COURNOT DUOPOLY: an example

Let the inverse demand function and the cost function be given by

$$
\mathrm{P}=50-2 \mathrm{Q} \text { and } \mathrm{C}=10+2 \mathrm{q}
$$

respectively, where Q is total industry output and q is the firm's output.

First consider first the case of uniform-pricing monopoly, as a benchmark. Then in this case $\mathrm{Q}=\mathrm{q}$ and the profit function is

$$
\pi(Q)=(50-2 Q) Q-10-2 Q=48 Q-2 Q^{2}-10
$$

Solving $\frac{\mathrm{d} \pi}{\mathrm{dQ}}=0$ we get $\mathrm{Q}=12, \mathrm{P}=26, \pi=278, \mathrm{CS}=\frac{12(50-26)}{2}=144, \mathrm{TS}=278+144=422$. MONOPOLY

Q	P	π	CS	TS
12	26	278	144	422

Now let us consider the case of two firms, or duopoly. Let q_{1} be the output of firm 1 and q_{2} the output of firm 2. Then $\mathrm{Q}=\mathrm{q}_{1}+\mathrm{q}_{2}$ and the profit functions are:

$$
\begin{aligned}
& \pi_{1}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=\mathrm{q}_{1}\left[50-2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)\right]-10-2 \mathrm{q}_{1} \\
& \pi_{2}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=\mathrm{q}_{2}\left[50-2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)\right]-10-2 \mathrm{q}_{2}
\end{aligned}
$$

A Nash equilibrium is a pair of output levels $\left(q_{1}^{*}, q_{2}^{*}\right)$ such that:

$$
\pi_{1}\left(q_{1}^{*}, q_{2}^{*}\right) \geq \pi_{1}\left(q_{1}, q_{2}^{*}\right) \text { for all } \mathrm{q}_{1} \geq 0
$$

and

$$
\pi_{2}\left(q_{1}^{*}, q_{2}^{*}\right) \geq \pi_{1}\left(q_{1}^{*}, q_{2}\right) \text { for all } \mathrm{q}_{2} \geq 0
$$

This means that, fixing q_{2} at the value q_{2}^{*} and considering π_{1} as a function of q_{1} alone, this function is maximized at $\mathrm{q}_{1}=q_{1}^{*}$. But a necessary condition for this to be true is that $\frac{\partial \pi_{1}}{\partial q_{1}}\left(q_{1}^{*}, q_{2}^{*}\right)=0$. Similarly, fixing q_{1} at the value q_{1}^{*} and considering π_{2} as a function of q_{2} alone, this function is maximized at $\mathrm{q}_{2}=q_{2}^{*}$. But a necessary condition for this to be true is that $\frac{\partial \pi_{2}}{\partial q_{2}}\left(q_{1}^{*}, q_{2}^{*}\right)=0$. Thus the Nash equilibrium is found by solving the following system of two equations in the two unknowns q_{1} and q_{2} :

$$
\left\{\begin{array}{l}
\frac{\partial \pi_{1}}{\partial q_{1}}\left(q_{1}^{*}, q_{2}^{*}\right)=50-4 q_{1}-2 q_{2}-2=0 \\
\frac{\partial \pi_{2}}{\partial q_{2}}\left(q_{1}^{*}, q_{2}^{*}\right)=50-2 q_{1}-4 q_{2}-2=0
\end{array}\right.
$$

The solution is $q_{1}^{*}=q_{2}^{*}=8, \mathrm{Q}=16, \mathrm{P}=18, \pi_{1}=\pi_{2}=118, \mathrm{CS}=\frac{16(50-18)}{2}=256, \mathrm{TS}=118+$ $118+256=492$.

Let us compare the two.

MONOPOLY	Q	P	π	CS
	12	26	278	144

DUOPOLY | q_{1} | q_{2} | Q | P | π_{1} | π_{2} | tot π | CS | TS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 8 | 16 | 18 | 118 | 118 | 236 | 256 | 492 |

Thus competition leads to an increase not only in consumer surplus but in total surplus:
the gain in consumer surplus $(256-144=112)$ exceeds the loss in total profits $(278-236=42)$.

In the above example we assumed that the two firms had the same cost function ($C=10+2 q$). However, there is no reason why this should be true. The same reasoning applies to the case where the firms have different costs. Example: demand function as before ($\mathrm{P}=50-2 \mathrm{Q}$) but now

$$
\begin{array}{ll}
\text { cost function of firm 1: } & C_{1}=10+2 q_{1} \\
\text { cost function of firm 2: } & C_{2}=12+8 q_{2}
\end{array}
$$

Then the profit functions are:

$$
\begin{aligned}
& \pi_{1}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=\mathrm{q}_{1}\left[50-2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)\right]-10-2 \mathrm{q}_{1} \\
& \pi_{2}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=\mathrm{q}_{2}\left[50-2\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)\right]-12-8 \mathrm{q}_{2}
\end{aligned}
$$

The Nash equilibrium is found by solving:

$$
\left\{\begin{array}{l}
\frac{\partial \pi_{1}}{\partial q_{1}}\left(q_{1}^{*}, q_{2}^{*}\right)=50-4 q_{1}-2 q_{2}-2=0 \\
\frac{\partial \pi_{2}}{\partial q_{2}}\left(q_{1}^{*}, q_{2}^{*}\right)=50-2 q_{1}-4 q_{2}-8=0
\end{array}\right.
$$

The solution is $q_{1}^{*}=9, q_{2}^{*}=6, \mathrm{Q}=15, \mathrm{P}=20, \pi_{1}=152, \pi_{2}=60$. Since firms have different costs, they choose different output levels: the low-cost firm (firm 1) produces more and makes higher profits than the high-cost firm (firm 2).

COURNOT OLIGOPOLY: too many firms

$$
\mathrm{a}:=50 \quad \mathrm{~b}:=2 \quad \mathrm{c}:=2 \quad \mathrm{~F}:=10
$$

Inverse demand

$$
\mathrm{P}(\mathrm{Q}):=\mathrm{a}-\mathrm{b} \cdot \mathrm{Q} \quad \mathrm{P}(\mathrm{Q}) \rightarrow 50-2 \cdot \mathrm{Q} \quad \text { demand }
$$

Cost function:

$$
\mathrm{C}(\mathrm{q}):=\mathrm{F}+\mathrm{c} \cdot \mathrm{q}
$$

$$
\mathrm{C}(\mathrm{q}) \rightarrow 10+2 \cdot \mathrm{q}
$$

cost

Profit function of firm 1: $\Pi_{1}\left(q_{1}, \ldots, q_{n}\right)=q_{1}\left[50-2\left(q_{1}+\ldots+q_{n}\right)\right]-2 q_{1}-10$

Derivative: $50-2\left(2 q_{1}+q_{2}+\ldots+q_{n}\right)-2 \quad$ Symmetric solution requires $q_{1}=\ldots=q_{n}$
so we have $48-2(n+1) q=0 \quad$ Thus

$$
\mathrm{q}(\mathrm{n}):=\frac{48}{(\mathrm{n}+1) \cdot 2} \quad \mathrm{q}(\mathrm{n}) \text { simplify } \rightarrow \frac{24}{(\mathrm{n}+1)} \quad \quad \text { firm output }
$$

$$
\mathrm{Q}(\mathrm{n}):=\mathrm{n} \cdot \mathrm{q}(\mathrm{n}) \quad \mathrm{Q}(\mathrm{n}) \text { simplify } \rightarrow 24 \cdot \frac{\mathrm{n}}{(\mathrm{n}+1)} \quad \quad \text { industry output }
$$

$$
\mathrm{p}(\mathrm{n}):=50-2 \cdot \mathrm{n} \cdot \mathrm{q}(\mathrm{n}) \quad \mathrm{p}(\mathrm{n}) \text { simplify } \rightarrow 2 \cdot \frac{(\mathrm{n}+25)}{(\mathrm{n}+1)} \quad \text { price }
$$

$$
(\mathrm{p}(\mathrm{n})-2) \text { simplify } \rightarrow \frac{48}{(\mathrm{n}+1)}
$$

$$
\operatorname{Pr}(\mathrm{n}):=\frac{48 \cdot 24}{(\mathrm{n}+1)^{2}}-10
$$

PROFITS of each firm

$$
\operatorname{Pr}_{\mathrm{tot}}(\mathrm{n}):=\mathrm{n} \cdot \operatorname{Pr}(\mathrm{n})
$$

$$
\mathrm{CS}(\mathrm{n}):=\frac{(\mathrm{P}(0)-\mathrm{p}(\mathrm{n})) \cdot \mathrm{Q}(\mathrm{n})}{2} \quad \mathrm{CS}(\mathrm{n}) \text { simplify } \rightarrow 576 \cdot \frac{\mathrm{n}^{2}}{(\mathrm{n}+1)^{2}}
$$

$$
\operatorname{SW}(\mathrm{n}):=\mathrm{CS}(\mathrm{n})+\operatorname{Pr}_{\text {tot }}(\mathrm{n}) \quad \mathrm{SW}(\mathrm{n}) \text { simplify } \rightarrow-2 \cdot \mathrm{n} \cdot \frac{\left(-278 \cdot \mathrm{n}-571+5 \cdot \mathrm{n}^{2}\right)}{(\mathrm{n}+1)^{2}}
$$

social welfare

					$\mathrm{n}:=1,2 . .10$	
	$\mathrm{Q}(\mathrm{n})=$	$\mathrm{p}(\mathrm{n})=$	$\operatorname{Pr}(\mathrm{n})=$	$\operatorname{Pr}_{\text {tot }}(\mathrm{n})=$	$\mathrm{CS}(\mathrm{n})=$	$\mathrm{SW}(\mathrm{n})=$
1	12	26	278	278	144	422
2	16	18	118	236	256	492
3	18	14	62	186	324	510
4	19.2	11.6	36.08	144.32	368.64	512.96
5	20	10	22	110	400	510
6	20.5714286	8.8571429	13.5102041	81.0612245	423.1836735	504.244898
7	21	8	8	56	441	497
8	21.3333333	7.3333333	4.2222222	33.7777778	455.1111111	488.8888889
9	21.6	6.8	1.52	13.68	466.56	480.24
10	21.8181818	6.3636364	-0.4793388	-4.7933884	476.0330579	471.2396694

Thus (free entry) equilibrium number of firms in the industry is 9 .
The socially optimum number of firms is 4 .

