Multiple backward-induction solutions

Bargaining game between Ali and Baba.

They have $\$ 100$ to divide. Ali makes an offer to Baba. Offers can only be multiples of $\$ 25$. The minimum offer is $\$ 25$. Baba can accept or reject. If he rejects the money to be divided shrinks to $\$ 50$ and he makes an offer. If Ali rejects then they both get nothing. Thus only two rounds of offers.

Bargaining game between Ali and Baba.

They have $\$ 100$ to divide. Ali makes an offer to Baba. Offers can only be multiples of $\$ 25$. The minimum offer is $\$ 25$. Baba can accept or reject. If he rejects the money to be divided shrinks to $\$ 50$ and he makes an offer. If Ali rejects then they both get nothing. Thus only two rounds of offers.

Definition: A strategy for player i in a perfect-information game is a list of choices, one for each node that belongs to player i.

For player 1:(1) A, B

A strategy for Player z:

- if Player 1 plays A then...

Nash equilibria are:

$$
(B, C E) \text { and }(A, C F)
$$

Only as BI solution

$$
\left(\ln , A_{c c}\right)
$$

M
Fight Accommodate

Two N.E.:
$\left(I_{n}, A c_{c}.\right)$
(Out, Fight) reject His NE
because it incorporates an incredible threat (" if in I wile fight")

Strategies of Player 2: $\left(\frac{-}{9}, \frac{-}{C}\right)_{D}{ }_{E}$ or F

$$
(C, E),(C, F),(D, E),(D, F)
$$

