Time consistency of preferences

date	0	1	2	3
Plan A	-	x	y	z
Plan B	-	y	z	x

Suppose that you "choose" Plan B :

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are time consistent if at date 1 you maintain the same ranking that you had at time 0 :

Recall

$$
U_{0}(z, t)=
$$

Extend this to the preferences at any time s :

$$
U_{s}(z, t)=\quad \text { assuming that }
$$

$$
U_{s}(z, t)=\quad \text { assuming that } t \geq s
$$

	Date 0	Date 1	Date 2	Date 3	Date 4
Plan A	--	--	x	y	x
Plan B	--	--	y	z	x
$U_{0}(\operatorname{Plan} \mathrm{~A})=$					
$U_{1}(\operatorname{Plan} \mathrm{~A})=$					

And similarly for the utility of Plan B.
Now suppose that at time 0 you prefer Plan A to Plan B:
(**)

Divide both sides of $\left({ }^{* *}\right)$ by δ :

Divide both sides of (**) by δ^{2} :

The hyperbolic utility model (the $\boldsymbol{\beta} \boldsymbol{-} \boldsymbol{\delta}$ model)

Suppose that on January 1, 2024 you were offered either

- $\$ 1,000$ to be collected on January 1, 2025 (12 months later), or
- $\$ 1,500$ to be collected on May 1, 2025 (16 months later).

What would you choose?

Suppose that you are asked again on January 1, 2025: what do you choose:

- $\$ 1,000$ to be collected now or
- $\$ 1,500$ to be collected 4 months from now (on May 1, 2025)

Recall that in the discounted (or exponential) utility model

$$
U_{0}(z, t)=\delta^{t} u_{t}(z)= \begin{cases} & \text { if } t=0 \tag{*}\\ & \text { if } t>0\end{cases}
$$

where $0<\delta \leq 1$ is the discount factor.
In the hyperbolic utility model

$$
U_{0}(z, t)=\delta^{t} u_{t}(z)= \begin{cases} & \text { if } t=0 \tag{**}\\ & \text { if } t>0\end{cases}
$$

discounted utility model: $\quad U_{s}(z, t)= \begin{cases}\text { if } t=s \\ & \text { if } t>s\end{cases}$
hyperbolic utility model: $U_{s}(z, t)= \begin{cases} & \text { if } t=s \\ & \text { if } t>s\end{cases}$ EXAMPLE 1.

	Date 0	Date 1	Date 2	Date 3
Plan A	--	--	x	y
Plan B	--	-	w	z

Suppose $u_{2}(x)=6, u_{3}(y)=0, u_{2}(w)=1.5, u_{3}(z)=9 \quad \beta=0.6$ and $\delta=0.8$ Then
$U_{0}(\operatorname{Plan} \mathrm{~A})=$
$U_{0}(\operatorname{Plan} \mathrm{~B})=$

Now consider preferences at date 2 :
$U_{2}(\operatorname{Plan} \mathrm{~A})=$
$U_{2}(\operatorname{Plan} \mathrm{~B})=$

EXAMPLE 2. Choice is between

- $\$ 100$ in 12 months or
- $\$ 160$ in 16 months
$u_{t}(\$ x)=\sqrt{x}$, for all t and $\delta=0.95$
(A) Exponential discounter:
$U_{0}(\$ 100,12)=$
$U_{0}(\$ 160,16)=$
$U_{12}(\$ 100,12)=$
$U_{12}(\$ 160,16)=$
so that
so that
(B) Hyperbolic discounter with $\beta=0.8$

$$
\begin{array}{ll}
U_{0}(\$ 100,12)= & \text { so that } \\
U_{0}(\$ 160,16)= & \\
U_{12}(\$ 100,12)= & \text { so that }
\end{array}
$$

Interpretation of the parameter $\boldsymbol{\beta}$

The parameter β is a measure of the DM's bias towards the present: if $\beta=1$ then there is no present bias, while if $\beta<1$ there is present bias. The lower β, the greater the intensity of the present bias.

Focus on date 0 and consider an outcome z such that $u_{t}(z)=u(z)>0$ for all $t \geq 0$.

For an exponential discounter:

- From the perspective of date 0 , what is the cost of delaying z from date $t>0$ to date $t+1$? Measure this cost as the difference between utility of (z, t) and utility of $(z, t+1)$ as a percentage of utility of (z, t) :

$$
\frac{U_{0}(z, t)-U_{0}(z, t+1)}{U_{0}(z, t)}=
$$

- Do the same for the cost of delaying z from date 0 to date 1 :

$$
\frac{U_{0}(z, 0)-U_{0}(z, 1)}{U_{0}(z, 0)}=
$$

For a hyperbolic discounter:

- From the perspective of date 0 , what is the cost of delaying z from date $t>0$ to date $t+1$?

$$
\frac{U_{0}(z, t)-U_{0}(z, t+1)}{U_{0}(z, t)}=
$$

- Cost of delaying z from date 0 to date 1 :

$$
\frac{U_{0}(z, 0)-U_{0}(z, 1)}{U_{0}(z, 0)}=
$$

Thus the cost of delaying from today to tomorrow is larger than the cost of delaying from a future date \boldsymbol{t} to the successive date $\boldsymbol{t}+\mathbf{1}$: there is a larger drop in utility in the former case than in the latter.

