PRACTICE FIRST MIDTERM: ANSWERS

1. (a) 10 is not strictly dominated for Player 1 (if Player 2 writes 90 , then writing 10 gives Player 1 a payoff of 10 , while every other strategy gives him 0).
(b) Player 1 does not have strictly dominated strategies.
(c) Yes, 100 is weakly dominated (for example by 10). In fact, writing 100 gives Player 1 a payoff of 0 in every possible case, while writing, say 10 , would give him 10 in some cases and 0 in others.
(d) The only weakly dominated strategy is 100 .
(e) The Nash equilibria are all and only the pairs (x, y) such that $\mathrm{x}+\mathrm{y}=100$, as well as the pair $(100,100)$.
2. (a) M is a weakly dominant strategy for player 1.
(b) Player 2 does not have a dominant strategy.
(c) Hence, by (b), there is no dominant strategy equilibrium.
(d) In the first step delete T and B for Player 1 and R for Player 2 (strictly dominated by C). In the second step delete L for Player 2. Thus the output of the IDWDS is the strategy profile (M,C).
3. (a) $(1,72) \succ_{1}(2,35) \sim_{1}(2,60)$.
(b) $(2,46) \succ_{1}(2,57) \succ_{1}(1,73)$.
(c) $(1,18) \succ_{1}(2,50) \succ_{1}(2,39)$.
(d) This is the case where bidding the true value is a dominant strategy: $b_{1}=v_{1}$ is weakly dominant.
(e) Recall that $p_{1}<v_{1}<p_{m}$. Bidding v_{1} is not a dominant strategy: if Player 2 bids p_{m} then with v_{1} the outcome is $\left(2, v_{1}\right)$ and Player 1 would prefer bidding p_{1}, since - by benevolence $\left(2, p_{1}\right) \succ_{1}\left(2, v_{1}\right)$.
(f) The assumption is that it is common knowledge that both players are selfish and uncaring and $B=\left\{1,2,3=v_{1}, 4,5=v_{2}\right\}$. Since bidding one's own true value is a weakly dominant strategy, $(3,5)$ is a Nash equilibrium; however, it is not the only Nash equilibrium. All of the following are Nash equilibria: $(1,5),(2,5),(3,5),(4,5),(1,4),(2,4),(3,4),(1,3),(2,3),(5,1)$, $(5,2)$ and $(5,3)$. Thus, a total of 12 equilibria.
(g) The assumption is that it is common knowledge that both players are selfish and benevolent and $B=\left\{1,2,3=v_{1}, 4,5=v_{2}\right\}$.
(g.1) $(3,5)$ is not a Nash equilibrium because the associated outcome is $(2,3)$; by benevolence, $(2,1) \succ_{1}(2,3)$ and Player 1 can induce outcome $(2,1)$ by reducing her bid from 3 to 1 .
(g.2) The Nash equilibria are $(1,3),(1,4),(1,5)$ and $(5,1)$.
(h) The assumption is that it is common knowledge that both players are selfish and spiteful and $B=\left\{1,2,3=v_{1}, 4,5=v_{2}\right\}$.
(h.1) $(3,5)$ is not a Nash equilibrium because the associated outcome is $(2,3)$; by spitefulness, $(2,4) \succ_{1}(2,3)$ and Player 1 can induce outcome $(2,4)$ by increasing her bid from 3 to 4 .
(h.2) The Nash equilibria are: $(4,5),(3,4),(2,3)$.
4. (a)

(b) 1's strategies are: (1) veto a, (2) veto b.
(c) 2's strategies are: (1) choose b if 1 vetoed a and choose a if 1 vetoed b, (2) veto b if 1 vetoed a and choose a if 1 vetoed b, (3) choose b if 1 vetoed a and veto a if 1 vetoed b, (4) veto b if 1 vetoed a and veto a if 1 vetoed b.
(d) 3's strategies are: (1) choose c if 1 vetoed a and 2 vetoed b and choose d if 1 vetoed b and 2 vetoed a, (2) choose d if 1 vetoed a and 2 vetoed b and choose c if 1 vetoed b and 2 vetoed a, (3) choose c always, (4) choose d always.
(e) The backward induction equilibrium of the first game is shown by thick arrows: Voter 1's strategy: veto a. Voter 2's strategy: veto b if Voter 1 vetoes a, choose a if Voter 1 vetoes b. Voter 3's strategy: choose c in every case. The outcome is that candidate c is chosen.
(f) 1's strategy: veto b; 2's strategy: choose b if 1 vetoes a, choose a if 1 vetoes b; 3's strategy: choose c in every case. The outcome is that candidate a is chosen.
This Nash equilibrium relies on Player 2's strategy to choose b if 1 vetoes a, which is not a credible strategy.
