HOMEWORK 2 (for due date see the web page)

There are two firms that produce a homogeneous product. Let p_{i} be the price of firm $i(i$ $=1,2)$. Assume for simplicity that the firms have zero costs. There is a large number N of potential consumers, each with the same reservation price for the product, equal to $\$ 60$, that is, each consumer buys one unit from one of the two firms if and only if at least one of the prices is less than or equal to 60 . When $p_{1}=p_{2} \leq 60,50 \%$ of the consumers go to Firm 1 and 50% to Firm 2. What happens when the prices are different? Some consumers are very sensitive to price differences, while others are not. For example, if $p_{1}=p_{2}+0.25$ then some consumers might prefer Firm 2 because they save 25 cents, but probably many consumers would be indifferent between the two firms. Let $f:[0,60] \rightarrow \mathbb{R}^{+}$be the density function (thus $f(x) \geq 0$, for all $x \in$ [0,60], and $\left.\int_{0}^{60} f(x) d x=1\right)$) that measures the price-difference sensitivity of consumers. For example, suppose that $p_{1}<p_{2}<60$. Then $\int_{0}^{p_{2}-p_{1}} f(x) d x$ gives the fraction of consumers who prefer the cheaper firm (Firm 1), while the others are indifferent between the two firms. Assume that 50% of the indifferent consumers go to one firm and 50% go to the other firm. Consider three cases:

1. f is constant (uniform distribution)
2. $f(x)= \begin{cases}\frac{1}{1000}(25-0.5 x) & \text { if } 0 \leq x \leq 20 \\ 0.015 & \text { if } 20<x \leq 60\end{cases}$
3. $f(x)= \begin{cases}\frac{1}{1000}(68-5.6 x) & \text { if } 0 \leq x \leq 10 \\ 0.012 & \text { if } 10<x \leq 60\end{cases}$
(a) For each of the three cases above, write the demand function of each firm (cover all the possibilities, that is, all pairs $\left(p_{1}, p_{2}\right)$ with $p_{i} \in[0, \infty)$ for every $\left.i=1,2\right)$.
(b) In each of the three cases, determine whether $p_{1}=p_{2}=60$ is a Nash equilibrium.
(c) In each of the three cases, determine whether $p_{1}=p_{2}=0$ is a Nash equilibrium.
