ECN 122 : Game Theory Professor Giacomo Bonanno SPRING 2024 - FIRST MIDTERM EXAM: ANSWERS for VERSION 1

- **1.** (a) (a.1) For x < 3. (a.2) The strictly dominant strategy is C.
 - (b) (b.1) For x = 3. (b.2) The weakly dominant strategy is C.
 - (c) For no values (if $y \le 2$ *G* weakly dominates *H*; however, *G* does not dominate *F*).
 - (d) for any x, if y > 2 then (C,H) is the only pure-strategy Nash equilibrium. Odd.
 - if x > 3 and y < 2 then (C,G) is the only pure-strategy Nash equilibrium. Odd.
 - if $x \le 3$ and y = 2, then there are 3 pure-strategy Nash equilibria: (C,F), (C,G) and (C,H). Odd.
 - (e) $x \le 3$ and y < 2, then there are two Nash equilibria: (C,F) and (C,G). Even.
 - x > 3 and y = 2, then there are two Nash equilibria: (C,G) and (C,H). Even.

To answer (f) and (g) first note that, for every pair of values of x and y, in the first round of elimination strategies A, B and E of Player 1 are among those that get eliminated.

If y > 2 then H cannot be deleted in the first round, while if $y \le 2$ H can be deleted in the first round.

If x > 3 then D cannot be deleted in the first round, while if $x \le 3$ D can be deleted in the first round. Thus:

- If x > 3 and y > 2 then in the first round delete A, B and E, in the second round delete F and G and in the third round delete D. Left with (C,H).
- If $x \le 3$ and y > 2 then in the first round delete A, B, D and E and in the second round delete F and G. Left with (C,H).
- If x > 3 and $y \le 2$ then in the first round delete A, B, E and H, in the second round delete F and in the third round delete D. Left with (C,G).
- If $x \le 3$ and $y \le 2$ then in the first round delete A, B, D, E and H and then no more deletions are possible. Left with (C,F) and (C,G).

Hence: (f) For $x \le 3$ and $y \le 2$. (g) For x > 3 and any value of y, or for $x \le 3$ and y > 2.

- 2. (a) Since (a,(c,e)) and (b,(c,e)) are both backward-induction solutions, it must be that Player 1 is indifferent between z_1 and z_3 . Since (b,(c,f)) is a backward-induction solution but (a,(c,f)) is not, it must be that Player 1 prefers z_4 to z_1 . Thus there are only two inferences that we can make about Player 1's preferences: (1) $z_1 \sim_1 z_3$ and (2) $z_4 \succ_1 z_1$ (and thus, by transitivity, also $z_4 \succ_1 z_3$)
 - (b) Since both *e* and *f* are part of a backward-induction solution, it must be that Player 2 is indifferent between z_3 and z_4 . Since *c* is part of a backward-induction solution but *d* is not, it must be that Player 2 prefers z_1 to z_2 . Thus there are only two inferences that we can make about Player 2's preferences: (1) $z_3 \sim_2 z_4$ and (2) $z_1 \succ_2 z_2$.
 - (c) There are five possibilities, depending on where z_2 appears in the ranking:

$$\begin{pmatrix} best & z_2 \\ & z_4 \\ worst & z_1, z_3 \end{pmatrix}, \begin{pmatrix} best & z_2, z_4 \\ worst & z_1, z_3 \end{pmatrix}, \begin{pmatrix} best & z_4 \\ & z_2 \\ worst & z_1, z_3 \end{pmatrix}, \begin{pmatrix} best & z_4 \\ & z_1, z_3 \\ worst & z_1, z_2, z_3 \end{pmatrix}, \begin{pmatrix} best & z_4 \\ & z_1, z_3 \\ worst & z_2 \end{pmatrix}.$$

2. (a) and (b) The strategic form is as follows. The Nash equilibria are highlighted.

		Player 2								
		b1 c1		b1 c2		b2 c1		b2 c2		-
Player 1	a1 d1	2	1	2	1	0	0	0	0	
	a1 d2	2	1	2	1	0	0	0	0	
	a2 d1	1	4	2	2	1	4	2	2	
	a2 d2	1	4	1	6	1	4	1	6	

(c) There is a unique backward induction solution given by $((a_1, d_1), (b_1, c_1))$.

3. (A,f), (A,g), (B,f), (B,g)