1.

Player 2

		Contribute	
Player 1	Contribute	Not contribute	
	Not contribute	2,2	1,4
	4,1	0,0	

Player 1 does not have a dominant strategy.
(b)

(c) Player 1 has four strategies. For example: (1) (Contribute if of Type I, Not Contribute if of Type II), (2) Contribute no matter what the type.
Player 2 has two strategies: Contribute and Not contribute.
(d) The normal form is as follows:

Player 1	Contr. always Never contr. If Type I contr. if Type II not If Type I not if Type II contr.	Player Contribute	2 Not contribute
		$1+\mathrm{p}, 2$	p, 4
		4, 1	$2-2 \mathrm{p}, 0$
		$4-2 \mathrm{p}, 1+\mathrm{p}$	$2-\mathrm{p}, 4 \mathrm{p}$
		$1+3 \mathrm{p}, 2-\mathrm{p}$	0, 4-4p

(e) The following is a pure-strategy equilibrium where Player 1 makes the same choice at his two nodes:
Player 1: If Type I, then choose not contribute, If Type II, then choose not contribute Player 2: choose contribute
(f) If $p \geq \frac{1}{3}$ (that is, if $4 p \geq 1+p$), then there is also the following equilibrium:

Player 1: If Type I, then choose contribute, If Type II, then choose not contribute Player 2: choose not contribute
On the other hand, if $\mathrm{p}<\frac{1}{3}$ then the equilibrium of part (e) is the only pure-strategy equilibrium.
2. (a)

Player 2
Player 2

		GC	GD	HC	HD		GC	$G D$	HC	HD
P 1	A	2, 2, 2	2, 2, 2	2, 0,1	2, 0,1	A	4, 5, 3	4, 5, 3	0, 6, 0	0, 6, 0
a										
y	B	1, 4, 3				B				
e r			4, 3, 2	1, 4, 3	4, 3, 2		1, 4, 3	4, 3, 2	1, 4, 3	4, 3, 2
1										

(b) Player 1 does not have dominated strategies. For Player 2 GD is weakly dominated by GC. and HD is weakly dominated by HC. Player 3 does not have dominated strategies.
(c) The normal form of the subgame that starts at player 3's node is:

2	G	$\begin{aligned} & 3 \\ & \mathrm{E} \end{aligned}$	F
		2, 2	5, 3
	H	0, 1	6, 0

In this subgame there are no pure-strategy Nash equilibria. To find the mixed strategy one, let p be the probability of G and q the probability of E. Then we need:

$$
2 q+5(1-q)=6(1-q) \quad \text { and } \quad 2 p+(1-p)=3 p
$$

The solution is: $\mathrm{p}=\frac{1}{2}$ and $\mathrm{q}=\frac{1}{3}$. Thus Player 1 's expected payoff at the Nash equilibrium of the subgame is: $(1 / 6) 2+(1 / 6) 2+(2 / 6) 4$

$$
+(2 / 6) 0=2
$$

(d) Since player 1's expected payoff in the subgame is 2 , he prefers choosing A to choosing B . Thus the unique subgame-perfect equilibrium is: $\left(\begin{array}{cc|cccc|cc}A & B & C & D & G & H & E & F \\ 1 & 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{2}{3}\end{array}\right)$.
(e) A pure-strategy Nash equilibrium which is not subgame-perfect is (B, CH, F).
3. The Nash equilibria are: $(1,1),(2,2),(1,2),(2,1),(2,3)$ and $(3,2)$.
4. Represent the state as a triple, where the first coordinate denotes Amy's hat, the second Beth'a and the third Carla's. Beth can see Amy's hat and Carla can see everything. Thus

Since the true state is $(\mathrm{W}, \mathrm{R}, \mathrm{W})$, the smallest event that is common knowledge among them is the first cell of the common knowledge partition, that is, the fact that Amy has a white hat.

The common knowledge partition is the same, hence the smallest event that is common knowledge among all three of them is that Amy has a white hat.
5. (a) $(2,4,2)$: yes it is in the core.
(b) $(2,3,3)$: yes it is in the core.
(c) $(1,2,5)$: not in the core: it is blocked by coalition $\{1,2\}$ [e.g. with imputation $(1.5,2.5,0)]$
(d) $(2,2,4)$: yes it is in the core.
6. The Shapley value is $(2,3.5,2.5)$
7. (a) $\mathrm{N}=\{1,2,3,4\}, \mathrm{v}(\{1\})=\mathrm{v}(\{3\})=1, \mathrm{v}(\{2\})=2, \mathrm{v}(\{4\})=6$
$\mathrm{v}(\{1,2\})=4, \mathrm{v}(\{1,3\})=3, \mathrm{v}(\{2,3\})=5, \quad \mathrm{v}(\{1,4\})=7, \quad \mathrm{v}(\{2,4\})=8, \quad \mathrm{v}(\{3,4\})=7$
$\mathrm{v}(\{1,2,3\})=8, \mathrm{v}(\{1,2,4\})=10, \mathrm{v}(\{1,3,4\})=9, \mathrm{v}(\{2,3,4\})=11$
$\mathrm{v}(\mathrm{N})=14$.
(b) The Shapley value is $(2,3.5,2.5,6)$. Thus Players 1,2 and 3 are not affected by the addition of dummy Player 4.

