Exponential or discounted utility

Time consistency of preferences

date	0	1	2	3
Plan A	-	x	y	z
Plan B	-	y	z	x

Suppose that you "choose" Plan B :

$$
\text { Plan } B>\succ_{0} P \operatorname{lan} A
$$

Now when date 1 comes along you re-examine those two plans and are free to change your mind (there was no commitment). Your preferences are time consistent if at date 1 you maintain the same ranking that you had at time 0 :

Recall

$$
P \operatorname{lan} B>_{1} P \operatorname{lan} A
$$

$t \geq 0$

$$
U_{0}(z, t)=\delta^{t} u_{t}(z) \quad t=t-0
$$

Extend this to the preferences at any time s :

$$
\begin{aligned}
& U_{s}(z, t)=\delta^{t-5} u_{t}(z) \quad \text { assuming that } \quad t \geq s \\
& U_{0}(z, 4)=\delta^{4} u_{4}(z) \\
& U_{1}(z, 4)=\delta^{3} u_{4}(z) \\
& U_{2}(z, 4)=\delta^{2} u_{4}(z) \\
& U_{3}(z, 4)=\delta^{1} u_{4}(z) \\
& U_{4}(z, 4)=\delta^{0} u_{4}(z)=u_{4}(z)
\end{aligned}
$$

$$
U_{s}(z, t)=\delta^{t-s} u_{t}(z)
$$

Date 0	Date 1	Date 2	Date 3	Date 4
--	--	x	y	x
--	--	y	z	x

$U_{0}(\operatorname{Plan} \mathrm{~A})=\delta^{2} u_{2}(x)+\delta^{3} u_{3}(y)+\delta^{4} u_{4}(x)$
$U_{1}(\operatorname{Plan} A)=\delta u_{2}(x)+\delta^{2} u_{3}(y)+\delta^{3} u_{4}(x)$
$U_{2}(\operatorname{Plan} \mathrm{~A})=u_{2}(x)+\delta u_{3}(y)+\delta^{2} u_{4}(x)$

And similarly for the utility of Plan B.
Now suppose that at time 0 you prefer Plan A to Plan B:

$$
\underbrace{\delta^{2} u_{2}(x)+\delta^{3} u_{3}(y)+\delta^{4} u_{4}(x)}_{U_{0}(P \mid \operatorname{lan} A)}>\underbrace{\delta^{2} u_{2}(y)+\delta^{3} u_{3}(z)+\delta^{4} u_{4}}_{U_{0}(P \mid \operatorname{lan} B)}(x) \text { (**) }
$$

Divide both sides of $\left({ }^{* *}\right)$ by δ :
$\underbrace{\delta u_{2}(x)+\delta^{2} u_{3}(x)+\delta^{3} u_{4}(x)}_{U_{1}(p \mid a n A)}>\underbrace{\delta u_{2}(y)+\delta^{2} u_{3}(z)+\delta^{3} u_{4}(x)}_{V_{1}(P \mid \text { an } B)}$
Divide both sides of $\left({ }^{* *}\right)$ by δ^{2} :

The hyperbolic utility model (the $\boldsymbol{\beta} \boldsymbol{-} \boldsymbol{\delta}$ model)

Suppose that on January 1, 2024 you were offered either

- $\$ 1,000$ to be collected on January 1, 2025 (12 months later), or
- $\$ 1,500$ to be collected on May 1, 2025 (16 months later).

What would you choose?
$\$ 1,500$ on May $1>\$ 1,000$ on Jan. 1

Suppose that you are asked again on January 1, 2025: what do you choose:

- $\$ 1,000$ to be collected now or
$\$ 1,000$ now $>\underset{\substack{\text { mouth }}}{\$ 1,5004} \begin{array}{r}\text { mon }\end{array}$
- $\$ 1,500$ to be collected 4 months from now (on May 1, 2025)

Recall that in the discounted (or exponential) utility model

$$
U_{0}(z, t)=\underbrace{\delta^{t} u_{t}(z)}= \begin{cases}u_{0}(z) & \text { if } t=0 \tag{*}\\ \delta^{t} u_{t}(z) & \text { if } t>0\end{cases}
$$

where $0<\delta \leq 1$ is the discount factor.
In the hyperbolic utility model

$$
U_{0}(z, t)= \begin{cases}u_{0}(z) & \text { if } t=0 \\
\beta \delta^{t} u_{t}(z) & \text { if } t>0 \\
\text { with } 0<\beta \leq 1 & \text { if } \begin{array}{l}
\beta=1 \text { then Exponential } \\
\text { utility }=\text { hyperbolic utility }
\end{array} \\
\text { Page } 1 \text { of } 5 & \text { if } \beta<1 \text { Wen hey are }\end{cases}
$$

discounted utility model: $U_{s}(z, t)= \begin{cases}u_{s}(z) & \text { if } t=s \\ \delta^{t-s} u_{t}(z) & \text { if } t>s\end{cases}$
hyperbolic utility model: $U_{s}(z, t)= \begin{cases}u_{s}(z) & \text { if } t=s \\ \beta \delta^{t-s} u_{t}(z) & \text { if } t>s\end{cases}$
EXAMPLE 1.
\downarrow
Date 0 Date 1 Date 2 Date 3

Plan A	--	--	$\nless 6$	$y 0$
Plan B	--	--	$\boldsymbol{y} 1.5$	$z 9$

Suppose $\underline{u_{2}}(x)=6, u_{3}(y)=0, u_{2}(w)=1.5, u_{3}(z)=9 \beta=0.6$ and $\delta=0.8$
Then
$U_{0}(\operatorname{Plan} \mathrm{~A})=\beta \delta^{2} 6+\beta \delta^{3} \cdot 0=(0.6)(0.8)^{2} \cdot 6=2.3$
$U_{0}($ Plan B$)=\beta \delta^{2}(1.5)+\beta \delta^{3} .9+=(0.6)(0.8)^{2}(1.5)+(0.6)(0.8)^{3} .9=$
3.34
$P l a n ~ B>_{0} P \operatorname{lan} A$
$u_{3}(y)=6+(0.6)(0.8) \cdot 0=6$
Now consider preferences at date 2:
$U_{2}(\operatorname{Plan} \mathrm{~A})=u_{2}(x)+\beta \delta^{1} u_{3}(y)=6+(0.6)(0.8) \cdot 0=6$
$U_{2}($ Plan $B)=u_{2}(w)+\beta \delta^{1} u_{3}(z)=1.5+(0.6)(0.8) \cdot 9=5.82$ Plan $A \succ_{2}$ Plan B

