Time consistency of preferences

date	0	1	2	3
Plan A	_	x	У	Z
Plan B	_	У	Z	x

Suppose that you "choose" Plan *B*:

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are **time consistent** if at date 1 you maintain the same ranking that you had at time 0:

Recall

$$U_0(z,t) =$$

Extend this to the preferences at any time *s*:

$$U_s(z,t) =$$
 assuming that

$$U_s(z,t) =$$
 assuming that $t \ge s$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A			X	У	X
Plan B			У	Z	Х

 $U_0(\text{Plan A}) =$

 $U_1(\text{Plan A}) =$

 $U_2(\text{Plan A}) =$

And similarly for the utility of Plan B.

Now suppose that at time 0 you prefer Plan A to Plan B:

(**)

Divide both sides of (**) by δ :

Divide both sides of (**) by δ^2 :

The hyperbolic utility model (the β - δ model)

Suppose that on January 1, 2024 you were offered either

- \$1,000 to be collected on January 1, 2025 (12 months later), or
- \$1,500 to be collected on May 1, 2025 (16 months later).

What would you choose?

Suppose that you are asked again on January 1, 2025: what do you choose:

- \$1,000 to be collected now or
- \$1,500 to be collected 4 months from now (on May 1, 2025)

Recall that in the discounted (or exponential) utility model

$$U_{0}(z,t) = \delta^{t} u_{t}(z) = \begin{cases} & \text{if } t = 0 \\ & \text{if } t > 0 \end{cases}$$
(*)

where $0 < \delta \le 1$ is the *discount factor*.

In the hyperbolic utility model

$$U_{0}(z,t) = \delta^{t} u_{t}(z) = \begin{cases} & \text{if } t = 0 \\ & \text{if } t > 0 \end{cases}$$
(**)

discounted utility model:
$$U_s(z,t) = \begin{cases} & \text{if } t = s \\ & \text{if } t > s \end{cases}$$

hyperbolic utility model:
$$U_s(z,t) = \begin{cases} & \text{if } t = s \\ & \text{if } t > s \end{cases}$$

EXAMPLE 1.

	Date 0	Date 1	Date 2	Date 3
Plan A			X	У
Plan B			W	Z.

Suppose $u_2(x) = 6$, $u_3(y) = 0$, $u_2(w) = 1.5$, $u_3(z) = 9$ $\beta = 0.6$ and $\delta = 0.8$ Then

 $U_0(\text{Plan A}) =$

 $U_0(\text{Plan B}) =$

Now consider preferences at date 2:

 $U_2(\text{Plan A}) =$

 $U_2(\text{Plan B}) =$

EXAMPLE 2. Choice is between

- \$100 in 12 months or
- \$160 in 16 months

 $u_t(\$x) = \sqrt{x}$, for all t and $\delta = 0.95$

(A) Exponential discounter:

$U_0(\$100,12) =$	
$U_0(\$160, 16) =$	so that

$U_{12}(\$100,12) =$	
$U_{12}(\$160, 16) =$	so that

(B) Hyperbolic discounter with $\beta = 0.8$

$U_0(\$100,12) =$	_
$U_0(\$160, 16) =$	so that

$U_{12}(\$100,12) =$	_
$U_{12}(\$160, 16) =$	so that

Interpretation of the parameter β

The parameter β is a measure of the DM's **bias towards the present**: if $\beta = 1$ then there is no present bias, while if $\beta < 1$ there is present bias. The lower β , the greater the intensity of the present bias.

Focus on date 0 and consider an outcome *z* such that $u_t(z) = u(z) > 0$ for all $t \ge 0$.

For an exponential discounter:

From the perspective of date 0, what is the cost of delaying z from date t > 0 to date t +1? Measure this cost as the difference between utility of (z,t) and utility of (z,t+1) as a percentage of utility of (z,t):

$$\frac{U_0(z,t) - U_0(z,t+1)}{U_0(z,t)} =$$

• Do the same for the cost of delaying *z* from date 0 to date 1:

$$\frac{U_0(z,0) - U_0(z,1)}{U_0(z,0)} =$$

For a hyperbolic discounter:

• From the perspective of date 0, what is the cost of delaying *z* from date *t* > 0 to date *t* +1?

$$\frac{U_0(z,t) - U_0(z,t+1)}{U_0(z,t)} =$$

• Cost of delaying *z* from date 0 to date 1:

$$\frac{U_0(z,0) - U_0(z,1)}{U_0(z,0)} =$$

Thus the cost of delaying from today to tomorrow is larger than the cost of delaying from a future date t to the successive date t + 1: there is a larger drop in utility in the former case than in the latter.