ECN 122 : Game Theory Professor Giacomo Bonanno SPRING 2024 - FIRST MIDTERM EXAM: ANSWERS for VERSION 2

- (a) Since (a,(d, f)) and (b,(d, f)) are both backward-induction solutions, it must be that Player 1 is indifferent between z₂ and z₄. Since (b,(d,e)) is a backward-induction solution but (a,(d,e)) is not, it must be that Player 1 prefers z₃ to z₂. Thus there are only two inferences that we can make about Player 1's preferences: (1) z₂ ~₁ z₄ and (2) z₃ ≻₁ z₂ (and thus, by transitivity, also z₃ ≻₁ z₄).
 - (a) Since both *e* and *f* are part of a backward-induction solution, it must be that Player 2 is indifferent between z_3 and z_4 . Since *d* is part of a backward-induction solution but *c* is not, it must be that Player 2 prefers z_2 to z_1 . Thus there are only two inferences that we can make about Player 2's preferences: (1) $z_3 \sim_2 z_4$ and (2) $z_2 \succ_2 z_1$.
 - (**b**) There are five possibilities, depending on where z_1 appears in the ranking:

$$\begin{bmatrix} z_3 \\ worst & z_2, z_4 \end{bmatrix}$$
,

 z_1

best

(]		(best	z_3	(]	``	(best	z_3
best	z_1, z_3		~	best	z_3		
worst	Z_2, Z_4		<i>λ</i> ₁	, worst	Z1. Z2. Z4	,	z_2, z_4 .
	~2,~~4)	worst	z_2, z_4)		$ \begin{array}{c} z_3 \\ z_1, z_2, z_4 \end{array} \right) $	worst	z_1)

2. (a) (and (b) The strategic form is as follows. The Nash equilibria are highlighted.

		Player 2									
		аc		a d		bc		b d			
	Le	2	5	2	5	3	3	3	3		
Dlavor 1	Lf	2	5	2	5	2	7	2	7		
Player 1	Rе	3	2	1	1	3	2	1	1		
	R f	3	2	1	1	3	2	1	1		

(c) There is a unique backward induction solution given by (Re, ac).

3. (a) For no values (if $b \le 2$ *H* weakly dominates *G*, however, *H* does not dominate *F*).

(b) (b.1) For a < 3. (b.2) The strictly dominant strategy is B.

(c) (c.1) For a = 3. (c.2) The weakly dominant strategy is B.

(d) • for any *a*, if b > 2 then (B,G) is the only pure-strategy Nash equilibrium.

• if a > 3 and b < 2 then (B,H) is the only pure-strategy Nash equilibrium.

• if $a \le 3$ and b = 2, then there are 3 pure-strategy Nash equilibria: (B,F), (B,G) and (B,H).

(e) • if $a \le 3$ and b < 2, then there are 2 pure-strategy Nash equilibria: (B,F) and (B,H)

• if $a \le 3$ and b = 2, then there are 2 pure-strategy Nash equilibria: (B,G) and (B,H).

To answer (f) and (g) first note that, for every pair of values of *a* and *b*, in the first round of elimination strategies A, D and E of Player 1 are among those that get eliminated. If b > 2 then G cannot be deleted in the first round, while if $b \le 2$ G can be deleted in the first

round.

If a > 3 then C cannot be deleted in the first round, while if $a \le 3$ C can be deleted in the first round. Thus:

- If a > 3 and b > 2 then in the first round delete A, D and E, in the second round delete F and H and in the third round delete C. Left with (B,G).
- If $a \le 3$ and b > 2 then in the first round delete A, C, D and E and in the second round delete F and H. Left with (B,G).
- If $a \le 3$ and $b \le 2$ then in the first round delete A, C, D, E and G and no more deletions are possible. Left with (B,F) and (B,H).
- If a > 3 and $b \le 2$ then in the first round delete A, D, E and G, in the second round delete F and in the third round delete C. Left with (B,H).

Hence:

- (f) For $a \le 3$ and $b \le 2$.
- (g) For a > 3 and any value of *b*, or for $a \le 3$ and b > 2.

4. (c,k), (c,m), (d,k), (d,m)