How to aggregate the preferences of a group of individuals

X set of alternatives that society has to choose from.

 \mathbb{N} $\mathbf{V} = \{1, 2, \dots, n\}$ set of individuals

For every $i \in N$, \gtrsim_i is preference relation over X Complete and • complete: for every $x_i y \in X$, either $x \gtrsim_i y$ or $y \succeq_i x$ or both • transitive: For every $x_i y_i z \in X$ if $x \gtrsim_i y$ is couriers x to be at least as good as y $x \succ_i y$ is couriers x to be helter than y $x \sim_i y$ is in the preference relation over X complete and transitive: $transitive: for every <math>x_i y_i z \in X$ if $x \gtrsim_i y$ is couriers x to be at least α_i good $\alpha_i y$

Issue: how to aggregate the preferences of the individuals into a single ranking that can be viewed as "society's ranking".

 \succeq (without subscript) society's preference relation over X

 $x \gtrsim y$ for the group x is at least as good as y $x \succ y$ better than $x \sim y$ just as good as

function f:
$$(\succeq_1, \succeq_2, \dots, \succeq_n) \mapsto \succeq$$

social preference function

5 people, 2 alternatives1: $A >_{1} B$ # (A > B) = 22: $A >_{2} B$ # (B > A) = 13: $B >_{3} A$ Majorihy rule says: 4: $A \sim_{4} B$ A > B5: $A \sim_{5} B$

#(x>y): number of people for whom x is beller than y #(y>x): " y is beller Man x Majority rule: { if $\pm (X>y) > \#(Y>x)$ Men declare X>y. otherwise declare X>y

Majority rule

Let $X = \{A, B, C\}$ and $S = \{1, 2, 3\}$ and

	1's ranking	2's ranking	3's ranking
\mathbf{best}	A	(C)	B
	B	Ă	C
worst	C	B	A

 $\#(A \succ B) = 2$, $\#(B \succ A) = 1$ so declare $A \succ B$

 $\# (B \succ C) = 2, \# (C \succ B) = 7 \qquad " \qquad B \succ C$

 $\#(C \succ A) = 2, \quad \#(A \succ c) = 7 \qquad (I \qquad C \succ A)$

Problem 1: \succ not transitive

Problem 2: can be manipulated. Suppose Individual 2 sets the agenda ...

Suppose individual 2 sets the agenda First vote between A and B ~> A by majority Second vote between A (the winner of vote 1) and C ~> C by majority In his 1951 Ph.D. thesis Kenneth Arrow asked: what is a good *social preference function* (or aggregation rule)?

function
$$f: (\succeq_1, \succeq_2, \ldots, \succeq_n) \mapsto \succeq$$

There are MANY possible social preference functions

E.g. let $X = \{A, B\}$ and $S = \{1, 2\}$

possible rankings of Individual 1: $A \succ_{1} B$, $B \succ_{1} A$, $A \sim_{1} B$ possible rankings of Individual 2: $A \succ_{2} B$, $B \succ_{2} A$, $A \sim_{2} B$

Thus 9 possible profiles of preferences:

i.e. How many different social preference functions?

$$3^9 = 19,693$$

One of them is:

if 1 and 2 agree that x is better than y then $x \succ y$, otherwise $x \sim y$

		$A \succ_2 B$	$A \sim_2 B$	$B \succ_2 A$
Individual	$A \succ_1 B$	A ≻B	A∼B	A~B
1's	$A \sim_1 B$	A~B	A~B	AnB
ranking	$B \succ_1 A$	A~B	A~B	B>A

Individual 2's ranking

Second example: $X = \{A, B, C\}$ and $S = \{1, 2, 3\}$ and only strict rankings can be reported:

What is a good or reasonable SPF?

Establish some principles or *desiderata* or axioms

Example: $X = \{A, B\}, S = \{1, 2\}$						
and	l only strict ra	ankings: A	$\succ B \text{ or } B \succ$		t.	
The	en 4 possible j		16 possible	functions:	•	
	profile \rightarrow	$A \succ_1 B$	$A \succ_1 B$	$B \succ_1 A$	$B \succ_1 A$	
		$A \succ_2 D$	$D \succ_2 A$	$A \succ_2 D$	$D \geq_2 A$	
· ·	SFT - 1	$A \succ B$	$A \succ D$	$A \succ D$	$A \succ B$	
	SPF - 2	$A \succ B$	$A \succ B$	$A \succ B$	$B \succ A$	
	SPF - 3	$A \succ B$	$A \succ B$	$B \succ A$	$A \succ B$	
	SPF - 4	$A \succ B$	$A \succ B$	$B \succ A$	$B \succ A$	
		$A \succ B$	$B \succ A$	$A \succ B$	$A \succ B$	
	SPF - 6	$A \succ B$	$B \succ A$	$A \succ B$	$B \succ A$	
	<u>SPF - 7</u>	$A \succ B$	$B \succ A$	$B \succ A$	$A \succ B$	
	SPF - 8	$A \succ B$	$B \succ A$	$B \succ A$	$B \succ A$	
	SPF - 9	$B \succ A$	$A \succ B$	$A \succ B$	$A \succ B$	
	SPF - 10	BA	$A \succ B$	$A \succ B$	$B \succ A$	
	SPF - 11	$B \succ A$	$A \succ B$	$B \succ A$	$A \succ B$	
	SPF - 12	$B \succ A$	AB	$B \succ A$	$B \succ A$	
	SPF - 13	$B \succ A$	$B \succ A$	$A \succ B$	$A \succ B$	
	SPF - 14	$B \succ A$	$B \succ A$	$A \succ B$	$B \succ A$	
	SPF - 15	$B \succ A$	$B \succ A$	$B \succ A$	$A \succ B$	
	SPF - 16	$B \succ A$	$B \succ A$	$B \succ A$	$B \succ A$	/
\sim						

Vuanimity requirement Good property: if both say X>Y Men For society X>Y

 $\mathbf{5}$

UNANIMITY

By appealing to Unanimity we can discard all except:

profile \rightarrow	$A \succ_1 B$	$A \succ_1 B$	$B \succ_1 A$	$B \succ_1 A$		
$SPF \downarrow$	$A \succ_2 B$	$B \succ_2 A$	$A \succ_2 B$	$B \succ_2 A$		
SPF - 2	$A \succ B$	$A \succ B$	$A \succ B$	$B \succ A$		
SPF - 4	$A \succ B$	$A \succ B$	$B \succ A$	$B \succ A$	- individual	7 is a
\longrightarrow SPF 6	$A \rightarrow B$	$B \succ A$	$A \succ B$	$B \succ A$		dictator
SPF - 8	$A \succ B$	$B \succ A$	$B \succ A$	$B \succ A$		
	\langle	NON-DI	ICTATO ↓	RHIP	l'individ is a	Inel 2 dictator

profile \rightarrow	$A \succ_1 B$	$A \succ_1 B$	$B \succ_1 A$	$B \succ_1 A$
$\mathrm{SPF}\ \downarrow$	$A \succ_2 B$	$B \succ_2 A$	$A \succ_2 B$	$B \succ_2 A$
SPF - 2	$A \succ B$	$A \succ B$	$A \succ B$	$B \succ A$
SPF - 8	$A \succ B$	$B \succ A$	$B \succ A$	$B \succ A$

Arrow's axioms

• Axiom 1: Unrestricted Domain or Freedom of Expression

> At the individual level, any complete and transitive ranking should be allowed.

• Axiom 2: Rationality

Also the social ranking should be complete and transitive