How to aggregate the preferences of a group of individuals X set of alternatives that society has to choose from.
$N=\{1,2, \ldots, n\}$ set of individuals
For every $i \in N, \quad \succsim_{i} \quad i$'s preference relation over $X \quad$ complete and

- complete: for every $x, y \in X$, either transitive

$$
x \gtrsim_{i} y \text { or } y \geq_{i} x \text { or both }
$$

- transitive: for every $x, y, z \in X$ if

$$
x \gtrsim_{i} y \text { and } y \lambda_{i} z \text { then } x \lambda_{i} z
$$

$x \succsim_{i} y \quad i$ considers x to be at least as good as y
$x \succ_{i} y \quad i$ considers x to be better many
$x \sim_{i} y \quad i \quad$ " " just as good as y
Issue: how to aggregate the preferences of the individuals into a single ranking that can be viewed as "society's ranking".
\succsim (without subscript) society's preference relation over X
$x \succsim y$ for the group x is at least as good as y $x \succ y$ better than
$x \sim y$
just as good as
function $f: \quad\left(\succsim_{1}, \succsim_{2}, \ldots, \succsim_{n}\right) \mapsto \succsim$
Social preference function

5 people, 2 alternatives

1: $A>{ }_{1} B$
2: $A\rangle_{2} B$
3: $B\rangle_{3} A$
4: $A \sim_{4} B$
5: $A \sim_{5} B$

$$
\begin{aligned}
& \#(A>B)=2 \\
& \#(B>A)=1
\end{aligned}
$$

Majority vale says:

$$
A>B
$$

\# $(x>y)$: number of people for whom

$$
\#(y>x):
$$

x is better than y y is better than x
Majority rule: $\left\{\begin{array}{r}\text { if } \#(x>y)>\#(y \succ x) \text { Wen } \\ \text { declare } x>y \\ \text { otherwise declare } x \sim y\end{array}\right.$

Majority rule
Let $X=\{A, B, C\}$ and $S=\{1,2,3\}$ and

	1's ranking	2's ranking	3's ranking
best	A	C	B
	B	A	C
worst	C	B	A

$\#(A \succ B)=2, \#(B>A)=1$ so declare $A>B$

$\#(C \succ A)=2, \#(A>C)=1 \quad \| \quad C>A$
Problem 1: \succ not transitive
Problem 2: can be manipulated. Suppose Individual 2 sets the agenda ...

Suppose individual 2 sets the agenda
First vote between A and $B \longrightarrow A$ by majority
Second vote between A (the winner of vote 1) and C

$$
\sim C \text { by unajority }
$$

In his 1951 Ph.D. thesis Kenneth Arrow asked: what is a good social preference function (or aggregation rule)?
function $f: \quad\left(\succsim_{1}, \succsim_{2}, \ldots, \succsim_{n}\right) \mapsto \succsim$

There are MANY possible social preference functions

E.g. let $X=\{A, B\}$ and $S=\{1,2\}$ possible rankings of Individual 1: $\left.A \succ_{1} B, B\right\rangle_{1} A, A \sim_{1} B$ possible rankings of Individual 2: $A>_{2} B, B>_{2} A, A \sim_{2} B$ Thus 9 possible profiles of preferences:

Individual 2's ranking

| | $A \succ_{2} B$ | $A \sim_{2} B$ | $B \succ_{2} A$ |
| :---: | :---: | :---: | :---: | :---: | :---: |, | need to have |
| :---: |
| einor $A>B$ |

How many different ways to fill these 9 boxes?
i.e. How many different social preference functions?

$$
3^{9}=19,693
$$

One of them is:
if 1 and 2 agree that x is better than y then $x \succ y$, otherwise $x \sim y$

Individual 2's ranking

		$A \succ_{2} B$	$A \sim_{2} B$	$B \succ_{2} A$
Individual	$A \succ_{1} B$	$A>B$	$A \sim B$	$A \sim B$
1's	$A \sim_{1} B$	$A \sim B$	$A \sim B$	$A \sim B$
ranking	$B \succ_{1} A$	$A \sim B$	$A \sim B$	$B>A$

Second example: $X=\{A, B, C\}$ and $S=\{1,2,3\}$ and only strict rankings can be reported:

$$
\begin{aligned}
& A \succ B \succ C \\
& A \succ C \succ B \\
& B \succ A \succ C
\end{aligned} \quad 12 \text { 2 } \quad \begin{aligned}
& \text { A } \\
& B \succ C \succ A \\
& C \succ A \succ B \\
& C \succ B \succ A
\end{aligned}
$$

An input is a triple of strinct rankings $\left.\left.\left(\partial_{1},\right\rangle_{2},\right\rangle_{3}\right)$
How many possible inputs?

\square
 3

$$
6^{3}=216
$$

SPF

Fill in 216 boxes
6^{216} possible SPF $6^{216}=1.2 \cdot 10^{168}$

What is a good or reasonable SPF?

Establish some principles or desiderata or axioms
Example: $X=\{A, B\}, S=\{1,2\}$ and only strict rankings: $A \succ B$ or $B \succ A$
Then 4 possible profiles a and 16 possible functions:

$\begin{aligned} & \text { profile } \rightarrow \\ & \text { SPF } \downarrow \end{aligned}$	$\begin{aligned} & A \succ_{1} B \\ & A \succ_{2} B \end{aligned}$	$\begin{aligned} & A \succ_{1} B \\ & B \succ_{2} A \end{aligned}$	$\begin{aligned} & B \succ_{1} A \\ & A \succ_{2} B \end{aligned}$	$\begin{aligned} & B \succ_{1} A \\ & B \succ_{2} A \end{aligned}$
-SPF-1	$A \succ B$	$A \backslash B$	$A>B$	$A \succ B$
SPF-2	$A \succ B$	$A \succ B$	$A \succ B$	$B \succ A$
SPF - 3	$A \succ B$	$A \succ B$	$B \succ A$	$A \succ B$
SPF-4	$A \succ B$	$A \succ B$	$B \succ A$	$B \succ A$
SPE - 5	$A \geq B$	$B \succ A$	$A \subset B$	$A \subset B$
SPF-6	$A \succ B$	$B \succ A$	$A \succ B$	$B \succ A$
SPF - 7	$A \succ B$	$B \succ A$	$B \succ A$	$A \succ B$
SPF-8	$A \succ B$	$B \succ A$	$B \succ A$	$B \succ A$
SPF-9	$B \succ A$	$A \succ B$	$A \succ B$	$A \succ B$
SPF-10	${ }^{B} \times A$	$A \succ B$	$A \succ B$	$B \succ A$
SPF - 11	$B \succ A$	$A \succ B$	$B \succ A$	$A \succ B$
SPF-12	$B \succ A$	$A \backslash B$	$B \succ A$	$B \succ A$
SPF - 13	$B \succ A$	$B \succ A$	$A \succ B$	$A \succ B$
SPF-14	$B \succ A$	$B \succ A$	$A \succ B$	$B \succ A$
SPF - 15	$B \succ A$	$B \succ A$	$B \succ A$	$A \succ B$
SPF - 16	$B \succ A$	$B \succ A$	$B \succ A$	$B \succ A$

By appealing to Unanimity we can discard all except:

profile \rightarrow	$A \succ_{1} B$	$A \succ_{1} B$	$B \succ_{1} A$	$B \succ_{1} A$
SPF \downarrow	$A \succ_{2} B$	$B \succ_{2} A$	$A \succ_{2} B$	$B \succ_{2} A$
SPF - 2	$A \succ B$	$A \succ B$	$A \succ B$	$B \succ A$
SPF - 8	$A \succ B$	$B \succ A$	$B \succ A$	$B \succ A$

Arrow's axioms

- Axiom 1: Unrestricted Domain or Freedom of Expression

At the individual level, any complete curd transitive ranking should be allowed.

- Axiom 2: Rationality

Also the social ranking should be complete and transitive

