Player 2

		C	
C			
Player 1	A	z_{1}	z_{2}
	B	z_{3}	z_{4}

Suppose that Player 1's ranking of the outcomes is:

$$
z_{1} \succ z_{4} \succ z_{3} \succ z_{2}
$$

best Worst
Y suppose auster is
Q. 1 : how do rank the outcomes z_{1}, \ldots, z_{a} ?

z_{3}
worst z_{2}

$$
0.6 \longleftarrow \quad \text { between }\binom{z_{4}}{1} \text { and }\left(\begin{array}{ll}
z_{1} & z_{2} \\
p & 1-p
\end{array}\right)
$$

what value of p would make you indifferent?
Suppose answer is: $p=0.6$

What if we want to contruct a utility fiunction which is not the normalized one?

Money lotteries and attitudes to risk

A money lottery is a lottery whose outcomes are sums of money.

$$
L=\left(\begin{array}{cccc}
\$ 4 & \$ 12 & \$ 24 & \$ 36 \\
\frac{1}{4} & \frac{1}{12} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

The expected value of L is ...

We use the expected value to define the risk-attitude of an agent: offer the agent a choice between $\mathbb{E}[L]$ for sure, that is, the lottery and the lottery L. If the agent says that

In the above example, \ldots.
Player 1

	a	$\$ 20$	$\$ 0$	$\$ 60$
	$\$ 50$			
	$\$ 30$	$\$ 80$	$\$ 50$	$\$ 30$

Assume that each player is selfish and
greedy (only cares about how much money she herself gets.

CASE 1: Suppose that Player 1 is risk neutral and thinks that Player 2 is equally likely to play c and d.

Then

NOTE: when a player is risk neutral we can take as von Neumann-Morgenstern utility function:
because with such a function expected utility = expected value and, by risk neutrality, the player ranks money lotteries according to their expected values.

If both players are risk neutral, the above game becomes:
Player 2

Player 1

Player 1

	a	$\$ 20$	$\$ 0$	$\$ 60$
	$\$ 50$			
	$\$ 30$	$\$ 80$	$\$ 50$	$\$ 30$

Assume that each player is selfish and
greedy (only cares about how much money she herself gets.

CASE 2: Suppose that Player 1 has the following von Neumann-Morgenstern utility function:

$$
U(\$ x)=\sqrt{x}
$$

and thinks that Player 2 is equally likely to play c and d.
Then

If both players have the above von Neumann-Morgenstern utility function then the game becomes

Player 2

Player 2

Player 2

$\begin{array}{lllll} & z_{1} & z_{2} & z_{3} & z_{4} \\ \text { vNM utility function of Player 1: } & 30 & 0 & 36 & 30 \\ \text { vNM utility function of Player 2: } & 0 & 6 & 0 & 2\end{array}$

Player 2

MIXED STRATEGIES

$$
\begin{aligned}
& \left(\left(\begin{array}{cc}
A & B \\
\frac{1}{5} & \frac{4}{5}
\end{array}\right),\left(\begin{array}{ll}
C & D \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right)\right) \\
& \left(\begin{array}{c}
\text { strategy profile } \quad(A, C) \quad(A, D) \\
\text { probability }
\end{array}\right.
\end{aligned}
$$

next page \rightarrow

Is $\left(\left(\begin{array}{cc}A & B \\ \frac{1}{5} & \frac{4}{5}\end{array}\right),\left(\begin{array}{ll}C & D \\ \frac{1}{4} & \frac{3}{4}\end{array}\right)\right)$ a Nash equilibrium?

Player 2

expected utility (or payoff) of Player 1 is

Player 2

$\left(\left(\begin{array}{cc}A & B \\ \frac{2}{5} & \frac{3}{5}\end{array}\right),\left(\begin{array}{cc}C & D \\ \frac{6}{25} & \frac{19}{25}\end{array}\right)\right)$ is a Nash equilibrium $\left(\begin{array}{c}\text { strategy profile } \\ \text { probability }\end{array}(A, C) \quad(A, D) \quad(B, C) \quad(B, D)\right)$
expected utility (or payoff) of Player 1 is

Computing the mixed-strategy Nash equilibria

Theorem. At a Nash equilibrium in mixed strategies, a player must be indifferent between any two PURE strategies that she plays with positive probability.

Player 2

