University of California, Davis -- Department of Economics
ECN 122 : Game Theory Professor Giacomo Bonanno
Spring 2024 - FIRST MIDTERM EXAM Version 2
Answer all questions. If you don't explain (= show your work for) your answers you will get no credit.

NAME: \qquad University ID: \qquad

CIRCLE THE NAME OF YOUR TA: Kalyani Chaudhuri or Junghwan Ryu

If you don't know the name of your TA, then write your Section Number: \qquad

- By writing your name on this exam you certify that you have not violated the University's Code of Academic Contact (for example, you have not copied from the work of another student and you have not knowingly facilitated cheating by another student).
- If you submit the exam without writing your name and ID, you will get a score of 0 for this exam.
- If you do not stop writing when told so (at the end), a penalty of $\mathbf{1 0}$ points will be deducted from your score.

1. [26 points] Consider the following extensive-form game-frame with perfect information:

The players have complete and transitive preferences over the set of outcomes $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and the preferences are such that the corresponding game has exactly three backward-induction solutions, namely $(a,(d, f)),(b,(d, f))$ and $(b,(d, e))$.
(a) [8 points] What can you infer about the preferences of Player 1 ?
(b) [8 points] What can you infer about the preferences of Player 2?
(c) [10 points] Write all the complete and transitive preference relations of Player 1 that are compatible with the above information.
2. [27 points] Consider the following perfect-information game.

(a) [10 points] Write the corresponding strategic form.
(b) [10 points] List all the (pure-strategy) Nash equilibria.
(c) [7 points] Which of the Nash equilibria is also a backward induction solution?
3. [35 points] Consider the following game with ordinal payoffs (a and b can be any non-negative integers):

Player 2

	F	G	H
A	2, 1	1, 0	3,4
B	3,2	$2, b$	4,2
e C	$\boldsymbol{a}, 3$	1, 4	3, 4
D	2, 4	0, 3	2, 3
1 E	1, 2	0, 1	3,2

(a) [3 points] For what values of b does Player 2 have a weakly dominant strategy?
(b) (b.1) [2 points] For what values of a does Player 1 have a strictly dominant strategy?
(b.2) [2 points] Name the strategy.
(c) (c.1) [2 points] For what values of a does Player 1 have a weakly but not strictly dominant strategy?
(c.2) [2 points] Name the strategy.
(d) [6 points] For what values of a and b does the game have an odd number of pure-strategy Nash equilibria? Name the Nash equilibria.

		Player 2		
		F	G	H
P	A	2, 1	1, 0	3, 4
a	B	3,2	$2, b$	4, 2
y	C	$\boldsymbol{a}, 3$	1, 4	3, 4
r	D	2, 4	0, 3	2, 3
1	E	1,2	0, 1	3,2

(e) [6 points] For what values of a and b does the game have an even number of pure-strategy Nash equilibria? Name the Nash equilibria.
(f) [6 points] For what values of a and b does the iterated deletion of weakly dominated strategies lead to two strategy profiles? Name the two profiles.
(g) [6 points] For what values of a and b does the iterated deletion of weakly dominated strategies lead to a unique strategy profile? Name the profile.
4. [12 points] Consider the following two-player strategic-form game. Player 1 has five strategies: a, b, c, d and e and Player 2 has four strategies: $\mathrm{k}, \mathrm{m}, \mathrm{n}$ and s .

For Player 1:

- a is equivalent to b
- c strictly dominates b
- c is equivalent to d
- b weakly dominates e

For Player 2:

- k is equivalent to m
- m strictly dominates s
- s weakly dominates n

List all the pure-strategy Nash equilibria of this game.

