Social Preference Function input: $\left(\succsim_{1}, \grave{\imath}_{2}, \ldots, \succsim_{n}\right)$

$$
\text { output: } \gtrsim \text { society's ranking }
$$

Arrow's axioms

- Axiom 1: Unrestricted Domain or Freedom of Expression

At the individual level, any complete and transitive ranking should be allowed.

- Axiom 2: Rationality

Also the social ranking should be complete and transitive

- Axiom 3: Unanimity or Pareto Principle If, for every $i \in\{1,2, \ldots, n\}, x\rangle_{i} y$ then $x>y$

Example 1			
1's ranking		2's ranking	3's ranking
best	A	C	B
	B	A	C
worst	C	B	A

A versus B ranking
A versus C ".
B versus C
Unanimity principle imposes no restrictions

Example 3

best	1's ranking	2's ranking	3's ranking
	A	C	A
worst	B	A	C
	C	B	B

$\left.A\rangle_{1} B, A\right\rangle_{2} B, A>_{3} B$
unanimous then
unanimity requires $A>B$ for A and C and for
B and C unanimity imposes no restiction

- Axiom 4: Non-dictatorship
no dictator, that is, tore is
There is $h^{n o}$ individual i such that, for every two chrernatives x and y, if $x y_{i} y$ then $x>y$.

Equivalently: for every $i \in\{1,2, \ldots, n\}$ here exists at least one pair (x, y) such that $x \succ_{i} y$ but $y \geqq x$

- Axiom 5: Independence of Irrelevant Alternatives

The social running of x and y should depend only
on how the individuals rank x and y

best	individual 1 individual 2	
worst	A B	A, B
C	C	

We are trying to rank
A and B for society

best	1 A B
worst	$-2, B, C$

In all these rankings Society's ranking of A aud B must be the same

best	1	2
	C	A, B
	B	C

If there are only two alternatives the Independence of Irrelevant Alternatives axiom is trivially satisfied.

Remark 1. If there are only two alternatives (and any number of individuals) then the method of majority voting satisfies all of Arrow's axioms.

Arrow's Impossibility Theorem
If the number of alternatives is at least three, there is no social preference function that satisfies the five axioms.
equivalently: if you find a SPF Mar Satisfies four of the axioms, then it must violate the fifth axiom.

Arrow's axioms

Unrestricted Domain or Freedom of Expression

Rationality
Unanimity or Pareto
Non-Dictatorship
\mathbf{R} < completeness,
U
ND

Independence of Irrelevant Alternatives 【A

Majority Rule with 2 alternatives $\left\{\begin{array}{l}\text { These two satisfy all } \\ \text { of Arrow's axis }\end{array}\right.$ Plurality Rule with 2 alternatives $\}$ of Arrows axioms

Majority Rule with more than 2 alternatives
Plurality Rule with more than 2 alternatives

Completeness yes Transitivity U yes fails

11A yes
FE yes

Majority rule: if a majority prefers x to y then society prefers x to y if a majority prefers y to x then society prefers y to x otherwise society is indifferent between x and y

Plurality rule: if the number of individuals who prefer x to y is grater than the number of individuals who prefer y to x then society prefers x to y
if the number of individuals who prefer y to x is grater than the number of individuals who prefer x to y then society prefers y to x
otherwise society is indifferent between x and y

