and only if $15+4 \sigma_{2}(c) \geq 20 \sigma_{2}(g)$. If $\sigma_{2}(c) \geq \frac{5}{6}$ then both conditions are satisfied and thus we have the following WSEs:
(1) $\left(\left(T, T^{\prime}\right),\left(g^{\prime}, b^{\prime \prime}, c\right)\right)$ and $\mu(x) \in\left[\frac{1}{4}, \frac{2}{3}\right]$,
(2) $\left(\left(T, T^{\prime}\right),\left(g^{\prime}, b^{\prime \prime},\left(\begin{array}{ccc}g & c & b \\ 1-p & p & 0\end{array}\right)\right)\right)$ with $p \geq \frac{5}{6}$ and $\mu(x)=\frac{2}{3}$,
(3) $\left(\left(T, T^{\prime}\right),\left(g^{\prime}, b^{\prime \prime},\left(\begin{array}{ccc}g & c & b \\ 0 & p & 1-p\end{array}\right)\right)\right)$ with $p \geq \frac{5}{6}$ and $\mu(x)=\frac{1}{4}$.
