Department of Economics, University of California, Davis Ecn 122 – Game Theory – Professor Giacomo Bonanno

PRACTICE PROBLEMS on cooperative games

The answers are at the end of this file starting from page 5

VERY IMPORTANT: do **not** look at the answers until you have made a VERY serious effort to solve the problem. If you turn to the answers to get clues or help, you are wasting a chance to test how well you are prepared for the exams. I will **not** give you more practice problems later on.

1. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

 $v({1}) = 10, v({2}) = 6, v({3}) = 8$ $v({1,2}) = 18, v({1,3}) = 24, v({2,3}) = 16$ $v({1,2,3}) = 30.$

Find the core.

2. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = v({2}) = v({3}) = 0$$

$$v({1,2}) = 40, \quad v({1,3}) = 0, \quad v({2,3}) = 50$$

$$v({1,2,3}) = 50$$

Find the core.

3. Consider the following cooperative game: $N = \{1, 2\}$ and

$$v({1}) = 2, v({2}) = 5, v({1,2}) = 8.$$

(a) Find the core.

(b) If imputations are required to be integer-valued (that is, the amount given to each player is an integer), list all the imputations in the core.

4. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = 4$$
, $v({2}) = 6$, $v({3}) = 3$
 $v({1,2}) = 14$, $v({1,3}) = 12$, $v({2,3}) = 16$
 $v({1,2,3}) = 18$

For each of the following imputations (x_1, x_2, x_3) determine if it is in the core:

(6, 6, 6)
 (4, 6, 8)
 (7, 7, 4)

4. (8, 8, 2)

5. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = 2, v({2}) = 4, v({3}) = 1$$

 $v({1,2}) = 12, v({1,3}) = 10, v({2,3}) = 14$
 $v({1,2,3}) = 16$

Prove that the core is empty.

6. Consider the following cooperative game: $N = \{1, 2, 3, 4\}$ and

$$v({1}) = v({2}) = 2, v({3}) = v({4}) = 4$$

$$v({1,2}) = v({1,3}) = v({1,4}) = 6, v({2,3}) = 9, v({3,4}) = 10,$$

$$v({1,2,3}) = v({1,2,4}) = v({2,3,4}) = 13,$$

$$v({1,2,3,4}) = 18$$

For each of the following imputations (x_1, x_2, x_3, x_4) determine if it is in the core:

(4, 4, 5, 5)
 (2, 4, 6, 6)
 (4, 5, 5, 4)

7. Consider the following cooperative game: $N = \{1, 2, 3, 4\}$ and

$$v({1}) = v({2}) = 4, v({3}) = v({4}) = 6$$

$$v({1,2}) = v({1,3}) = v({1,4}) = 8, v({2,3}) = 10, v({2,4}) = 10, v({3,4}) = 12,$$

$$v({1,2,3}) = v({1,2,4}) = v({2,3,4}) = 14,$$

$$v({1,2,3,4}) = 18$$

Is the core non-empty?

8. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = 10, v({2}) = 8, v({3}) = 6$$

 $v({1,2}) = 24, v({1,3}) = 22, v({2,3}) = 18$
 $v({1,2,3}) = 34$

Find the Shapley value.

9. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

 $v({1}) = 80, v({2}) = 60, v({3}) = 30$ $v({1,2}) = 180, v({1,3}) = 160, v({2,3}) = 120$ $v({1,2,3}) = 260.$

Find the Shapley value

10. Consider again the game of Exercise 9. Is Player 1 a dummy player?

11. Consider again the game of Exercise 9. Are Players 1 and 2 interchangeable?

Page 3 of 8 Practice problems on cooperative games

12. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = 2, v({2}) = 4, v({3}) = 2$$

 $v({1,2}) = 8, v({1,3}) = 10, v({2,3}) = 8$
 $v({1,2,3}) = 12$

- (a) Are Players 1 and 3 interchangeable?
- (**b**) Find the Shapley value.
- (c) Is the Shapley value in the core?

13. Consider the following cooperative game: $N = \{1, 2, 3\}$ and

$$v({1}) = 2, v({2}) = 4, v({3}) = 6$$

 $v({1,2}) = 6, v({1,3}) = 8, v({2,3}) = 12$
 $v({1,2,3}) = 14$

- (a) Are any two players interchangeable?
- (b) Is any player a dummy player?
- (c) Find the Shapley value.
- (d) Is the Shapley value in the core?

ANSWERS

1. The core is the set of (x_1, x_2, x_3) such that

$x_1 \ge v(\{1\}) = 10$	(1)
$\mathbf{x}_2 \ge \mathbf{v}(\{2\}) = 6$	(2)
$x_3 \ge v(\{3\}) = 8$	(3)
$x_1 + x_2 \ge v(\{1,2\}) = 18$	(4)
$x_1 + x_3 \ge v(\{1,3\}) = 24$	(5)
$x_2 + x_3 \ge v(\{2,3\}) = 16$	(6)
$x_1 + x_2 + x_3 = v(\{1,2,3\}) = 30$	(7)

From (5) and (7) we get that $x_2 \le 6$. This, together with (2), gives

$$x_2 = 6.$$
 (8)

From (7) and (8) we get that $x_1 + x_3 = 24$ so that

$$x_3 = 24 - x_1$$
. (9)

From (4) and (8) we get that

 $x_1 \ge 12$. (10).

From (6) and (8) we get that $x_3 \ge 10$ and this, together with (9) gives $x_1 \le 14$.

Thus the core is the set of triples (x_1, x_2, x_3) such that $12 \le x_1 \le 14$, $x_2 = 6$ and $x_3 = 24 - x_1$.

$x_1 \ge v(\{1\}) = 0$	(1)
$x_2 \ge v(\{2\}) = 0$	(2)
$x_3 \ge v(\{3\}) = 0$	(3)
$x_1 + x_2 \ge v(\{1,2\}) = 40$	(4)
$x_1 + x_3 \ge v(\{1,3\}) = 0$	(5)
$x_2 + x_3 \ge v(\{2,3\}) = 50$	(6)
$x_1 + x_2 + x_3 = v(\{1,2,3\}) = 50$	(7)

2. The core is the set of (x_1, x_2, x_3) such that

From (6) and (7) we get that $x_1 \le 0$. This, together with (1), gives

$$x_1 = 0.$$
 (8)

From (7) and (8) we get that $x_2 + x_3 = 50$ so that

$$x_3 = 50 - x_2$$
. (9)

From (4) and (8) we get that

 $x_2 \ge 40.$ (10)

Thus the core is the set of triples (x_1, x_2, x_3) such that $x_1 = 0$, $x_2 \ge 40$ and $x_3 = 50 - x_2$.

3. (a) The core is the set of (x_1, x_2) such that $x_1 \ge 2$, $x_2 \ge 5$ and $x_1 + x_2 = 8$. Thus the set of pairs $(x_1, 8 - x_1)$ such that $2 \le x_1 \le 3$.

(b) Only two: (2, 6) and (3,5).

(6, 6, 6) is not in the core because, for example, the coalition {1,2} can block it with (7,7,0).
 (4, 6, 8) is not in the core because, for example, the coalition {1,2} can block it with (7,7,0).
 (7, 7, 4) is not in the core because, for example, the coalition {2,3} can block it with (0,8,8).
 (8, 8, 2) is not in the core because, for example, the coalition {2,3} can block it with (0,9,7).

5. If (x_1, x_2, x_3) is in the core it must satisfy the following inequalities:

(1) $x_1 + x_2 \ge 12$, (2) $x_1 + x_3 \ge 10$, (3) $x_2 + x_3 \ge 14$

Adding these inequalities we get $2x_1 + 2x_2 + 2x_3 \ge 36$, that is, $x_1 + x_2 + x_3 \ge 18$ which is impossible since v({1,2,3}) = 16.

6. 1. (4, 4, 5, 5) is in the core (it satisfies all the inequalities).

2. (2, 4, 6, 6) is not in the core because the coalition $\{1,2,3\}$ can block it with, for example, (2.4, 4.3, 6.3, 0).

3. (4, 5, 5, 4) is not in the core because the coalition $\{3,4\}$ can block it with, for example, (0, 0, 5.5, 4.5).

7. No, the core is empty because, in order to be in the core, an imputation (x_1, x_2, x_3, x_4) must be such that $x_3 + x_4 \ge 12$ (otherwise it can be blocked by the coalition {3,4}) and, furthermore, it must be such that $x_1 \ge 4$ (otherwise it can be blocked by the coalition {1}) and $x_2 \ge 4$ (otherwise it can be blocked by the coalition {2}), so that $x_1 + x_2 + x_3 + x_4 \ge 20$, which is impossible, since v(N) = 18.

SHAPLEY VALUE FOR CAPITALIST-WORKERS								
v({1})	v({2})	v({3})	v({1,2})	v({1,3})	v({2,3})	v({1,2,3})		
10	8	6	24	22	18	34		
order	probability	player 1's marginal contribution	player 2's marginal contribution	player 3's marginal contribution				
123	1/6	10	14	10				
132	1/6	10	12	12				
213	1/6	16	8	10				
231	1/6	16	8	10				
312	1/6	16	12	6				
321	1/6	16	12	6				
	sum	84	66	54				
					check sum	1		
S	hapley value	14	11	9	34			

8. The Shapley value is $x_1 = 14$, $x_2 = 11$, $x_2 = 9$ and is calculated as follows:

9. The Shapley value is $x_1 = 115$, $x_2 = 85$, $x_2 = 60$ and is calculated as follows:

v({1})	v({2})	v({3})	v({1,2})	v({1,3})	v({2,3})	v({1,2,3})
80	60	30	180	160	120	260
		player 1's	player 2's	player 3's		
		marginal	marginal	marginal		
order	probability	contribution	contributio	contribution		
123	1/6	80	100	80		
132	1/6	80	100	80		
213	1/6	120	60	80		
231	1/6	140	60	60		
312	1/6	130	100	30		
321	1/6	140	90	30		
	sum	690	510	360		
					check sum	
Sh	apley value	115	85	60	260	

- **10.** Player 1 is not a dummy player, because $v({1,2}) v({2}) = 180 60 = 120 > v({1}) = 80$.
- **11.** Players 1 and 2 are not interchangeable because $v({1}) \neq v({2})$.
- 12. (a) Players 1 and 3 are interchangeable because $v({1}) = v({3})$ and $v({1,2}) v({2}) = v({2,3}) v({3}) = 4$.
 - **(b)** The Shapley value is (4, 4, 4).

(c) The Shapley value is not in the core because (4, 4, 4) can be blocked by the coalition $\{1,3\}$ with, for example, (5, 0, 5)

13. (a) No two players are interchangeable because $v(\{i\}) \neq v(\{j\})$ for any $i \neq j$.

(b) Player 1 is a dummy player because $v(\{1,2\}) = v(\{2\}) + v(\{1\})$, $v(\{1,3\}) = v(\{3\}) + v(\{1\})$ and $v(\{1,2,3\}) = v(\{2,3\}) + v(\{1\})$.

(c) The Shapley value is (2, 5, 7).

(d) The Shapley value is in the core because it satisfies all the inequalities that define the core.