The discounted utility model

$Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ set of basic outcomes $T=\{0,1,2, \ldots, n\}$ a set of dates $t=0$ is now, $t=1$ is one period from now ...

(z, t) : outcome \boldsymbol{z} experienced at date t

Preferences over the set of dated outcomes: indexed by the date at which the preferences are being considered:

RESTRICTION: $(z, t) \succsim_{s}\left(z^{\prime}, t^{\prime}\right)$ implies that $\quad t \geq s \quad t^{\prime} \geq$ $\uparrow_{\text {from the point of view of dare } s}$
U_{s} utility function that represents the preferences at date s :

$$
U_{s}(z, t) \geq U_{s}\left(z^{\prime}, t^{\prime}\right) \text { if and ouly if } \quad(z, t) \gtrsim_{s}\left(z^{\prime}, t^{\prime}\right)
$$

When the preferences at time s are restricted to outcomes to be experienced at time s then simpler notation $u_{s}(z)$:

$$
u_{s}(z)=U_{s}(z, s)
$$

Call $u_{s}(z)$ the instantaneous utility of z at time s.

Begin with preferences at time 0 (the present): \succsim_{0} represented by $U_{0}(\cdot)$.
The discounted or exponential utility model assumes that these preferences have the following form:
$U_{t}(z, t)$

$$
\begin{array}{rlrl}
U_{0}(z, t) & =\delta^{t} \sim_{u_{t}(z)} & \delta & =\text { discount factor } \tag{*}\\
U_{0}(z, 0)=\delta^{0} u_{0}(z)=u_{0}(z) & \delta & =\frac{1}{1+\rho} \quad \rho=\text { discount rate }
\end{array}
$$

Example 1. $z=$ take online yoga class, $z^{\prime}=$ take in-person yoga class

$$
(z, 1) \sim_{0}\left(z^{\prime}, 3\right)
$$

If her preferences satisfy the discounted utility model then

$$
\underbrace{U_{0}(z, 1)}_{\delta^{1} u_{1}(z)}=\underbrace{U_{0}\left(z^{\prime}, 3\right)}_{\delta^{3} u_{3}\left(z^{\prime}\right)}
$$

Suppose that $u_{1}(z)=4$ and $u_{3}\left(z^{\prime}\right)=6$.

$$
\delta \cdot 4=\delta^{3} \cdot 6 \quad \frac{4}{6}=\delta^{2} \quad \delta=\sqrt{\frac{4}{6}}
$$

1. Then what is her discount factor?

ρ
2. What is her discount rate?

$$
\delta=\frac{1}{1+\rho} \quad \frac{1}{1+\rho}=0.8165
$$

$$
\rho=0.2247
$$

$$
\begin{aligned}
& (z, t) \gtrsim_{0}\left(z^{\prime}, s\right) \text { if and only if } \\
& U_{0}(z, t) \geq U_{0}\left(z^{\prime}, s\right) \\
& \delta^{t} u_{t}^{\prime \prime}(z) \geq \delta^{s} u_{s}\left(z^{\prime}\right)
\end{aligned}
$$

$$
U_{0}(z, t)=\delta^{t} u_{t}(z)
$$

Suppose you have a choice between $\left(z^{\prime}, 0\right),(z, 0)$ and $(z, 1)$
$z^{\prime}=$ do nothing and $\quad z=$ carry out a particular activity
$U_{0}\left(z^{\prime}, 0\right)=\delta^{0} u_{0}\left(z^{\prime}\right)=u_{0}\left(z^{\prime}\right)$
$U_{0}(z, 0)=\delta u_{0}(z)=u_{0}(z)$
$U_{0}(z, 1)=\delta u_{1}(z)=\delta u_{0}(z)$
Suppose that $u_{0}(z)=u_{1}(z)$

Suppose that $u_{0}\left(z^{\prime}\right)=0$ and $u_{1}(z)=u_{0}(z)$ so that $U_{0}(z, 1)=\delta u_{1}(z)$

Ranking sequence of outcomes

EXAMPLE 2.

	Today	Tomorrow
date	0	1
Plan A	x	y
Plan B	y	x

Suppose: $\underbrace{u_{0}(x)=u_{1}(x)=4} \quad u_{0}(y)=u_{1}(y)=6 \quad \delta=0.8$.

	Today	Tomorrow
date	0	1
Plan A	4	6
Plan B	6	4

Extension of the discounted utility:
$U_{0}(\operatorname{Plan} \mathrm{~A})=\delta^{0} 4+\delta^{1} 6=4+(0.8) 6=8.8$
$U_{0}($ Plan B$)=\delta^{0}+\delta_{4}^{1}=6+(0.8)_{4}=9.2$

EXAMPLE 3.	date	0	1	2
Plan A	x	y	z	
Plan B	y	z	x	

$U_{0}(\operatorname{Plan} A)=\delta^{0} u_{0}(x)+\delta^{1} u_{1}(y)+\delta^{2} u_{2}(z)$
$U_{0}(\operatorname{Plan} \mathrm{~B})=\delta^{0} u_{0}(y)+\delta^{1} u_{1}(z)+\delta^{2} u_{2}(x)$
Suppose $\left\{\begin{array}{l}\delta=0.9, \\ u_{0}(x)=0, u_{1}(y)=4, u_{2}(z)=2, \\ u_{0}(y)=3, u_{1}(z)=1, u_{2}(x)=1\end{array}\right.$ then $\}$

$U_{0}(\operatorname{Plan} \mathrm{~A})=5.22 \leftarrow$ choose plan A
$U_{0}($ Plan B$)=4.71$

