If Player 1 believes that Player 2 is equally likely to play C or D

$$
\begin{aligned}
& A \rightarrow\left(\begin{array}{ll}
z_{1} & z_{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& B \rightarrow\left(\begin{array}{ll}
z_{3} & z_{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right.
\end{aligned}
$$

B. Objective uncertainty.

Player 1 has to choose between A and B knowing that she is playing a simultaneous game against another player, but not knowing whether it is Player 2 or Player 3. She is in front of a computer terminal. The computer will "toss a coin" and choose the opponent (and inform the opponent, but not Player 1).

$$
A \rightarrow\left(\begin{array}{ll}
z_{1} & z_{6} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad B \rightarrow\left(\begin{array}{ll}
z_{3} & z_{8} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Player 3's preferences:
$\underbrace{\left.Z_{6}\right\rangle_{3} z_{5}}_{\text {at le ft node }}$ and $\underbrace{\left.Z_{8}\right\rangle_{3} z_{7}}_{\text {at right note }}$ D belterthan $C D$ better Kan C predict Mat Player 3 will play D

Player $z^{\prime} s$ prefermus:

$$
\underbrace{z_{1} z_{2} z_{2}}_{\begin{array}{c}
\text { at left node } \\
C \text { better Han } D
\end{array}} \text { and right note } \begin{gathered}
C \text { better Man } D
\end{gathered} \underbrace{\left.z_{3}\right\rangle_{2} z_{4}}_{3}
$$

predict Kat Player 2 would $\underset{\text { Page } 2 \text { of } 10}{\text { hor }} C$

Player 1 ha) 4 strategies: $A A, A B$, (BA.) $B B$

Assume that Player 1 is selfish and greedy Suppose that "thinks that Player 2 is equally likely to play C and D

$$
\binom{\$ 1 M}{1} \text { versus }\left(\begin{array}{ll}
\$ 0 & \$ 2 M \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

EXPECTED UTILITY THEORY
$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \quad$ set of basic our comes
A lottery $L=\left(\begin{array}{cccc}z_{1} & z_{2} & \cdots & z_{n} \\ p_{1} & p_{2} & \cdots & p_{m n}\end{array}\right) \quad 0 \leq p_{i} \leq 1 \begin{gathered}\text { for } \\ \text { all } \\ i=1, \ldots, m\end{gathered}$

$$
p_{1}+p_{2}+\cdots+p_{m}=1
$$

$$
\begin{aligned}
& \text { denote }\left(\begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{m} \\
0 & 1 & & 0
\end{array}\right) \text { by }\binom{z_{2}}{1} \\
& \quad \prime\left(\begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{m} \\
\frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right) \text { by }\left(\begin{array}{cc}
z_{1} & z_{n} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right)
\end{aligned}
$$

Theorem 1 Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ be a set of basic outcomes and \mathcal{L} the set of lotteries over Z. If \succsim is a von NeumannMorgenstern ranking of the elements of \mathcal{L} then there exists a function U, called a von Neumann-Morgenstern utility function, that assigns a number (called utility) to every basic outcome and is such that, for any two lotteries

$$
\begin{aligned}
& L=\left(\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m} \\
p_{1} & p_{2} & \ldots & p_{m}
\end{array}\right) \text { and } M=\left(\begin{array}{llll}
z_{1} & z_{2} & \ldots & z_{m} \\
q_{1} & q_{2} & \ldots & q_{m}
\end{array}\right), \\
& L \succ M \quad \text { if and only if } \quad \underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } L}>\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } M}
\end{aligned}
$$

and

$$
L \sim M \quad \text { if and only if } \quad \underbrace{p_{1} U\left(z_{1}\right)+p_{2} U\left(z_{2}\right)+\ldots+p_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } L}=\underbrace{q_{1} U\left(z_{1}\right)+q_{2} U\left(z_{2}\right)+\ldots+q_{m} U\left(z_{m}\right)}_{\text {expected utility of lottery } M}
$$

$$
m=4
$$

EXAMPLE 1. $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\} \quad L=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{2}{8}\end{array}\right) \quad M=\left(\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{2}{6}\end{array}\right)$
Suppose we know that $U=\left\{\begin{array}{cccc}z_{1} & z_{2} & z_{3} & z_{4} \\ 6 & 2 & 8 & 1\end{array}\right.$

$$
\begin{aligned}
E[U(L)] & =\frac{1}{8} \cdot U\left(z_{1}\right)+\frac{5}{8} U\left(z_{2}\right)+0 U\left(z_{3}\right)+\frac{2}{8} U\left(z_{8}\right) \\
6 & \frac{1}{8} 6+\frac{5}{8} 2+\frac{2}{8} \cdot 1=2 \cdot 25 \\
E[U(M)] & =\frac{1}{6} U\left(z_{1}\right)+\frac{2}{6} U\left(z_{2}\right)+\frac{1}{6} U\left(z_{3}\right)+\frac{2}{6} U\left(z_{4}\right) \\
& =\frac{1}{6} 6+\frac{2}{6} \cdot 2+\frac{1}{6} 8+\frac{2}{6} \cdot 1=3.33
\end{aligned}
$$

Since $3.33>2.25 \quad M>L$

Suppose Ann says $\quad B \succ A$ How would she rank

$$
C=\left(\begin{array}{cc}
\text { paid 3-week vacation } & \text { no vacation } \\
5 \% & 95 \%
\end{array}\right) \text { and } \quad D=\left(\begin{array}{cc}
\text { paid 1-week vacation } & \text { no vacation } \\
10 \% & 90 \%
\end{array}\right) ?
$$

best z_{1} a
$z_{3} \quad b$
worst $z_{2} c$

$$
a>b>c
$$

Suppose that this person chooses B:

$$
B>A
$$

Suppose he chooses C : $C>D$
From $B>A$ we infer that

$$
\begin{array}{rlrl}
E[U(B)] & >E[U(A)] & & \\
1 \cdot b>\frac{1}{2} a+\frac{1}{2} c & & b>\frac{a+c}{2} \\
& & \text { or } 2 b>a+c
\end{array}
$$

From $C>D$ we infer that $E[U(C)]>E[U(p)]$

$$
\begin{aligned}
& \frac{5}{100} \cdot a+\frac{95}{100} c>\frac{10}{100} b+\frac{90}{100} c \\
& 5 a+95 c>10 b+90 c \\
& 5 a+5 c>10 b \\
& a+c>2 b
\end{aligned}
$$

Theorem 2. Let \succsim be a vol Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L}. Then the following are true.
(A) If $U: Z \rightarrow \mathbb{R}$ is a vo Neumann-Morgenstern utility function that represents \succsim, then, for any two real numbers a and b with $a>0$, the function $V: Z \rightarrow \mathbb{R}$ defined by $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$ is also a vol Neumann-Morgenstern utility function that represents \succsim.
(B) If $U: Z \rightarrow \mathbb{R}$ and $V: Z \rightarrow \mathbb{R}$ are two vo Neumann-Morgenstern utility functions that represent \succsim, then there exist two real numbers a and b with $a>0$ such that $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$.

$$
\begin{array}{r}
U=\left\{\begin{array}{llllll}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\
10 & 6 & 16 & 8 & 6 & 14
\end{array} \quad a=2\right.
\end{array} \quad V=\left\{\begin{array}{llllll}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\
20 & 12 & 32 & 16 & 12 & 28
\end{array}\right.
$$

U just as good as V just
a) good as W as a representation of an individual',

$$
W=\left\{\begin{array}{llllll}
z_{1} & z_{2} & z_{3} & z_{4} & z_{3} & z_{6} \\
10 & 2 & 22 & 6 & 2 & 18
\end{array}\right.
$$

preferences over lo therie, over Z

Theorem 2. Let \succsim be a vol Neumann-Morgenstern ranking of the set of basic lotteries \mathcal{L}. Then the following are true.
(A) If $U: Z \rightarrow \mathbb{R}$ is a vol Neumann-Morgenstern utility function that represents \succsim, then, for any two real numbers a and b with $a>0$, the function $V: Z \rightarrow \mathbb{R}$ defined by $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$ is also a vol Neumann-Morgenstern utility function that represents \succsim.
(B) If $U: Z \rightarrow \mathbb{R}$ and $V: Z \rightarrow \mathbb{R}$ are two vo Neumann-Morgenstern utility functions that represent \succsim, then there exist two real numbers a and b with $a>0$ such that $V\left(z_{i}\right)=a U\left(z_{i}\right)+b(i=1,2, \ldots, m)$.

$$
U=\left\{\begin{array}{lllllll}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\
10 & 6 & 16 & 8 & 6 & 14 & b=-6
\end{array}\right.
$$

$$
\tilde{V}=\begin{array}{cccccc}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} \\
4 & 0 & 10 & 2 & 0 & 8
\end{array}
$$

$$
a=\frac{1}{10}
$$

$$
\widetilde{W}=\frac{4}{10} \quad 0 \quad 1 \quad \frac{2}{10} \quad 0 \quad \frac{8}{10}
$$

- normalized utility function (value 1 for best 11 0 for wont)

Player 2

		C	
C			
Player 1	A	z_{1}	z_{2}
	B	z_{3}	z_{4}

Suppose that Player 1's ranking of the outcomes is:

$$
z_{1} \succ z_{4} \succ z_{3} \succ z_{2}
$$

best Worst
Y suppose auster is
Q. 1 : how do rank the outcomes z_{1}, \ldots, z_{a} ?

z_{3}
worst z_{2}

$$
0.6 \longleftarrow \quad \text { between }\binom{z_{4}}{1} \text { and }\left(\begin{array}{ll}
z_{1} & z_{2} \\
p & 1-p
\end{array}\right)
$$

what value of p would make you indifferent?
Suppose answer is: $p=0.6$

$$
\begin{aligned}
& \binom{z_{4}}{1} \sim\left(\begin{array}{cc}
z_{1} & z_{2} \\
0.6 & 0.4
\end{array}\right) \\
& \begin{aligned}
E U^{\rho}=1 \cdot U\left(z_{4}\right) & = \\
& =0.6
\end{aligned} \\
& \\
&
\end{aligned}
$$

