UNCERTAINTY in GAMES

A. Subjective uncertainty.

		C	
C			
Player 1	A	z_{1}	z_{2}
	B	z_{3}	z_{4}

Suppose that Player 1's ranking of the outcomes is:

$$
z_{1} \succ z_{4} \succ z_{3} \succ z_{2}
$$

If Player 1 believes that Player 2 will play C

If Player 1 believes that Player 2 will play D

If Player 1 believes that Player 2 is equally likely to play C or D

B. Objective uncertainty.

Player 1 has to choose between A and B knowing that she is playing a simultaneous game against another player, but not knowing whether it is Player 2 or Player 3. She is in front of a computer terminal. The computer will "toss a coin" and choose the opponent (and inform the opponent, but not Player 1).

Player 1 has to choose between A and B knowing that she is playing a simultaneous game against another player, but not knowing whether it is Player 2 or Player 3. She is in front of a computer terminal. The computer will "toss a coin" and choose the opponent (and inform the opponent, but not Player 1)

Suppose that Player 1 knows that

- For Player 2: $z_{1} \succ z_{2}$ and $z_{3} \succ z_{4}$
- For Player 3: $z_{6} \succ z_{5}$ and $z_{8} \succ z_{7}$

Then $\quad A \rightarrow\left(\begin{array}{cc} & \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ and $\quad B \rightarrow\left(\begin{array}{cc} & \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

Theorem 1 Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ be a set of basic outcomes and \mathcal{L} the set of lotteries over Z. If \succsim is a von NeumannMorgenstern ranking of the elements of \mathcal{L} then there exists a function U, called a von Neumann-Morgenstern utility function, that assigns a number (called utility) to every basic outcome and is such that, for any two lotteries

$$
\begin{aligned}
& L=\left(\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m} \\
p_{1} & p_{2} & \ldots & p_{m}
\end{array}\right) \text { and } M=\left(\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m} \\
q_{1} & q_{2} & \ldots & q_{m}
\end{array}\right), \\
& L \succ M \quad \text { if and only if } \underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } L}>\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } M}
\end{aligned}
$$

and

$$
L \sim M \quad \text { if and only if } \quad \underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } L}=\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } M}
$$

EXAMPLE 1. $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \quad L=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8}\end{array}\right) \quad M=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6}\end{array}\right)$
Suppose we know that $U=\left\{\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ 6 & 2 & 8 & 1\end{array}\right.$

EXAMPLE 2.

$$
A=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
50 \% & 50 \%
\end{array}\right) \quad B=\binom{\text { paid 1-week vacation }}{100 \%}
$$

Suppose Ann says $B \succ A$ How would she rank

$$
C=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
5 \% & 95 \%
\end{array}\right) \text { and } \quad D=\left(\begin{array}{cc}
\text { paid 1-week vacation } & \text { no vacation } \\
10 \% & 90 \%
\end{array}\right) ?
$$

Theorem 2. Let \succsim be a von Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L}. Then the following are true.
(A) If $U: Z \rightarrow \mathbb{R}$ is a von Neumann-Morgenstern utility function that represents \succsim, then, for any two real numbers a and b with $a>0$, the function $V: Z \rightarrow \mathbb{R}$ defined by $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$ is also a von Neumann-Morgenstern utility function that represents \succsim.
(B) If $U: Z \rightarrow \mathbb{R}$ and $V: Z \rightarrow \mathbb{R}$ are two von Neumann-Morgenstern utility functions that represent \succsim, then there exist two real numbers a and b with $a>0$ such that $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$.
$U=\left\{\begin{array}{llllll}z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\ 10 & 6 & 16 & 8 & 6 & 14\end{array}\right.$

Suppose that Player 1 knows that

- For Player 2: $z_{1} \succ z_{2}$ and $z_{3} \succ z_{4}$
- For Player 3: $z_{6} \succ z_{5}$ and $z_{8} \succ z_{7}$

$$
\text { Then } \quad A \rightarrow\left(\begin{array}{cc}
& \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \text { and } \quad B \rightarrow\left(\begin{array}{cc}
& \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

