Arrow's Impossibility Theorem

If the number of alternatives is at least three, there is no social preference function that satisfies the five axioms.

Borda count

===

- n alternatives, m voters
- each voter submits a *strict* ranking of the alternatives
- for each voter the top alternative receives n points, the second (n-1) points, etc.
- for each alternative we take the sum of each individual score
- alternatives are ranked according to the computed score

						N=3
	Voter 1	Voter 2	Voter 3	score		w = 3
best	a	b	С	3		
	b	a	b	2		
worst	c	c	a	1		
a :	3+2+1	- 6	best	Ь		
h ·	2+3+2	- 77		G		
_			worst	C.		
C :	1 + 1 + 3	= 5		worst.		

Social ranking:

Which of Arrow's axioms does the Borda count satisfy?

 Unrestricted domain? or Freedom of Expression

 Rationality?
 Complete traunitive
 Ies

Yes

3. Unanimity?

 $\mathbf{2}$

4. Non-dictatorship?

5. IIA must be violated by Arrow's theorem

5. Independence of irrelevant alternatives?

Voter:1234567
$$n = 4$$
best x a b x a b x a $m = 7$ worst a b c x b c x b z worst a b c x b c a c x: $4+3+2+4+3+2+4=22$ b b b c a X: $4+3+2+4+3+2+4=22$ b b b b $c:$ 15 b c a b b $b:$ 16 a $17 = 1+4+3+1+4+3+1$ b $worst$ Social ranking: $a > b$ f or society $worst$ c

$$\frac{\text{Voter:}}{\text{best}} \frac{1}{c} \frac{2}{a} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{7}{7} \frac{\text{score}}{\text{best}} \frac{5}{c} \frac{1}{a} \frac{1}{b} \frac{1}{c} \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{c} \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{c} \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{c} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{c} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{a} \frac{1}{c} \frac{1}{a} \frac$$

Social ranking:

1

Kemeny-Young method

For each pair of alternatives, x and y, count:

- (1) the number of individuals for whom $x \succ y$; denote it by $\#(x \succ y)$,
- (2) the number of individuals for whom $x \sim y$; denote it by $\#(x \sim y)$,
- (3) the number of individuals from whom $y \succ x$ denote it by $\#(y \succ x)$.

Next go through all the complete and transitive rankings of X and for each compute a total score by adding up the scores of each pairwise ranking.

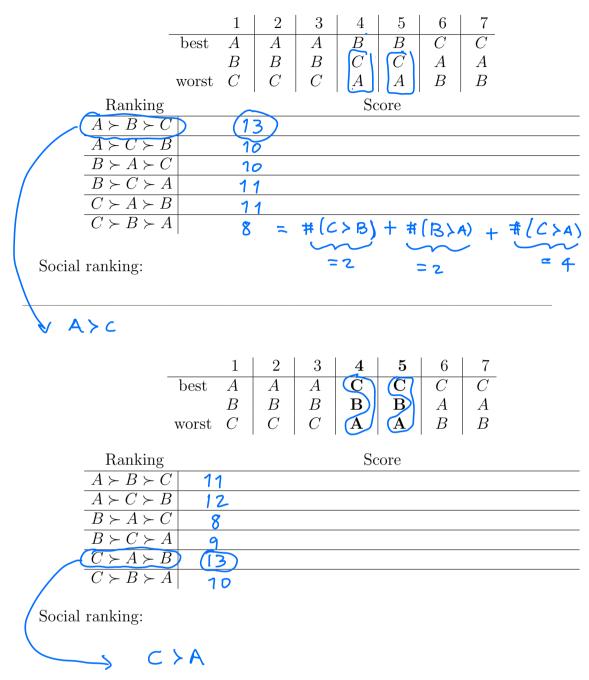
Example: $X = \{A, B, C\}, S = \{1, 2, 3, 4, 5\}$

		voter 1	voter 2	voter 3	voter 4	voter 5					
	best	A	В	В	C	B	input				
		B	C	C	A	A					
	worst	C	A	A	B	C					
1 1 .											
Now close 13	1										
this to the	how close is this to the imput? Ranking Score										
1											
$ A \succ B \succ C \mid \#(A \succ B) = 2, \#(B \succ c) = 4, \#(A \succ c) = 2 \qquad 2+4+2 = 2 $											
	2+1+2 = 5										
	$B \succ A \succ C$	/ ≠(B ≻A	f, #(A≻	د) = ۲	3+4+2=9						
)=3	4+3+3=10									
	$C \succ A \succ B$						3+1+2=6				
	$C \succ B \succ A$	#(こ)	$B \ge 1, \pm$	(BLA).	, -z ±(C	SA1-2	1+3+3=7				
			-	()-							

Social ranking:

Which of Arrow's axioms does Kemeny-Young satisfy?

1. Unrestricted domain? Yes or Freedom of expression


- **3. Unanimity?** requires some proof: see textbook
 - 4. Non-dictatorship?

Yes

By Arrows axion IIA must be violates

6

5. Independence of irrelevant alternatives?

