ULTIMATUM GAME

Player 1 is given some money.
He makes an offer to Player 2.
If Player 2 says Yes, then the offer is implemented.

If Player 2 says No, then both players end up with nothing.

How much should Player 1 offer to Player 2?

Player 1 is given $\$ 40$.
He makes an offer to Player 2 ($\mathbf{\$ 1 0}$ or $\$ 20$ or $\$ 30$). If Player 2 says Yes, then the offer is implemented. If Player $\mathbf{2}$ says No, then both players end up with nothing.

Suppose that Player 2 is fairness-minded and averse to greed:

Utility
best
worst

Centipede Game

- A referee pust $\$ 20$ on the table.
- Player 1 can take it and end the game or Pass.
- If Player 1 passes, the referee adds $\$ 20$ to the pot and Player 2 can take it and end the game or Pass.
- If Player 2 passes then the referee adds another $\$ 20$ to the pot and Player 1 can take it and end the game or Pass.
... and so on.
- At the last move the active player can take the pot for herself or can Pass, in which case the pot is divided equally between the two players.

The case of 3 moves:

Suppose that Player 1 is fairness-minded:

Utility

best
worst

Suppose that Player 2 is also fairness-minded:

Utility
best
worst

Suppose that Player 1 is selfish and greedy:

Utility
best
worst

Suppose that Player 2 is also selfish and greedy:

Utility
best
worst

A divorce

Mrs. Jones is seeking a divorce from Mr. Jones. Under the terms of her prenuptial agreement, her settlement will be $\mathbf{\$ 9 0 , 0 0 0}$ if she can prove that Mr. Jones had an affair, but $\mathbf{\$ 4 5 , 0 0 0}$ otherwise. Her lawyer, acting as her agent, can indeed prove the affair but only if he hires a private detective for $\mathbf{\$ 1 0 , 0 0 0}$, which he will have to pay out of his own pocket. The lawyer has offered Mrs. Jones a choice of two contracts. One contract involves a flat payment to the lawyer of $\mathbf{\$ 1 8 , 0 0 0}$, regardless of the outcome. The other contract involves a fee equal to one third of the settlement. What contract should Mrs. Jones choose?

Backward-induction solution

The race to 38. Players 1 and 2 take turns choosing a number from the set \{1,2,3,4,5\}. The first player to bring the total sum of the chosen numbers to 38 wins.

A monopolist and a potential entrant

	Monopolist		
	fight		accommodate
	InPotential entrant	Out	0,0
	1,5	1,5	

A chain-store (monopolist) and many potential entrants

The chain store is a monopoly in n towns. There are n potential entrants, one in each town. They make decisions sequentially with perfect knowledge of what happened in the past.

