COURNOT DUOPOLY: an example

Let the inverse demand function and the cost function be given by

$$P = 50 - 2Q$$
 and $C = 10 + 2q$

respectively, where Q is total industry output and q is the firm's output.

First consider first the case of **uniform-pricing monopoly**, as a benchmark. Then in this case Q = q and the profit function is

$$\pi(Q) = (50 - 2Q)Q - 10 - 2Q = 48Q - 2Q^2 - 10.$$

Solving $\frac{d\pi}{dQ} = 0$ we get Q = 12, P = 26, $\pi = 278$, CS = $\frac{12(50-26)}{2} = 144$, TS = 278 + 144 = 422. **MONOPOLY** Q P π CS TS 12 26 278 144 422

Now let us consider the case of two firms, or **duopoly**. Let q_1 be the output of firm 1 and q_2 the output of firm 2. Then $Q = q_1 + q_2$ and the profit functions are:

$$\pi_1(q_1,q_2) = q_1 [50 - 2 (q_1 + q_2)] - 10 - 2q_1$$
$$\pi_2(q_1,q_2) = q_2 [50 - 2 (q_1 + q_2)] - 10 - 2q_2$$

A Nash equilibrium is a pair of output levels (q_1^*, q_2^*) such that:

$$\pi_1(q_1^*, q_2^*) \ge \pi_1(q_1, q_2^*)$$
 for all $q_1 \ge 0$

and

$$\pi_2(q_1^*, q_2^*) \ge \pi_1(q_1^*, q_2)$$
 for all $q_2 \ge 0$.

This means that, fixing q_2 at the value q_2^* and considering π_1 as a function of q_1 alone, this function is maximized at $q_1 = q_1^*$. But a necessary condition for this to be true is that $\frac{\partial \pi_1}{\partial q_1}(q_1^*, q_2^*) = 0$. Similarly, fixing q_1 at the value q_1^* and considering π_2 as a function of q_2 alone, this function is maximized at $q_2 = q_2^*$. But a necessary condition for this to be true is that $\frac{\partial \pi_2}{\partial q_2}(q_1^*, q_2^*) = 0$. Thus the Nash equilibrium is found by solving the following system of two equations in the two unknowns q_1 and q_2 :

 $\begin{cases} \frac{\partial \pi_1}{\partial q_1}(q_1^*, q_2^*) = 50 - 4q_1 - 2q_2 - 2 = 0\\ \frac{\partial \pi_2}{\partial q_2}(q_1^*, q_2^*) = 50 - 2q_1 - 4q_2 - 2 = 0 \end{cases}$

The solution is $q_1^* = q_2^* = 8$, Q = 16, P = 18, $\pi_1 = \pi_2 = 118$, CS = $\frac{16(50-18)}{2} = 256$, TS = 118 + 118 + 256 = 492.

MONOPOLY	Y	Q	Р		π		CS		TS			
	12		26		4	278	144		422			
DUOPOLY	q_1	q ₂	Q	F)	π_1	π_2	to	ot π	CS		TS
	8	8	16	1	8	118	118	2	36	256	5	492

Let us compare the two.

Thus competition leads to an increase not only in consumer surplus but in total surplus:

the gain in consumer surplus (256 - 144 = 112) exceeds the loss in total profits (278 - 236 = 42).

In the above example we assumed that the two firms had the same cost function (C = 10 + 2q). However, there is no reason why this should be true. The same reasoning applies to the case where the **firms have different costs**. Example: demand function as before (P = 50 - 2Q) but now

cost function of firm 1: $C_1 = 10 + 2q_1$ cost function of firm 2: $C_2 = 12 + 8q_2$.

Then the profit functions are:

$$\pi_1(q_1,q_2) = q_1 [50 - 2 (q_1 + q_2)] - 10 - 2q_1$$
$$\pi_2(q_1,q_2) = q_2 [50 - 2 (q_1 + q_2)] - 12 - 8q_2$$

The Nash equilibrium is found by solving:

$$\begin{cases} \frac{\partial \pi_1}{\partial q_1}(q_1^*, q_2^*) = 50 - 4q_1 - 2q_2 - 2 = 0\\ \frac{\partial \pi_2}{\partial q_2}(q_1^*, q_2^*) = 50 - 2q_1 - 4q_2 - 8 = 0 \end{cases}$$

The solution is $q_1^* = 9$, $q_2^* = 6$, Q = 15, P = 20, $\pi_1 = 152$, $\pi_2 = 60$. Since firms have different costs, they choose different output levels: **the low-cost firm (firm 1) produces more** and makes higher profits **than the high-cost firm (firm 2).**

COURNOT OLIGOPOLY: too many firms

a := 50 b := 2 c := 2 F := 10

Inverse demand	$P(Q) := a - b \cdot Q$	$P(Q) \rightarrow 50 - 2 \cdot Q$	demand
Cost function:	$C(q) := F + c \cdot q$	$C(q) \rightarrow 10 + 2 \cdot q$	cost

Profit function of firm 1: $\Pi_1(q_1,...,q_n) = q_1 [50 - 2(q_1 + ... + q_n)] - 2 q_1 - 10$

Derivative: $50 - 2(2q_1 + q_2 + ... + q_n) - 2$ Symmetric solution requires $q_1 = ... = q_n$ so we have 48 - 2(n+1) q = 0 Thus

$q(n) := \frac{48}{(n+1)\cdot 2}$	$q(n) \text{ simplify } \rightarrow \frac{24}{(n+1)}$	firm output
$Q(n) := n \cdot q(n)$ $Q(n)$	a) simplify $\rightarrow 24 \cdot \frac{n}{(n+1)}$	industry output
$p(n) := 50 - 2 \cdot n \cdot q(n)$	$p(n) \text{ simplify } \rightarrow 2 \cdot \frac{(n+25)}{(n+1)}$	price
$(p(n) - 2)$ simplify $\rightarrow \frac{48}{(n+1)}$)	
	$\Pr(n) := \frac{48 \cdot 24}{(n+1)^2} - 10$	PROFITS of each firm
	$Pr_{tot}(n) := n \cdot Pr(n)$	
$\mathrm{CS}(\mathbf{n}) := \frac{(\mathrm{P}(0) - \mathrm{p}(\mathbf{n})) \cdot \mathrm{Q}(\mathbf{n})}{2}$	$CS(n) \text{ simplify } \rightarrow 576 \cdot \frac{n^2}{(n+1)^2}$	$\frac{1}{1}^{2}$ consumer surplus
$SW(n) := CS(n) + Pr_{tot}(n) $ SW(n) simplify $\rightarrow -2 \cdot n \cdot \frac{\left(-278 \cdot n - 5\right)}{(n + 1)^2}$	$\frac{71+5\cdot n^2}{1)^2}$ social welfare

$$n := 1, 2...10$$

n =	Q(n) =	p(n) =	Pr(n) =	$\Pr_{tot}(n) =$	CS(n) =	SW(n) =
1	12	26	278	236	144	422
2	16	18	118	186	256	492
3	18	14	62	144.32	324	510
4	19.2	11.6	36.08	144.32	368.64	512.96
5	20	10	22	81.0612245	400	510
6	20.5714286	8.8571429	13.5102041	56	423.1836735	504.244898
7	21	8	8	33.777778	441	497
8	21.3333333	7.3333333	4.2222222	13.68	455.1111111	488.8888889
9	21.6	6.8	1.52	-4.7933884	466.56	480.24
10	21.8181818	6.3636364	-0.4793388	-4.1 933004	476.0330579	471.2396694

Thus (free entry) equilibrium number of firms in the industry is 9.

The socially optimum number of firms is 4.