The discounted utility model

 $Z = \{z_1, z_2, ..., z_m\}$ set of basic outcomes $T = \{0, 1, 2, ..., n\}$ a set of dates t = 0 is now, t = 1 is one period from now ...

(z,t): outcome z experienced at date t

Preferences over the set of dated outcomes: indexed by the date at which the preferences are being considered:

 $(z,1) \succ_0 (z',2)$ means:

RESTRICTION: $(z,t) \succeq_s (z',t')$ implies that

 U_s utility function that represents the preferences at date s:

When the preferences at time s are restricted to outcomes to be experienced at time s then simpler notation $u_s(z)$:

 $u_s(z) =$

Call $u_s(z)$ the instantaneous utility of z at time s.

Begin with preferences at time 0 (the present): \gtrsim_0 represented by $U_0(\bullet)$. The **discounted or exponential utility model** assumes that these preferences have the following form:

(*)

 $(z,t) \succeq_0 (z',s)$ if and only if

Example 1. z = take online yoga class, z' = take in-person yoga class

$$(z,1) \sim_0 (z',3)$$

If her preferences satisfy the discounted utility model then

Suppose that $u_1(z) = 4$ and $u_3(z') = 6$.

- 1. Then what is her discount factor?
- 2. What is her discount rate?

$$U_0(z,t) = \delta^t u_t(z)$$

Suppose you have a choice between (z',0), (z,0) and (z,1)z' = do nothing and <math>z = carry out a particular activity $U_0(z',0) =$

 $U_0(z,0) =$

 $U_0(z,1) =$

Suppose that $u_0(z') = 0$ and $u_1(z) = u_0(z)$ so that $U_0(z,1) =$

Ranking sequence of outcomes

		Today	Tomorrow
	date	0	1
EXAMPLE 2.	Plan A	x	У
	Plan B	У	x

Suppose: $u_0(x) = u_1(x) = 4$ $u_0(y) = u_1(y) = 6$ $\delta = 0.8$.

	Today	Tomorrow
date	0	1
Plan A		
Plan B		

Extension of the discounted utility:

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

EXAMPLE 3.
$$\frac{date \quad 0 \quad 1 \quad 2}{\frac{Plan A \quad x \quad y \quad z}{Plan B \quad y \quad z \quad x}}$$

 $U_0(\text{Plan A}) =$

 $U_{0}(\text{Plan B}) =$ Suppose $\begin{cases} \delta = 0.9, \\ u_{0}(x) = 0, u_{1}(y) = 4, u_{2}(z) = 2, \\ u_{0}(y) = 3, u_{1}(z) = 1, u_{2}(x) = 1 \end{cases}$ then

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

Time consistency of preferences

date	0	1	2	3
Plan A	_	x	У	\overline{Z}
Plan B	_	y	Z	x

Suppose that you "choose" Plan *B*:

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are **time consistent** if at date 1 you maintain the same ranking that you had at time 0:

Recall

$$U_0(z,t) =$$

Extend this to the preferences at any time *s*:

$$U_s(z,t) =$$
 assuming that

$$U_s(z,t) =$$
 assuming that $t \ge s$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A			X	У	Х
Plan B			У	Z	Х

 $U_0(\text{Plan A}) =$

 $U_1(\text{Plan A}) =$

 $U_2(\text{Plan A}) =$

And similarly for the utility of Plan B.

Now suppose that at time 0 you prefer Plan A to Plan B:

(**)

Divide both sides of (**) by δ :

Divide both sides of (**) by δ^2 :