1. (a) Since $(a,(d, f))$ and $(b,(d, f))$ are both backward-induction solutions, it must be that Player 1 is indifferent between z_{2} and z_{4}. Since $(b,(d, e))$ is a backward-induction solution but $(a,(d, e))$ is not, it must be that Player 1 prefers z_{3} to z_{2}. Thus there are only two inferences that we can make about Player 1's preferences: (1) $z_{2} \sim_{1} z_{4}$ and (2) $z_{3} \succ_{1} z_{2}$ (and thus, by transitivity, also $z_{3} \succ_{1} z_{4}$).
(a) Since both e and f are part of a backward-induction solution, it must be that Player 2 is indifferent between z_{3} and z_{4}. Since d is part of a backward-induction solution but c is not, it must be that Player 2 prefers z_{2} to z_{1}. Thus there are only two inferences that we can make about Player 2's preferences: (1) $z_{3} \sim_{2} z_{4}$ and (2) $z_{2} \succ_{2} z_{1}$.
(b) There are five possibilities, depending on where z_{1} appears in the ranking: $\left(\begin{array}{cc}\text { best } & z_{1} \\ & z_{3} \\ \text { worst } & z_{2}, z_{4}\end{array}\right)$,

$$
\left(\begin{array}{cc}
\text { best } & z_{1}, z_{3} \\
\text { worst } & z_{2}, z_{4}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{3} \\
\text { worst } & z_{2}, z_{4}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{3} \\
\text { worst } & z_{1}, z_{2}, z_{4}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{3} \\
& z_{2}, z_{4} \\
\text { worst } & z_{1}
\end{array}\right)
$$

2. (a) (and (b) The strategic form is as follows. The Nash equilibria are highlighted.

Player 2

	a c		ad		b c		b d	
Le	2	5	2	5	3	3	3	3
Lf	2	5	2	5	2	7	2	7
Player 1 R e	3	2	1	1	3	2	1	1
R f	3	2	1	1	3	2	1	1

(c) There is a unique backward induction solution given by (Re, ac).
3. (a) For no values (if $b \leq 2 H$ weakly dominates G, however, H does not dominate F).
(b) (b.1) For $a<3$. (b.2) The strictly dominant strategy is B.
(c) (c.1) For $a=3$. (c.2) The weakly dominant strategy is B.
(d) - for any a, if $b>2$ then (B, G) is the only pure-strategy Nash equilibrium.

- if $a>3$ and $b<2$ then (B, H) is the only pure-strategy Nash equilibrium.
- if $a \leq 3$ and $b=2$, then there are 3 pure-strategy Nash equilibria: (B,F), (B,G) and (B,H).
(e) - if $a \leq 3$ and $b<2$, then there are 2 pure-strategy Nash equilibria: (B, F) and (B, H)
- if $a \leq 3$ and $b=2$, then there are 2 pure-strategy Nash equilibria: (B, G) and (B, H).

To answer (f) and (g) first note that, for every pair of values of a and b, in the first round of elimination strategies A, D and E of Player 1 are among those that get eliminated.
If $b>2$ then G cannot be deleted in the first round, while if $b \leq 2 \mathrm{G}$ can be deleted in the first
round.
If $a>3$ then C cannot be deleted in the first round, while if $a \leq 3 \mathrm{C}$ can be deleted in the first round. Thus:

- If $a>3$ and $b>2$ then in the first round delete A, D and E , in the second round delete F and H and in the third round delete C . Left with (B,G).
- If $a \leq 3$ and $b>2$ then in the first round delete $\mathrm{A}, \mathrm{C}, \mathrm{D}$ and E and in the second round delete F and H . Left with (B,G).
- If $a \leq 3$ and $b \leq 2$ then in the first round delete $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and G and no more deletions are possible. Left with (B,F) and (B,H).
- If $a>3$ and $b \leq 2$ then in the first round delete $\mathrm{A}, \mathrm{D}, \mathrm{E}$ and G , in the second round delete F and in the third round delete C. Left with (B,H).
Hence:
(f) For $a \leq 3$ and $b \leq 2$.
(g) For $a>3$ and any value of b, or for $a \leq 3$ and $b>2$.

4. $(\mathrm{c}, \mathrm{k}),(\mathrm{c}, \mathrm{m}),(\mathrm{d}, \mathrm{k}),(\mathrm{d}, \mathrm{m})$
