SPRING 2024 - FIRST MIDTERM EXAM: ANSWERS for VERSION 1

1. (a) (a.1) For $x<3$. (a.2) The strictly dominant strategy is C .
(b) (b.1) For $x=3 . \quad$ (b.2) The weakly dominant strategy is C.
(c) For no values (if $y \leq 2 G$ weakly dominates H; however, G does not dominate F).
(d) • for any x, if $y>2$ then (C,H) is the only pure-strategy Nash equilibrium. Odd.

- if $x>3$ and $y<2$ then (C,G) is the only pure-strategy Nash equilibrium. Odd.
- if $x \leq 3$ and $y=2$, then there are 3 pure-strategy Nash equilibria: (C,F), (C,G) and (C,H). Odd.
(e) - $x \leq 3$ and $y<2$, then there are two Nash equilibria: (C,F) and (C,G). Even.
- $x>3$ and $y=2$, then there are two Nash equilibria: (C,G) and (C,H). Even.

To answer (f) and (g) first note that, for every pair of values of x and y, in the first round of elimination strategies A, B and E of Player 1 are among those that get eliminated.
If $y>2$ then H cannot be deleted in the first round, while if $y \leq 2 \mathrm{H}$ can be deleted in the first round.
If $x>3$ then D cannot be deleted in the first round, while if $\mathrm{x} \leq 3 \mathrm{D}$ can be deleted in the first round. Thus:

- If $x>3$ and $y>2$ then in the first round delete A, B and E , in the second round delete F and G and in the third round delete D . Left with (C,H).
- If $x \leq 3$ and $y>2$ then in the first round delete $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E and in the second round delete F and G . Left with (C,H).
- If $x>3$ and $y \leq 2$ then in the first round delete $\mathrm{A}, \mathrm{B}, \mathrm{E}$ and H , in the second round delete F and in the third round delete D . Left with (C,G).
- If $x \leq 3$ and $y \leq 2$ then in the first round delete A, B, D, E and H and then no more deletions are possible. Left with (C,F) and (C,G).

Hence: (f) For $x \leq 3$ and $y \leq 2$. (g) For $x>3$ and any value of y, or for $x \leq 3$ and $y>2$.
2. (a) Since $(a,(c, e))$ and $(b,(c, e))$ are both backward-induction solutions, it must be that Player 1 is indifferent between z_{1} and z_{3}. Since $(b,(c, f))$ is a backward-induction solution but $(a,(c, f))$ is not, it must be that Player 1 prefers z_{4} to z_{1}. Thus there are only two inferences that we can make about Player 1's preferences: (1) $z_{1} \sim_{1} z_{3}$ and (2) $z_{4} \succ_{1} z_{1}$ (and thus, by transitivity, also $z_{4} \succ_{1} z_{3}$)
(b) Since both e and f are part of a backward-induction solution, it must be that Player 2 is indifferent between z_{3} and z_{4}. Since c is part of a backward-induction solution but d is not, it must be that Player 2 prefers z_{1} to z_{2}. Thus there are only two inferences that we can make about Player 2's preferences: (1) $z_{3} \sim_{2} z_{4}$ and (2) $z_{1} \succ_{2} z_{2}$.
(c) There are five possibilities, depending on where z_{2} appears in the ranking:

$$
\left(\begin{array}{cc}
\text { best } & z_{2} \\
\text { worst } & z_{1}, z_{3}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{2}, z_{4} \\
\text { worst } & z_{1}, z_{3}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{4} \\
& z_{2} \\
\text { worst } & z_{1}, z_{3}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{4} \\
\text { worst } & z_{1}, z_{2}, z_{3}
\end{array}\right),\left(\begin{array}{cc}
\text { best } & z_{4} \\
& z_{1}, z_{3} \\
\text { worst } & z_{2}
\end{array}\right) .
$$

2. (a) and (b) The strategic form is as follows. The Nash equilibria are highlighted.

(c) There is a unique backward induction solution given by $\left(\left(a_{1}, d_{1}\right),\left(b_{1}, c_{1}\right)\right)$.
3. $(\mathrm{A}, \mathrm{f}),(\mathrm{A}, \mathrm{g}),(\mathrm{B}, \mathrm{f}),(\mathrm{B}, \mathrm{g})$
