IDSDS. The Iterated Deletion of Strictly Dominated Strategies
A is not a dominant straresy for Player 1
$B=$

Player 1

For Player $1 C$ is strictly dominated by B
After deleting C, now D becomes strictly dominated by F After deleting D, now A

$$
\begin{array}{ll}
R_{1}=\text { player } 1 & \text { is rational } \\
R_{2}=1,2 & B_{1} x=\text { player } 1 \text { believes } x \\
B_{2} x=1 " 2
\end{array}
$$

IDSDS. The Iterated Deletion of Strictly Dominated Strategies

$$
\begin{array}{cl}
R_{1} & B_{1} R_{2} \\
R_{2}, B_{2} R_{1} & B_{2} B_{1} B_{2} R_{1} \\
B_{1} B_{2} R_{1} & B_{2} B_{1} R_{2}
\end{array}
$$

At any stage delete strategies, that are either strictly of weakly dominated
IDWDS. The Iterated Deletion of Weakly Dominated Strategies

(2) because R weakly dom. by L

IDWDS. The Iterated Deletion of Weakly Dominated Strategies

(2) bed. L weanly dow. by R

Definition: at every stagehidentify all the strobegis, that are weakly or strictly dominated. Then delete cell of them ar the same IDWDS. The Iterated Deletion of Weakly Dominated Strategies time.

Player 2

	L		L	
	4	4	0	0

Repeat

For $1 \quad B$ is weakly dom. by T

IDSDS leave, the game unchanged
Nash equilibrium

$$
\begin{aligned}
& x \in S_{1}(=\text { set of strategies of Player 1) } \\
& y \in S_{2} \quad(\cdots \quad 2)
\end{aligned}
$$

Taus Nash equilubria:

$$
\begin{aligned}
& (A, E) \\
& (C, D)
\end{aligned}
$$

(x, y) is a Nash equilibrium if
$\pi_{1}(x, y) \geq \pi_{1}(z, y)$ for every $z \in S_{1}$
$\Pi_{2}(x, y) \geq \Pi_{2}(x, w)$ for every $w \in S_{2}$
Player 2
C
D
Player 2

Player 3 chooses F
Player 3 chooses G
(A, D, F) is a Nash equilibrium

Player	A	Player				2	
		1	0	2	3	3	1
1	B	3	3	1	5	4	4
	C		2	0	1	3	0

Player 2
C D

Player	A	2	2	2	4	3	6
$\mathbf{1}$	B	5	3	2	3	4	2

Player 3 chooses F 둔

Player 2
C D

Player 3 chooses G

Large game.
150 students in a class, they simultaneously ask for a grade (A, B or C); if 20% or less (ie. ≤ 30) ask for an A then all requests are granted, otherwise they all get a C.

Selfish players
first set: exactly 30 choose $A, 120$ choose B
Second set: at least 32 choose A

Example with uncertain outcomes. A simple auction. There are two players, Charlie and Doreen. There is an object (e.g. a painting) which Charlie values at $\$ 120$ and Doreen values at $\$ 180$. Each player has to submit a bid of either $\$ 50$ or $\$ 80$. The highest bidder gets the object and pays his/her bid (the loser does not pay anything). If the bids are equal, a fair coin is tossed.

Outcomes: $\quad a$ Charlie wins and pays $\$ 50$
b Charlie wins and pays $\$ 80$
c Doreen wins and pays $\$ 50$
d Doreen wins and pays $\$ 80$
Player's utility $=$ value - price paid (if wins, otherwise 0)

Doreen (value: \$180)

Outcomes: $\quad a$ Charlie wins and pays $\$ 50$
b Charlie wins and pays $\$ 80$
c Doreen wins and pays $\$ 50$
d Doreen wins and pays $\$ 80$
Player's utility $=$ value - price paid (if wins, otherwise 0)

Doreen (value: \$180)

	bid \$50	bid \$80
Charlie bid $\$ 50$	$\left(\begin{array}{ll}b & d \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$	d
(value: \$120) bid \$80	b	$\left(\begin{array}{ll}b & d \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

Doreen

		bid $\$ 50$	
Charlie	bid $\$ 50$	35,65	0,100
	bid $\$ 80$	40,0	20,50

