ECN/ARE 200C : MICRO THEORY

Professor Giacomo Bonanno

HOMEWORK 1 (for due date see the web page)

Consider a second-price auction with three bidders, numbered 1, 2 and 3. The rules are:

- (1) bids must belong to the set $\{1, 2, 3, ..., 100\}$,
- (2) the object is assigned to the highest bidder and, in case of ties, to the bidder with the smallest index among those who submitted the highest bid,
- (3) the winner pays the second-highest bid.

For example, if the bids are (\$9, \$12, \$7) then the winner is bidder 2 and she pays \$9, while if the bids are (\$10, \$10, \$7) then the winner is bidder 1 and he pays \$10.

Denote an outcome as a pair (i, p) where $i \in \{1, 2, 3\}$ is the winner and p is the price paid by the winner. The bidders have the following preferences, where, for each $i \in \{1, 2, 3\}$, v_i is an integer in the set $\{1, 2, 3, ..., 50\}$.

Bidder 1:

- for all p, p' and for $i, j \in \{2, 3\}$, $(i, p) \sim_1 (j, p') \sim_1 (1, v_1)$,
- for all p, p' and for $j \in \{2, 3\}$, $(1, p) \succ_1 (j, p')$ if $p < v_1$ $(j, p') \succ_1 (1, p)$ if $p > v_1$,
- for all $p, p', (1, p) \succ_1 (1, p')$ if and only if p < p'
- and everything that follows from the above and transitivity.

Bidder 2:

- for all $p, p', (1, p) \sim_2 (1, p') \sim_2 (3, 1) \sim_2 (3, 2) \sim_2 (3, 3) \sim_2 (3, 4) \sim_2 (3, 5) \sim_2 (2, v_2)$,
- for all p, p', $(2, p) \succ_2 (1, p')$ if $p < v_2$ $(1, p') \succ_2 (2, p)$ if $p > v_2$,
- for all $p, p' \in \{5, 6, 7, ..., 100\}$, $(3, p) \succ_2 (3, p')$ if and only if p < p',
- for all p, p', $(2, p) \succ_2 (2, p')$ if and only if p < p',
- and everything that follows from the above and transitivity.

Bidder 3:

- for all $p, p', (1, p) \sim_3 (1, p')$
- for all p, $(1, p) \sim_3 (3, v_3)$ and $(2, p) \sim_3 (3, v_3 + 5)$
- for all p, p',
 (3, p) ≻₃ (3, p') if p < p'
- and everything that follows from the above and transitivity.
- (a) Write a utility function that represents the preferences of Bidder 1.
- (b) Does Bidder 1 have a dominants strategy? If your answer is Yes, then state what that strategy is and whether it is weakly or strictly dominant. If your answer is No then justify your claim.
- (c) Optional: you can skip this question if you wish. Write a utility function that is consistent with the preferences of Bidder 2. [Note: the preferences given above are incomplete, so you would have to provide a consistent completion of them.]
- (d) Suppose that $v_2 = 10$. Is $b_2 = 10$ a dominant strategy for Bidder 2? Prove your claim.
- (e) Continue to suppose that $v_2 = 10$. Is any bid different from 10 a dominant strategy for Bidder 2? Prove your claim.
- (f) Optional: you can skip this question if you wish. Write a utility function that is consistent with the preferences of Bidder 3. [Note: the preferences given above are incomplete, so you would have to provide a consistent completion of them.] Give an intuitive description of Bidder 3's preferences.
- (g) Suppose that $v_3 = 10$ and suppose that Bidder 3 expects Bidder 1 to bid 12 and Bidder 2 to bid 16. Explain why Bidder 3 should not choose a bid $b_3 > 16$.
- (h) Suppose that $v_3 = 10$ and suppose that Bidder 3 expects Bidder 1 to bid 11 and Bidder 2 to bid 14. Explain why Bidder 3 should not choose a bid $b_3 \le 11$.